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Introduction: Brain perfusion-weighted images obtained through dynamic

contrast studies play a critical and clinical role in diagnosis and treatment

decisions. However, due to the patient’s limited exposure to radiation, computed

magnetic resonance imaging (MRI) su�ers from low contrast-to-noise ratios

(CNRs). Denoising MRI images is a critical task in many e-health applications

for disease detection. The challenge in this research field is to define novel

algorithms and strategies capable of improving accuracy and performance in

terms of image vision quality and computational cost to process data. Using

MRI statistical information, the authors present a method for improving image

quality by combining a total variation-based denoising algorithm with histogram

matching (HM) techniques.

Methods: The total variation is the Rudin–Osher–Fatemi total variation (TV-

ROF) minimization approach, TV-L2, using the isotropic TV setting for the

bounded variation (BV) component. The dual-stage approach is tested against two

implementations of the TV-L2: the split Bregman (SB) algorithm and a fixed-point

(FP) iterations scheme. In terms of HM, the study explores approximate matching

and the exact histogram matching from Coltuc.

Results: As measured by the structural similarity index (SIMM), the results indicate

that in the more realistic study scenarios, the FP with an HM pairing is one of the

best options, with an improvement of up to 12.2% over the one without an HM.

Discussion: The findings can be used to evaluate and investigate more advanced

machine learning-based approaches for developing novel denoising algorithms

that infer information from ad hoc MRI histograms. The proposed methods are

adapted to medical image denoising since they account for the preference of the

medical expert: a single parameter can be used to balance the preservation of

(expert-dependent) relevant details against the degree of noise reduction.

KEYWORDS

MRI enhancement, denoising, total variation (TV), TV-ROF model, histogram matching

(HM), di�usion MRI, anatomical MRI
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1. Introduction

The introduction of computed tomography (CT) and, later,

magnetic resonance imaging (MRI) in the 1980s resulted in a

plethora of applications of these imaging methods to head and

neck oncology. MR imaging is a rapidly evolving field that is

replacing CT in the majority of extracranial head and neck

lesions: tumors of the skull base, paranasal sinuses, nasopharynx,

parapharyngeal space, and oral cavity, pharynx, and larynx

carcinomas. Because of its superior sensitivity in detecting small

lesions and superior accuracy in staging the lesion and narrowing

the diagnostic possibilities, MR imaging is the method of choice

for the detection and staging of skull base lesions. MRI more

precisely shows the extent of a tumor in the paranasal sinuses,

and multiplanar imaging outlines intracranial extension. MR

imaging is more accurate than CT in differentiating parapharyngeal

lesions and can more accurately detail the extent of tumor tissue

in squamous cell carcinoma of the oral cavity, pharynx, and

larynx. It is more sensitive than CT in detecting tumor tissue

invasion into the mandible or laryngeal cartilage. Brain perfusion-

weighted images obtained through dynamic contrast studies play

a critical clinical role in diagnosis and treatment decisions.

However, because of the patient’s limited exposure to radiation,

computed MRI images have a low contrast-to-noise ratio (CNR).

Moreover, quantitative imaging is becoming increasingly common

as radiological technology progresses. Quantitative imaging will

change how we approach to care in the age of customizedmedicine,

like the use of quantitative hepatic MRI involving fat and iron

deposition [1].

Radiogenomics can help diagnose, prognosis, and treat cancer;

at the same time, imaging phenotypes and multi-omic biological

data may lead to new cancer prognostic models, patient treatment

strategies, and survival predictors [2]. Diagnostic imaging has

grown technologically and commercially, and large amounts of data

do not always allow for their full exploitation. Moreover, digital

platforms and applications like big data are needed to manage

diagnostic images correctly [3]. Furthermore, there are many

unexplored potentials of the Digital Imaging and COmmunications

in Medicine (DICOM) standard for leveraging the radiological

workflow from a big data perspective [4].

Because medical imaging is critical in assessing a patient’s

health and providing appropriate treatment, the presence of

numerous overlapped items in the image complicates the diagnostic

procedure. Medical images do not provide enough information

to diagnose accurately due to low lighting settings, environmental

sounds, technical limitations of imaging instruments, and other

factors. For example, a high-contrast image can also reveal a

region of interest (ROI) or an object. Numerous contrast and

quality enhancement approaches for medical images have been

proposed; for example, histogram equalization, gamma correction,

and transform-based techniques are used to improve medical

images, while denoising can aid in image cleaning. However, image

histograms cannot encode spatial image variation [5]. Noise and

distortions are frequently present in medical images. Some texture-

based features that should indicate tissue structure may actually

reflect the scanner’s uneven sensitivity. The impact of various

normalization approaches and the number of intensity levels on

texture categorization is still being investigated [6].

In many e-health applications for disease detection, denoising

MRI images is a critical task. Indeed, noise during image collection

hinders both human and computer interpretation [7]. In this

research field, the challenge is to define novel algorithms and

strategies capable of improving accuracy and performance in

terms of image vision quality and computational cost to process

data. The denoising scenario is a significant research topic in

the development and implementation of algorithms capable of

removing artifacts from images. Bazin et al. [8] presented a

denoising strategy for multi-parametric quantitative MRI that

combines local PCA with a reconstruction of the complex-valued

MR signal to define stable noise estimates, while Ouahabi [9]

showed that wavelet denoising algorithms reduced noise.

Inferring correct information from digital images acquired

by some devices requires multiple reconstruction methods to

reduce artifacts, sampling errors, and noise. In many research

areas, such as geophysics, e-health monitoring, and biomedical

imaging, solving an image processing problem (denoising, filtering,

restoration, segmentation, etc.) is a crucial computational task (see,

for example, Benfenati and Ruggiero [10, 11], Hammernik et al.

[12], Lanza et al. [13], Morigi et al. [14], De Asmundis et al. [15],

and Zanetti et al. [16]).

This research problem is typically defined as an inverse problem

inmathematical modeling, and it is typically a heavy computational

task that necessitates the use of high-performance computing

(HPC) environments (see Lustig and Martonosi [17] and Quan et

al. [18]). Many noise-removal techniques have been discussed and

developed over the last decade while avoiding excessive blurring

for small structures in MRI images. Unfortunately, most strategies

do not take into account morphological a priori information

embedded in anMRI image I; this type of image differs significantly

from a general grayscale image. The intensity distribution of

MRI images follows a suitable model that describes the target’s

anatomy (e.g., a human brain). In Luo et al. [19], the authors

propose an expectation-maximization (EM) adaptation that uses a

generic prior learned from a generic external database and adapted

it to the noisy images; the proposed algorithm is based on a

Bayesian hyper-prior perspective. The experimental results show

that the proposed adaptation algorithm consistently outperforms

the control algorithm in terms of denoising. They focus on the

maximum a posteriori (MAP) approach, a Bayesian approach that

tackles image denoising by maximizing the posterior probability,

but MAP optimization is critically dependent on the modeling

capability of the prior, and seeking the prior for the entire image

is practically impossible due to its high dimensionality.

This article proposes a method for improving image quality

after applying a smart denoising algorithm that relies on a priori

information on MRI data, which can be stored in a dictionary. The

obtained results can be used to analyze and study more complex

approaches based on machine learning methodologies in order

to design novel denoising algorithms that infer knowledge from

ad hoc MRI look-up table dictionaries. We investigated how to

denoise MRI images using application domain priors. This study

has two goals: it proposes a model for image entrenchment and
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restoration using a novel two-stage process, and it provides insights

for future models.

Our fundamental idea is to employ a priori information from

a pre-selected target to improve the restored image quality after

applying a denoising method. In this case, a two-stage technique

is appropriate, which is summarized as follows:

a) applying a suitable image denoising scheme to compute J

from a noisy image I and

b) improving the quality of J by means of a dictionary

containing a priori information on MRI images (the target).

Step a), i.e., image denoising, is an inverse problem, and it is

well known that regularization techniques have to be considered to

solve it. Given an input noisy image I of dimensionN×M, solution

J of the image denoising task is obtained by solving the following

regularized optimization problem:

u∗ : = argmin
u
|9(u)| +H(u, f ), (1)

where | · | is a norm and the convex functions 9(u) and H(u, f )

are called the regularization and the fidelity term respectively. In

practice, u generally denotes the column vector u ∈ R
N×M by

the lexicographical ordering of a two-dimensional MRI, u∗ ∈

R
N×M is a vector that represents the desired image, and f

represents the noisy image. More in detail, this study deals with

the accurate numerical solution of an inverse image processing

problem by combining classical denoising strategies with post-

processing techniques where the target is an intensity distribution

of the value of u∗ that is close to the image histogram.

In step b), we assume that the MRI image J has L different

levels of pixel intensity; a histogram of B disjoint bins is defined

as a discrete function h(bi) = ni, where bi is the ith bin and ni
is the number of pixels in the image belonging to the such bin.

Commonly L = B, and for an 8-bit image L = 256 and it is

possible to normalize the histogram in order to have an estimate

of the probability at which each level can occur. This is done

by calculating

p(bi) =
ni

N
, where N =

∑

i

ni,

as one would expect,
∑

i p(bi) = 1. The importance of investigating

histograms is underlined by several authors. The analysis of

histograms in medical images can provide two benefits: first,

to improve diagnosis like in Schob et al. [20] where valuable

information on tumors can be provided through histogram

analysis; the second, which has to be done before any analysis, is

to improve the quality of the image like in Senthilkumaran and

Thimmiaraja [21] where simple histogram equalization is applied

to enhance MRI brain images. Moreover, histograms are equivalent

to intensity mapping functions [22, 23]. Finally, some numerical

experiments show that using a priori information on MRI data can

improve image quality after applying a smart denoising algorithm

[7, 24–26].

At this point, we should recall that an image can be defined

as a two-dimensional function u(r, c), where r and c are plane

coordinates for the row and column of the 2D image. The

amplitude of u at any pair of coordinates (r, c) is called the image’s

intensity or gray level at that point. Digital images have discrete

quantities of r, c, and u. The image source determines the physical

meaning of u’s amplitude [23].When an image is created physically,

its intensities are proportional to the energy radiated by a physical

source, such as electromagnetic waves, so u is nonzero and finite

and typically, values for u are scaled in the range [0, 1]. For a digital

image, we should convert the continuous sensed data into the finite

set {0, 1, .., 255}. A digital grayscale image can thus be described as

a map of the type u : I → [0, 255] ⊂ N and consequently have a

codomain of cardinality 256, where the cardinality of a set refers to

the number of elements it is composed of.

The suggested method can be ideal for medical denoising

because it considers a single parameter that can balance the

preservation of (expert-dependent) significant features against

noise reduction. One of the major issues that we will address is that,

while we assume u ∈ R
N×M for denoising, the cardinality of the

codomain u is usually L = 256 for typical images, but it is larger

for MRI.

The article is organized as follows: Section 2 is devoted to

an overview of the denoising models and the construction of a

target by using histogram information. Section 2 also includes

the strategy for combining denoising algorithms and histogram

matching. Section 3 is concerned with numerical experiments and

their outcomes. Finally, the study is completed in Section 4.

2. Materials and methods

This section provides an overview of denoising models and

the construction of a target using histogram data. The strategy for

combining denoising algorithms and histogram matching is then

finally addressed.

Assume we have an image I of size N × M with values in the

range [0, 1]. The cleaned image is called J. Each image can have

several values, i.e., depending on the cardinality of the codomain,

all possible levels are divided into L levels; in the case of a b-bit

image, we have L = 2b.

2.1. Denoising algorithms

A typical approach to the denoising problem is based on the

idea that an image f may be divided into two parts: a structural

component (the objects in the image) and a textural part (the fine

details plus the noise) [27]. Total variation denoising (TVD) is

based on the idea that images with excessive and possibly spurious

detail have high TV. According to this principle, TV denoising tries

to find an image with less TVwhile being similar to the input image,

which is controlled by the regularization parameter. Denoising

tends to produce cartoon-like images, or piecewise-constant images

[28].

This is known as the ROF method (from the initials of

the authors’ surnames, Rudolf, Osher, and Fatemi) and was first

presented in Rudin et al. [29], also known as TV-L2. This approach

divides the input image, f , into two components: a structure

component u ∈ BV (bounded variation) and a texture component

u− f in L2.
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In this general formulation, the bounded variation seminorm is

defined as follows:

‖u‖BV(I) : =

∫

I
‖Du(x)‖dx : =

sup

{∫

I
u∇ · p s.t. p : I→ R

2, p ∈ C1(I), ‖p‖ ≤ 1, ∀x ∈ I

}

on the unit square I = [0, 1]2 where D = [Dx;Dy] is the gradient

operator ∇ in the discrete setting, andDx,Dy denote the horizontal

and vertical partial derivative operators, respectively [30]. Since

TV-ROF uses the ℓ1-norm for the BV , the optimization problem

(1) becomes a ℓ1-regularization problem.

By minimizing (Equation 1) defined as follows:

u∗ : = argmin
u
‖u‖BV +

µ

2
‖u− f ‖22, (2)

in which an image u∗ is recovered starting from its noisy version f ,

and where Du ≈ ∇u is the gradient of u, and the term µ denotes

a regularization parameter that balances the relative weights of the

fidelity and the regularization terms.

As the authors in Rudin et al. [29] point out, the use of L2, for

the texture component, makes this algorithm a kind of universal

decomposer, capable of removing most types of existing noise. It

performs particularly well on textures with oscillatory patterns.

Alliney [31] and Nikolova [32] proposed replacing the L2 norm of

the ROFmodel with the L1 norm. Nikolova demonstrated in one of

her works [32] that looking for the part texture of an image within

a space like L1 is a procedure particularly suitable for removing

salt and pepper noise. When researchers focused on compressed

sensing, which allows images and signals to be reconstructed

from small amounts of data, L1-regularized optimization problems

were investigated, and Goldstein and Osher [33] proposed a split

Bregman approach to address L1-regularized problems.

Because it is difficult to accurately describe the gradient for

discrete images using finite differences, the regularization term in

Equation 2, which is defined in the BV space, can be numerically

approximated in a variety of ways with the most well-known

approaches being the isotropic or anisotropic TV setting. The

traditional, so-called “isotropic” definition of discrete TV is far

from isotropic, but it works reasonably well in practice [34]. The

TV-ROF is isotropic or rotation-invariant, but quantifying the

isotropy of a TV functional is difficult because Z2 is not isotropic,

and there is no unique way to define image rotation. However,

after a 90-degree rotation or a horizontal or vertical flip, the

image’s TV should remain unchanged [34]. On the other hand, the

term anisotropic is used because this variation divides vertical and

horizontal components in the same way that anisotropic diffusion

does. As a result, it lacks the rotational invariant term seen in the

Isotropic approach [35]. More in detail, we have

‖u‖BV;iso = ‖Du‖2,1 =

∥

∥

∥

∥

√

|Dxu| +
∣

∣Dyu
∣

∣

∥

∥

∥

∥

1

for the isotropic setting, and

‖u‖BV;ani = ‖Du‖1 = ‖Dxu‖1 + ‖Dyu‖1

for the anisotropic one [36]. Note that we will writemore compactly

dx : = Dxu and dy : = Dyu. The distinction between the anisotropic

and isotropic problems is in how we calculate dx and dy. In contrast

to the anisotropic problem, dx and dy are coupled together in the

isotropic problem.

A comprehensive theoretical analysis of the ROF model has

been discussed by Chambolle and Lions [37]. The following are

some of the nice features of this problem that have been explored

in the literature: (i) TV-ROF deals properly with edges and noise

removal in grayscale images; (ii) the TV term discourages the

solution from having oscillations; (iii) the second term encourages

the solution to be close to the observed image u∗. Unfortunately,

the model has several drawbacks, and it has a number of flaws,

in particular, the model causes a loss of contrast and the staircase

effect, i.e., pixelization of the image at smooth regions and loss of

finely textured regions. Finally, bad decomposition of the image u∗

in cartoon and texture (noise) is a general open issue [38].

In order to overcome these difficulties, several strategies have

been proposed (see Benfenati and Ruggiero [11] and Setzer et al.

[39]). The most commonly used approach consists in modifying

the cost function by adding penalty terms R(u) in Equation (2), thus

defining the new model:

u∗ : = argmin
u
‖u‖BV +

µ

2
‖u− f ‖22 + R(u). (3)

the choice of R(u) depends on the kind of a priori information

available on the problem to be solved. In this article, our approach

is quite different, and it consists of solving the original denoising

problem (Equation 2) and after considering post-processing

techniques to improve the denoising task as reported in the

next sections.

We concentrate on total variation because the variation

regularization problem is cutting-edge in the noise removal

process. The main hypothesis underlying this algorithm is that

images with excessive and possibly spurious detail have a high total

variation. In other words, the integral of the absolute gradient of

the data is large. Under these conditions, minimizing a functional

with the fidelity term and the total variation of the image is useful

for removing unwanted detail while preserving critical information

such as edge.

In terms of other more appropriate penalty terms to be used in

equation (3). The TV noise-removal method outperforms simple

strategies such as linear smoothing or median filtering, which

reduce noise while smoothing away edges to varying degrees. Total

variation denoising, on the other hand, is a remarkably effective

edge-preserving approach, preserving edges while smoothing away

noise in flat regions even at low signal-to-noise ratios. We propose

in this article to add more penalty H(u) that is related to some

statistical hypothesis on the pixel distribution. This strategy allows

us to embed certain image contrast information directly into the

mathematical model, and to the best of our knowledge, only the

penalty term is capable of preserving this information.

There are several schemes used in the literature to solve the

TV-ROF problem (2) and its variants. This research examines

two denoising strategies: (i) the split Bregman algorithm (SBA),

proposed in Goldstein and Osher [33]; (ii) the fixed-point (FP)

iterations [40].

Our decision to discuss two algorithms is to demonstrate how

these two methods can solve the problem and, eventually, how

they can be modified by including our penalty term suggestion.
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Since the solution is unique, the two different algorithms converge

to the same solution but in two distinct ways. Furthermore,

they will always make a numerical error and approximate the

unique solution with a certain tolerance. This is why we set the

same tolerance for both methods. Furthermore, depending on the

method, the same tolerance might be accomplished with a variable

number of steps. In our dual-stage technique, we want to emphasize

the overall number of steps necessary, which is the number of

denoiser iterations plus one for histogram matching.

2.1.1. Split Bregman algorithm
The SBA is a special case of alternating direction method of

multipliers (ADMMs) [41]. The SBA has been successfully used in

solving several regularized optimization problems [42–44], and it

has been shown to be especially effective for problems involving TV

regularization [39, 45, 46].

In the isotropic TV model, we solve the following problem:

u∗ : = argmin
u
‖Du‖2,1 +

µ

2
‖u− f ‖22.

This problem is rewritten as a constrained problem,

argmin
u
‖(dx, dy)‖2,1 +

µ

2
‖u− f ‖22,

such that dx = Dxu and dy = Dyu and we relax the constraints and

solve the unconstrained problem

argmin
u,dx ,dy

‖(dx, dy)‖2,1 +
µ

2
‖u− f ‖22 +

λ

2
‖dx − ux‖

2
2 +

λ

2
‖dy − uy‖

2
2,

where λ is the Lagrange multiplier, ux = Dc
xu, uy = Dc

yu and Dc is

the second order centered finite difference. Finally, by defining

sk =

√

∣

∣ukx + bkx
∣

∣

2
+

∣

∣

∣
uky + bky

∣

∣

∣

2
,

we consider the minimization of dx and dy, by approximating

‖(dkx, d
k
y)‖2,1 by sk. Because we can now obtain the value of the

derivative by minimizing, it is no longer necessary, for instance, for

us to calculate a derivative for dx, such as Dxu as in ux.

In this section, we refer to the algorithm proposed in Goldstein

and Osher [33]. The specific steps and indexes utilized are shown

in Algorithm 1. Note that Isotropic TV denoising is our SBA

implementation and is inspired by the study of Bush [47].

We note that the value λ ≥ 0 is a Lagrange multiplier and G is the

Gauss–Seidel function written componentwise as follows:

Gk
ij =

λ

µ+ 4λ

(

uki+1,j + uki−1,j + uki,j+1 + uki,j−1 +

dx
k
i−1,j − dx

k
i,j + ...+ ...

dy
k
i,j−1
− dy

k
i,j
− bx

k
i−1,j +

bx
k
i,j − by

k
i,j−1
+ by

k
i,j

)

+

µ

µ+ 4λ
fi,j.

1: procedure SPLITISOTROPICTV(f , λ,µ, tol)

2: u0 ← f

3: d0x ← 0, d0y ← 0, b0x ← 0, b0y ← 0

4: k← 0

5: repeat

6: uk+1 ← Gk
i,j(λ,µ) ⊲ Gk is the Gauss-Seidel

solution

7: sk+1 ←

√

∣

∣Dc
xu

k+1 + bkx
∣

∣

2
+

∣

∣

∣
Dc
yu

k+1 + bky

∣

∣

∣

2

8: dk+1x ← max(sk+1 − 1/λ, 0)
∇xu

k+1+bkx
sk+1

⊲ second order

centered finite difference for u

9: dk+1y ← max(sk+1 − 1/λ, 0)
Dc
yu

k+1+bky

sk+1

10: bk+1x ← bkx +
(

Dc
xu

k+1 − dk+1x

)

11: bk+1y ← bky +
(

Dc
yu

k+1 − dk+1y

)

12: k← k+ 1

13: until
∥

∥

∥
uk − uk−1

∥

∥

∥

2
< tol

14: return uk

15: end procedure

Algorithm 1. Implemented split Bregman isotropic TV denoising.

2.1.2. Fixed-point iterations scheme
The second scheme we used to solve the optimization problem

is based on what the authors in Vogel and Oman [40] call lagged

diffusivity fixed point iteration, abbreviated by FP. This is done by

considering the associated Euler–Lagrange equations of TV-ROF

equation that are as follows:

g(u) : = (f − u)− θLu(F) = 0,

where Lu is the diffusion operator whose action on a function p is

given by :

Lu(p) : = −∇u ·

(

1
√

|∇u|2 + β2
∇p

)

,

and β is a positive parameter to correct the non-differentiability

in zero, and θ is the regularization parameter. The formula for

FP iteration is then (1 − θL(u(k)))u(k+1) = z, for k = 0, 1, . . .,

so to obtain the new iterate u(k+1), we solve a linear diffusion

equation whose diffusivity depends on the previous iterate u(k). The

implemented algorithm is reported in Algorithm 2, where we have

uk = f − θ∇ · pk−1, and

pk =
pk−1 − α · ∇uk

(1+ α/g) · |∇uk|2
,

where α = 1
4θ and g = 1.

2.2. Construction of a target: The
histogram approach

The histogram of a digital image with gray levels in the range

[0, L−1] shows howmany times (frequency) each intensity value in

an image occurs. As a result, a histogram for a grayscale image with

intensity values in the range I(r, c) ∈ [0, L−1] where r and c denote
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1: procedure ROFDENOISE(f , θ , tol)

2: u0 ← f , k← k+ 1

3: dxu
0 ← u0i,j+1 − u0i,j � Calculate forward

4: derivatives

5: dyu
0 ← u0i+1,j − u0i,j

6: d0 ← (1+ 1
4θ )

∣

∣

∣

√

dxu2 + dyu2
∣

∣

∣

2

7: p0 ← −1/(4θ)·du0

d0

8: repeat

9: k← k+ 1

10: uk ← f − θ∇ · pk−1 � Update u with divergence

11: of p

12: dxu
k ← uki,j+1 − uki,j � Calculate forward

13: derivatives

14: dyu
k ← uki+1,j − uki,j

15: dk ←
(

1+ 1
4θ

)

∣

∣

∣

∣

√

dxuk
2
+ dyuk

2
∣

∣

∣

∣

2

16: pk ←
pk−1−1/(4θ)·duk

dk

17: until
∥

∥

∥
uk − uk−1

∥

∥

∥

2
< tol

18: return uk

19: end procedure

Algorithm 2. Implemented ROF denoising.

row and column, respectively, and they are utilized to identify each

pixel of our image I, with the interval containing exactly L values

[23]. For example, in an 8-bit grayscale image, L = 28 = 256.

Each histogram entry h(i) = ni is described as the total number

of pixels with intensity i for every 0 ≤ i ≤ L and
∑L−1

i=0 ni = n.

A normalized histogram is given by p(i) = ni/n; this gives an

estimate of the probability of occurrence of gray level i. Note that

the sum of all components of a normalized histogram is equal to 1,

i.e.,
∑L−1

i=0 p(i) = 1. In fact, histograms contain statistical data.

2.2.1. Histogram equalization
Histogram equalization is a technique for adjusting image

intensities to enhance contrast. Many strategies for enhancing

contrast have been explored in literature. Histogram equalization

(HE) is one of the most extensively used techniques for improving

low-contrast photos, as it keeps the histogram of light intensities

of pixels within an image as consistent as possible. Calculating

cumulative distributive function (CDF) is a common way to

equalize the histogram of an image.

The histogram equalized image G, of a given image I, will be

defined by

G(r, c) =







(L− 1)

I(r,c)
∑

n=0

p(n)









where ⌊a⌋ is the floor operator, which rounds down to the nearest

integer that is less than or equal to a. This is comparable to changing

the pixel intensities, i, of I by the function:

T(i) =

⌊

(L− 1)

i
∑

n=0

p(n)

⌋

.

The motivation for this transformation comes from thinking of

the intensities of I and G as continuous random variables X,V on

[0, L− 1] with V defined by:

V = T(x) : = (L− 1)

∫ x

0
pX(w) dw,

where pX and pV are the probability density functions (PDFs) of I.

T is the cumulative distributive function (CDF) of X multiplied by

(L− 1). Assuming that T is differentiable and invertible, it can then

be demonstrated thatV defined by T(X) is uniformly distributed on

[0, L−1], namely pV =
1

L−1 , where L is the number of levels greater

than 2, i.e., when there are two levels we have a binary image [23].

The traditional HE algorithm has various flaws. For starters,

when a histogram bin has a very large value, the transformation

function has an extremely steep slope. Second, particularly for

dark photos, HE changes from very low intensities to high

intensities, which may increase noise components while lowering

image quality. Third, because conventional HE is a fully automatic

technique with no parameters, the level of contrast enhancement

cannot be regulated.

Many strategies have been offered to alleviate these

disadvantages, and histogram matching (HM) is one among them.

2.2.2. Histogram specification (or matching)
In general, HM is a technique that uses histogram information

from an input image to compute the transformation function. As a

result, HE can be thought of as a subset of HM.

In image analysis, the histograms corresponding to a pair

of images are both required and sufficient for determining the

intensity mapping function.

When we expect the histograms of scene radiance to remain

roughly constant between images taken at different exposures,

the intensity mapping function is determined by histogram

specification. This means that in the presence of some scene, where

registration would be difficult or impossible, the intensity mapping

functions can be recovered [22].

One can transform a histogram into another one through

histogram specification. Histogram specification (or matching) can

be seen as a generalization of histogram equalization. The classical

approach that formalizes histogram matching starts by considering

the intensity as a continuous random variable (RV), with values in

[0, L− 1], characterized by a probability density function (PDF). In

this case, the formulation is straightforward.

Consider two RV, X1 and X2, and let FX1 and FX2 be the

cumulative distribution function (CDF), respectively. The objective

is to transform X1 such that its PDF pX1 becomes pX2 . The objective

is to find a transformation T, such that x2 = T(x1). By noting that

FX1 (x) =

∫ x

−∞

pX1 (w) dw, FX2 (x) =

∫ x

−∞

pX2 (w) dw.

Using two transformation function T1, T2,

v1 = T1(x) : = (L− 1)

∫ x

0
pX1 (w) dw,

v2 = T2(x) = (L− 1)

∫ x

0
pX2 (w) dw
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creates two RV, V1 and V2, that are uniform. By imposing

v1 = v2, the mapping T is x2 = T(x1) = T−12 (T1(x1)),

i.e., T = T1 ◦ T
−1
2 = FX1 ◦ F

−1
X2

.

Unfortunately, this process is dependent on strictly increasing

functions, which are difficult to implement in a digital image.

One possible method will be to use generalized inverse [48], as

T−1 (x2) = inf
{

x ∈ R :T1(x) ≥ x2
}

. This produces a mapping

between the two sets of bins in a discrete framework by obtaining

an approximatematching.

In discrete histogram matching, it is difficult to rank (separate)

equal intensity levels. Adding noise to the image can help

distinguish between identical intensity levels. A different strategy is

to differentiate each pixel of the image by ordering anN×M image

pixels as I(r1, c1) ≺ I(r2, c2) ≺ · · · ≺ I(rNM , cNM), which results in

an exact histogram matching [49].

Although the procedure just described is straightforward in

principle, it is seldom possible in practice to obtain analytical

expressions for T1 and for T−12 . Fortunately, this problem is

simplified considerably in the case of discrete values. The price

we pay is the same as in histogram equalization, where only an

approximation to the desired histogram is achievable. In spite of

this, however, some very useful results can be obtained even with

crude approximations.

Histogram matching (specification) is usually used to enhance

an image when histogram equalization fails. Histogram matching

can provide a processed image with the specified histogram,

given the shape of the histogram that we desire in the enhanced

image. After histogram matching, a source image resembles

the target image in terms of histogram distribution when the

histogram of a target image is specified. Histogram matching can

be implemented with the following calculations, as shown in the

following equations. For the source image, we can calculate the

transformation as follows:

si = T1 (ri) = (L− 1) ·

i
∑

j=0

nj

n
, i = 0, 1, 2, . . . , L− 1,

where n is the total number of pixels in the image, nj is the number

of pixels that have gray level rj, and L is the total number of possible

gray levels in the image. Thus, an enhanced image is obtained

by mapping each pixel with level ri in the input image into a

corresponding pixel with level si in the output image. Actually, this

is the process of histogram equalization. Obviously, T1 (ri) is an

increasing monotonic function. Similarly, for the target image or

the given group of categorized images, we have

vi = T2 (zi) .

Considering vi = si for histogram matching, the processed image

is accordingly,

zi = T−12 (vi) = T−12 (si) = T−12 [T1 (ri)] ,

i = 0, 1, 2, . . . , L− 1.

A well-known method to map target images into categorized

images comes from Coltuc et al. [49, 50] a family of moving average

filters is designed starting with φ1 having one-pixel size support and

then, enlarging from the next ones while keeping the symmetry

for a minimum increase of the filter support. The filter grows by

considering squares increased or rotated at each step; this produces

the ordering of image pixels.

Coltuc’s approach has been improved by Nikolova et al. [51, 52]

by using a variational approach. In the aforementioned study,

Nikolova et al. minimized a functional of the form as follows

J(u, f ) = 9(u, f )+ β8(u),

where 9 is the sum of a specific function ψ evaluated at the

difference among u (function to minimize) and f (starting-original

image) for each pixel and 8 is the sum for each pixel evaluated

through a specific function φ evaluated in a vector of forward

differences in horizontal and vertical directions.

The ordering problem is not important in exact histogram

specification methods that are designed for real-valued data. In

typical digital images, there are no true real values, and within

many pixels, they must share a small range of values [52]. Another

approach, like [53], instead of using functions, relaxes this property

and use a one-to-many relation mapping.

Exact histogram matching solves a problem that is ignored by

typical histogram modification approaches meant for real-valued

data. Exact histogram specification methods for digital images have

to deal with many pixels that have the same value. Because there are

many ways to assign the prescribed values to the quantized values,

digital image histogram specification is ill-posed [52]. The problem

in the MRI case is that the granularity depends on various variables

(acquisition methods, magnetization, noise, and discretization).

2.3. The MRI dual-stage denoising
implementation

Here, we propose a two-stage TV denoising with histogram

matching, where we try to mix the benefits of both approaches.

Our dual-stage procedure composes as follows:

1. Denoiser: a TV-ROF denoiser that iterates for a certain number

of steps, until a relative error, less than Tol is achieved, by

specifying its regularization parameter.

2. HM: a histogram matching technique that uses a specific

histogram to match.

To validate the procedure, we used two different denoisers and

HM. We tried two approaches for the denoiser:

• SB-ROF: the split Bregman isotropic TV Denoising, as

described in Section 2.1.1.

• FP-ROF: the fixed-point iterations scheme, basically a simple

ROF denoising algorithm described in Section 2.1.2.

The SB algorithm was used with λ = 4.95 ∗ 10−2 and µ = 1, while

the FP algorithm with θ = (2/7) ∗ 10−1.

In terms of the HM algorithm, we used two different functions

in our tests:

Approx: the simplest histogram matching algorithm, which

changes the input grayscale image so that the histogram of the
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output image closely matches the histogram of the reference

image and

Exact: the exact histogram matching from Coltuc et al. [49, 50].

It is worth noting that in our implementation, the first function

takes the target image as input, while the second takes the target

histogram. In either case, we eventually settled on 8-bit images, i.e.,

histograms with L = 28.

All of the results presented in this article were obtained on

either a Windows system running Matlab R© R2022b or a Linux

system running Matlab R© R2017b.

We used the Matlab R© function imhistmatch for the

approximate approach. Instead of the default 64, the number of

bins has been fixed at 265. The implementation assumes that

values are real valued when processing the image histogram. The

intensity value is represented by x and is assumed to be in the

range [0, 1]. The histogram’s L bins are each half-open intervals of

width 1/(L− 1).

In such HM, we first compute the histogram of the reference

image R, by generating vector and half-open intervals of

width 1/(L − 1), and then adjust I using the reference

histogram by computing the cumulative histogram and

generating the transformation to intensity image. In fact, the

function imhistmatch calls imhist first and then histeq.

imhistmatch transforms a 2D image I and returns an output

image J with a histogram that approximates the histogram of the

reference image R. The number of bins b is usually 64; the higher

the number, the higher the computational cost. The histogram is

composed of b evenly spaced bins spanning the entire image data

type. These bins also represent the maximum number of discrete

data levels available. As b increases, the output histogram exhibits

larger oscillations between nearby peaks. The histogram has L = 2b

bins for each half-open interval with width 1/(L− 1). The p-th bin,

in particular, is the half-open interval:

(p− 1.5)

(L− 1)
≤ x <

(p− 0.5)

(L− 1)
,

where x is the intensity value.

Finally, the exact HM is based on the work of Semechko [54].

The function takes as input a grayscale image I in 8 or 16 bits, as

well as a specific histogram h with the length L, where L is the

maximum number of pixel intensities. The number of histogram

bins must correspond to the maximum number of gray levels in

the image. We begin by assigning pixels in strict order using filters.

We then adapt the provided histogram to meet the amount of

image/foreground pixels by calculating the total number of image

pixels and re-normalizing the histogram and frequency residuals,

and finally redistributing residuals based on their magnitude. The

histogram is then specified by converting it to raw intensity data.

Finally, image pixels are rearranged according to pixel order,

intensities are rearranged according to image position, and the

image is reassembled.

We will see what happens to the image after we apply the

histogram-matching technique in the results section.

2.4. MRI data model

This final subsection will discuss the data used in the

experimental setup.

When discussing MRI scanners, we use the term Tesla

(abbreviated by T) to refer to magnetic field strength; 3 Tesla

is typical for MRI scanners (3T). 3T MRIs are used in clinical

imaging; at the same time image noise is reduced, and scanning

resolution is increased in new 7T MRI scanners for ultra-high

resolution imaging. The size of each image pixel is referred to as

spatial resolution, and more detailed, high-quality images result

from higher MRI resolution.

The magnetic characteristics and amount of hydrogen nuclei in

the observed area determine MR image contrast, and the repetition

time (TR) and echo time (TE) are utilized to adjust image contrast.

Several sequences with varying weightings can be used to select

contrasts in the imaged area. Cerebrospinal fluid (CSF), white

matter, cortex, and inflammation are all of interest in the brain.

Generally, two main sequences are available:

• T1-weighted. Longitudinal relaxation time, with short TR

and short TE. CSF and inflammation seem dark, white matter

appears bright, and the cortex appears gray.

• T2-weighted. Transverse relaxation time, with long TR and

long TE. CSF seems bright, inflammation appears white,

the cortex appears light gray, and the white matter appears

dark gray.

In this case, T does not stand for Telsa but for timing. The gradient

strength and timing used to generate diffusion-weighted images are

described by the b-value. The higher the b-value, the greater the

diffusion effects. Typical b-values on modern MRI scanners range

from 0 to approximately 4000s/mm2. This means that each scanned

image can be thought of as a function that goes from a subset of N3

to a subset of [0, 1000] ⊂ R.

For our proof-of-concept results, this article uses images from

the BrainWeb collection [55]. Because there is no “ground truth” or

gold standard for in vivo data analysis, we used a Simulated Brain

Database (SBD) as our validation solution. We used a simulated T1

pulse sequence with a slice thickness of 1mm, a 20% intensity non-

uniformity, with 181 slices in the z direction, each slice of 217×181

(in-plane pixels are 1 × 1 mm). Noise levels of 3 and 9% were

used in the tests (identified as pn3 and pn9). BrainWeb b-values

ranged from 0 to around 1, 000 s/mm2. All of the numbers and

graphics in this article are based on a standard anatomical model;

further tests can be done with the simulated brains with multiple

sclerosis lesions.

3. Results

This research intends to test the best two-stage technique

available in order to develop a novel approach to denoising and

enhancing MRIs using some existing priors. The results will show

improvements in this dual-stage procedure by changing the type

of denoising and the HM method used, but most importantly, in

the target histogram. Furthermore, in the four scenarios described,

this research employed four completely different types of target
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FIGURE 1

Simple proof of concept outcomes. When the matching procedure is carried out with the original image as the target, the following images are

produced. (A) ExactMatch and (B) ApproxMatch applied to the image with 9% noise. (C) FP exact and (D) FP approx denoiser applied to the image

with 9% noise. (E) SB exact and (F) SB approx applied to the image with 9% noise. (G) SB standard and (H) FP standard applied to the image with 9%

noise.
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TABLE 1 Case 1: comparison when the matching technique is used with the original image as the target.

RelErr ↓ PSNR ↑ SSIM ↑ numOfSteps

ExactMatch 0.0201 28.1933 0.6816 1

ApproxMatch 0.0207 28.0125 0.6730 1

SB Std 0.0806 27.9306 0.6521 9

SB exact 0.0162 31.0950 0.8285 10

SB approx 0.0163 30.8769 0.8193 10

FP Std 0.0804 29.1976 0.7246 4

FP exact 0.0133 33.8346 0.9272 5

FP approx 0.0132 33.6483 0.9221 5

Noisy img 0.0808 26.4614 0.5747

Reference img 0.0000 Inf 1.0000

The lower the relative error, the better, while a greater PSNR signifies a higher image quality, and the closer the SSIM value is to one, the better. The best cases are in bold, while the worst case is

in italics. Std stands for standard and is used to indicate denoisers that do not have any HM.

images, together with a ground truth image and a low noise slice

to clean.

The purpose of this section is to show the effectiveness of

the dual-stage approach with a gradually increasing complexity

of noisy images and various target histograms. After scanning a

slice, determining its position in the potential brain slice and,

thus, the reference image should be possible in practice, but this

reference image may be incorrectly identified. As a result, we

use a reference image slice 5 mm above or below the slice we’re

attempting to clean and enhance. Next, the reference image may

not be as realistically clean as in this simulated brain (with 0%

noise), and we must account for some variability of the brain

itself among other brains, which is why we eventually use a

really noisy image (9%) using a slightly noisy image (3%) as a

reference histogram.

This section illustrates four different cases as follows:

Case 1: In the first case, we consider the same slice as the reference

image as the one we will clean, with noise set to 0%. Figure 1

and Table 1 show the results.

Case 2: In the second case, we consider the slice shifted by +5 mm

compared to the one we are cleaning, with noise set to 0%.

The results are shown in Figure 2 and Table 2.

Case 3: In the third case, we consider, as a reference image, the slice

shifted by +5 mm compared to the one we are going to clean,

with noise at 3%. As shown in Figure 3 and Table 3.

Case 4: In the fourth case we consider, as a reference image, the

slice shifted by –5 mm compared to the one we are going to

clean, with noise at 3%. The results are shown in Figure 4 and

Table 4.

The denoised image that outcomes will be compared to the

original clean slice. This will be achieved by presenting the

relative error (Rel Err), peak signal-to-noise Ratio (PSNR), and

structural similarity index (SSIM). Moreover, in order to compare

the outcome visually, all the histograms will have the same scale,

which is shown in Figure 5D.

As for the PSNR, it is mathematically defined as follows:

PSNR = 10 log10

(

M2
I

MSE

)

,

where MSE is the mean square error between the input image and

the reference image, and MI is the maximum possible pixel value

of the image and is set to 1 because all BrainWeb images were

re-normalized and scaled into the [0, 1] interval.

Regarding histogram matching, images are processed as either

8-bit or 16-bit, and the number of bins to match influences the

results. Figure 6 depicts the results of comparing all cases to an

increasing power of 2 to determine which configuration results in

the lowest overall error. These results validated the selection of 28

bins, which in general yielded superior results and is a common

choice in image processing.

Figure 5 shows what happens to the image and its histogram

when noise is added. Noise disperses values and changes peaks, as

seen in a Gaussianmixture distribution by the fluctuatingmean and

variance of each component.

All cases will include a brain slice and a 3X zoom of the same

area. Each image will be accompanied by a 2D histogram that

compares the image on the y-axis to the correct reference on the x-

axis. The function histogram2 generates a 2D histogram by plotting

a bivariate histogram of the two input images. When looking at the

histogram 2D, keep in mind that the color of a point indicates how

many pixels of a specific intensity are changed from one image to

another. A blue dot at the intersection of (0.4, 0.5) indicates that

there are <10 points in the image described on the x-axis that

should have a value of 0.5 in order to match the reference image.

3.1. Case 1: A noisy brain slice

As an initial proof of concept, we consider a brain slice with 9%

of noise and assume:

1. The target histogram is known;

2. The target is the original image;

3. The matching strategy is carried out with respect to this target.
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FIGURE 2

Resulting images when the target image is collected at a distance of -5 mm from the original image (A) ExactMatch and (B) ApproxMatch applied to

the image with 9% noise. (C) FP exact and (D) FP approx denoiser applied to the image with 9% noise. (E) SB exact and (F) SB approx applied to the

image with 9% noise. (G) SB standard and (H) FP standard applied to the image with 9% noise.
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TABLE 2 Case 2: Comparison results, when the target image is collected at a distance of –5 mm from the original image.

RelErr ↓ PSNR ↑ SSIM ↑ numOfSteps

ExactMatch 0.0296 28.0215 0.6670 1

ApproxMatch 0.0299 27.8489 0.6585 1

SB Std 0.0806 27.9306 0.6521 9

SB exact 0.0219 30.7911 0.8123 10

SB approx 0.0221 30.6037 0.8026 10

FP Std 0.0804 29.1976 0.7246 4

FP exact 0.0193 33.3594 0.9189 5

FP approx 0.0192 33.2069 0.9130 5

Noisy img 0.0808 26.4614 0.5747

Reference img 0.0964 22.7224 0.6822

Bold are the best values and italics are the worst. The ↑ symbol indicates that the higher the measure, the better. The ↓ symbol indicates that the lower the measure, the better.

Table 1 compares the performances of the SBA and FP optimization

algorithms in terms of PSNR and SSIM, relative error, and the

number of iterations.

According to the results reported in Table 1, the FP

(exact/approx) methods give better results than the other

ones. We remind that numOfSteps is the number of denoiser

iterations required to achieve the fixed tolerance of 10−3.

When we compare the denoisers with histogram matching to

the vanilla denoisers, we can see some percentage improvements

for all of the indexes used. The relative error improves the most,

79.7% from SB vanilla to SB vanilla and 83.3% between FP exact

and FP vanilla; at the same time, the PSNR mildly improves

10.5% (as for the SB approx) and 16.0% (FP exact); and finally,

the SSIM improves 25.6% (SB approx) or 28.4% (FP exact). In

general, the exact HM outperforms the approx HM since the

approx one involves a discretization of the range of values, which

introduces an error that could otherwise be avoided. We also notice

that FP techniques are usually superior to SB methods. Finally,

based on the SSIM index, the FP exact outperforms the SB exact

by 11.9%.

Figure 1 reports the results in terms of image quality and 2D

histograms on the right panel. In the 2D histograms, the abscissa

relates to the pixel value of the ground truth image, and the

ordinate relates to one of the images in the left panel. Panel H

demonstrates, for example, that most of the points are denser to

the diagonal but are mostly skewed against the top-left side of the

diagonal, indicating that the denoiser has correctly attempted to

reduce noise by bringing the point closer to the diagonal, as shown

in Figure 5, but did not have any prior knowledge of the original

image.When using histogrammatching, as shown in panel D, these

points move to the center of the diagonal and become less dense

as they move further away from the diagonal. Because histogram

matching requires some level of discretization, horizontal white

lines indicate that some values in the original reference image do

not have a corresponding value. At the same time, the horizontal

colored lines may be broader than the equivalent cleaned without

matching, but the bulk of pixels that are far from the diagonal are

spread closer.

3.2. Cases 2, 3, and 4: Similar real case
scenarios

This subsection examines some more cases analogous to real-

world scenarios.

Assuming that a cleaning and enhancement step can be done

in sequence, one might start the process down the z-axis from the

top to bottom-most slice and then gradually traverse through the

entire z-axis. In this case, a cleaned slice from one step could be

used as a subsequent slice that is 1mm distant from the previous,

and because they are close to each other, given the morphology of

a brain, and the structure among the various slices, while different,

should be statistically similar enough to give good performance in

the enhancement step. To test this hypothesis, we examine what

happens when a pre-processed, cleaned slice is used as a histogram

reference for the next one to process. Instead of showing the result

of what happens when a contiguous±1mm slice is used, we present

the result of what happens when a 3% noise slice that is 5mm below

the slice to denoise is used as a reference histogram.

In case 2, first is examined a brain slice with 9% noise, by

selecting a slice that is “near” the original one as the target. Our first

studies indicate that a histogram provides comparable statistical

patterns up to ±5 mm; as an approximation of no <0.5 for SSIM.

In particular, for case 2:

1. The histogram of an image acquired at –5mm from our original

image is known;

2. The target is the acquired image;

3. The matching technique is carried-out in relation to this target.

Table 2 compares the PSNR, SSIM, relative error, and the

number of iterations of the SBA and FP techniques.

In case 2, Table 2 helps us comprehend what would happen in

a real situation and provides continuity to our observations as in

case 1 by selecting the reference picture that is 5-mm distant from

the one that was supplied. In this case, the image that serves as a

reference will not be the same as the one that needs to be cleaned.

As always, the SBA algorithm with λ = 4.95 ∗ 10−2 and µ = 1 has

been used.
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FIGURE 3

Resulting images when the target image is collected at a distance of –5 mm from the references, also with 3% noise. (A) ExactMatch and (B)

ApproxMatch applied to the image with 9% noise. (C) FP exact and (D) FP approx denoiser applied to the image with 9% noise. (E) SB exact and (F)

SB approx applied to the image with 9% noise. (G) SB standard and (H) FP standard applied to the image with 9% noise.
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TABLE 3 Case 3. A more realistic case in which the target image is acquired with 9% noise at a distance of –5 mm from the original image, which has 3%

noise.

RelErr ↓ PSNR ↑ SSIM ↑ numOfSteps

ExactMatch 0.0345 28.0132 0.6244 1

ApproxMatch 0.0351 27.8339 0.6175 1

SB Std 0.0806 27.9306 0.6521 9

SB exact 0.0263 30.5440 0.7174 10

SB approx 0.0267 30.3506 0.7098 10

FP Std 0.0804 29.1976 0.7246 4

FP exact 0.0232 32.7338 0.8029 5

FP approx 0.0226 32.6308 0.8014 5

Noisy img 0.0808 26.4614 0.5747

Reference img 0.0964 22.5422 0.5200

Bold are the best values and italics are the worst. The ↑ symbol indicates that the higher the measure, the better. The ↓ symbol indicates that the lower the measure, the better.

When the techniques with histogram matching are compared

to the standard methods, as shown in Table 1, there is a percentage

improvement in all metrics. For relative error, we have 72.6% (SB

approx) and 76.2% (FP exact), the PSNR improves at 9.5% (SB

approx) and 14.5% (FP exact), and finally, the SSIM improvement

is 23.0% (SB approx) or 27.8% (FP exact).

In this case, we see the same pattern as in case 1, with exact

matching outperforming approx matching and FP outperforming

SB. We see a similar 13.1% increase in the SSIM index between the

best two methods, FP and SB.

Figure 2 shows some image quality and histogram-matching

results. We see that the 2D histograms relating to images processed

by the denoiser in conjunction with histogram matching (panels C

and D) are slightly wider than those relating to images processed by

the denoiser alone (panels G and H). Although this may appear to

contradict the results in Table 2, thanks to the coloring of the graph,

we see a greater density of pixels best distributed along the diagonal

of the histogram and thus an improvement of the expected result in

accordance with the relative table.

Finally, we examine cases 3 and 4. These two cases attempt to

simulate a setting that is as similar to a guanine scenario as feasible.

We assume that the image to clean is rather noisy (9%) that the

reference image is not perfectly clean (3% noise) and that we have

a 5-mm tolerance on what the slice reference position should be,

so that the two cases vary from the real location, either below (-5

mm, case 3) or above (+5 mm, case 4). Tables 3, 4 show that the

improvement provided by the FP exact and FP approx methods is

consistent with the previous cases. The method’s robustness is even

more noticeable because the results are obtained from reference

images with an SSIM index (compared to the clean image) lower

than the SSIM index of the image with noise at 3%. In other

words, the improvement provided by the FP exact and FP approx

approaches is kept, while the method’s resilience is enhanced. This

can also be seen in Figures 3, 4. From these images, it is visible how

much better the HM distributes the pixels in the histogram than the

denoiser alone. For example, when observing the square [0 0.2] in

panel H in comparison to the same square in panels C and D, the

reader can see a yellow spot indicating a higher density of pixels,

which in panel H is completely above the diagonal, whereas when

the denoiser is combined with the HM, this pigment is distributed

equally on the diagonal. Another thing to notice is that the cut at

0.5 is perfectly vertical when simply the denoiser is used; however,

the dye at the cut is also spread horizontally in the C or D panels.

This is mathematically measured with higher PSNR and SSIM

values as well as lower relative error values because these metrics,

by analyzing the similarity with the reference image, are actually

evaluating how close the majority of pixels are to the diagonal, i.e.,

a perfect match.

We also see improvements in all metrics when comparing

standard denoising methods to HM ones.

Relative error improvement can be as high as 60.9% (SB approx

in case 4) or 72.1% (FP exact in case 3); for PSNR, we have a 7.4%

improvement for the SB approx in case 3, or 12.2% for the FP exact

in case 4; and for the SSIM, we have a good improvement of 8.8%

(SB approx in case 3) and 12.0% (FP exact in case 4).

In cases 3 and 4, we see the same pattern as in the previous cases,

namely, that exact matching is better than approximate matching

and FP is better than SB. We see a similar 12.0% increase in the

SSIM index from the second-best method, the SB exact, to the

first-best method, the FP exact.

4. Discussion

This final section summarizes the results and then points

out the way to further research. The dual-stage procedure that

combines denoising and enhancement is superior to the single two

solutions. Further research could include an extension to Gaussian

mixture models (GMMs) and, as a result, the use of machine

learning approaches.

4.1. Discussion on the results

As can be seen from Tables 1–4, there are improvements in the

two-step procedure with an increment of one iteration. Overall, you

get better results when using the same slice type in the histogram

that corresponds to Table 1, as you might expect, but relative to
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FIGURE 4

Resulting images when the target image is collected at a distance of +5 mm from the references, also with 3% noise. (A) ExactMatch and (B)

ApproxMatch applied to the image with 9% noise. (C) FP exact and (D) FP approx denoiser applied to the image with 9% noise. (E) SB exact and (F)

SB approx applied to the image with 9% noise. (G) SB standard and (H) FP standard applied to the image with 9% noise.
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TABLE 4 Case 4 is another realistic case in which the target image is retrieved with 9% noise at a distance of +5 mm from the original image, which also

has 3% noise.

RelErr ↓ PSNR ↑ SSIM ↑ numOfSteps

ExactMatch 0.0380 27.8500 0.6262 1

ApproxMatch 0.0383 27.6754 0.6195 1

SB Std 0.0806 27.9306 0.6521 9

SB exact 0.0314 30.1535 0.7205 10

SB approx 0.0315 30.0019 0.7131 10

FP Std 0.0804 29.1976 0.7246 4

FP exact 0.0293 32.0756 0.8052 5

FP approx 0.0298 31.9563 0.8032 5

Noisy img 0.0808 26.4614 0.5747

Reference img 0.0783 23.0157 0.5293

Bold are the best values and italics are the worst. The ↑ symbol indicates that the higher the measure, the better. The ↓ symbol indicates that the lower the measure, the better.

each case, you get minimal SSIM improvement of 8.6%, of the

relative error of 60.0% and the PSNR index of 7.4% also obtained

using other sections (noised) as a reference of the histogram.

There are minor differences between different histogram matching

algorithms, but it is worth noting that the target image makes a

significant difference.

The difference can be noted in the type of algorithm used,

but more importantly, in the target histogram. In these example

cases, we are using completely different types of target images,

the ground truth image, and noisy slices. As might be expected

by using the same type of slice in the histogram matching, there

are better results, but good results are obtained even if one uses

as reference histogram slices that are within 5 mm. Although the

two histogram matching algorithms differ significantly, the end

effect on the metrics we employed is fairly minimal. However, it

is worth noting that the target image makes a significant difference

in lowering the relative error and increasing PSNR and SSIM.

Figures 1–4 also show what happens to the image and its

histogram when noise is removed with a denoiser. The denoiser

tries to smooth the spikes of the histogram, without knowing

in which direction to improve the histogram. This observation

brought the authors to investigate histograms, and in particular,

a useful tool is histogram specification (or matching). In this

scenario, the proposed methodology can easily bring to design

novel approaches for MRI enhancement and denoising. The basic

idea is to exploit more in-depth the MRI domain more, i.e.,

information from the specific part of the body, and use such

information for near slices as they are cleaned.

Limitations can be addressed to the difficulty of setting the

prior image from which to extrapolate the most suitable histogram.

Furthermore, the convergence of the dual-stage algorithm has

yet to be mathematically proven, despite experimental tests

demonstrating convergence within different parameters.

The correct number of bins into which the histogram is divided

has been investigated, as illustrated in Figure 6. When determining

the best number of bins, remember to consider the memory limits

of the computer in use, as once the 222 bins are exceeded, the

algorithm requires more than 16GB of RAM. Taking this into

consideration, a varying bin-width phase based on the specific

domain (brain, knee, etc.) could be considered. Several histogram

matching algorithms, particularly non-exact ones or those that

attempt to add a small amount of noise to each pixel’s intensity

value, can be investigated further to improve the obtained results.

Finally, in all of our case studies, the FP method outperforms

the SB method; however, this does not always hold true. On the

contrary, the literature has examples of SB methods producing

results that are superior to FP methods. In Kim and Yun [56], for

example, the fixed-point technique for the TV-L2 model performs

worse than the corresponding split Bregman method, whereas the

fixed-point-like approach for the TV-L2 model performs almost as

well as the corresponding split Bregman method, depending on the

exact implementation.

4.2. Conclusion and further work

The proposed model can become a framework for techniques

blending denoising and enhancement. Enhancement using

histogram matching can be further improved by gathering some

statically relevant information of typical histograms of a specific

part of the body; in fact, this can be successively extended with the

use of Gaussian Mixtures Models (GMMs), a convex combination

of Gaussian densities. This has led the authors to study how

machine learning can be used to find the most similar histogram

in a database of statistically relevant histograms. Other techniques

can yield to deal with MRIs containing statically relevant artifacts

not coming from noise.

An interesting approach is to combine the denoising strategies

with a post-processing technique based on histogram matching. In

general, it is possible to create a dictionary of images that contains

the intensity distribution of MRI data based on a suitable model

describing the anatomical parts of a body as a target, such as

brain slices. The target is an a priori information and in our case,

the image histograms and the most similar histogram must be

searched [57]. The knowledge hidden in a 3D MRI dataset can

be selected by using machine learning tools to extract the correct

target. A dictionary of targets approach framework can be inspired

by some recent work in the literature [57, 58]. It is possible to
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FIGURE 5

Sequence of images showing their respective histograms and a merged version of their histogram in 2D. (A) Ground truth. (B) Ground truth image

with 3% noise. (C) Ground truth image with 9% noise. (D, E) The bi-dimensional histogram of each noisy image and the true image. The clean

reference image will always be on the y-axis. The histogram patterns are more similar the closer the spots are to the diagonal of the 2D histogram.

use the parameters from a pre-learned GMM; then, in terms of

matching strategy, we can consider comparing histograms based on

GMM. Actually, to model the complex data distribution, a GMM

is frequently employed, and the expectation-maximization (EM)

algorithm is frequently used to create the mixture model [59]. Ma et

al. [60] recently proposed a feature-guided GMM for robust feature

matching that is capable of handling both rigid and non-rigid

deformations. In fact, feature matching is a wide research topic in

image retrieval, with the goal of creating accurate correspondences

between two image feature sets [61].
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FIGURE 6

Graph demonstrating why we use levels of 28 or 216. We investigated what happens to the errors when the number of bins is varied for each of the

cases (1,2,3, and 4) with the approximate HM presented in the study. In the literature, either 28 or 216 is commonly used. We have increased the

interval and shown what happens in between. Higher levels may be a good choice for smaller values, but the main issue with using more levels is the

RAM usage, which exceeds 16GB after L = 222.

The dual-stage algorithm is another research topic. The first

open research study is to prove mathematically its convergence

and improvement. Another investigation could include expanding

the dual-stage algorithm to a multi-stage algorithm. One approach

would be to apply histogram matching to each step of the

denoising algorithm by altering the minimization problem (in

our preliminary test, this approach did not give good results).

Another option is to use matching after reaching a certain

tolerance and then restart the denoiser to achieve a lower

tolerance. Next, the multi-stage approach could be made by

enhancing the image with HM to only certain areas of the brain.

Moreover, further denoiser filters can be investigated such as

the median filter instead of the total variation one, or use as

histogram enhancement the contrast limited adaptive histogram

equalization (CLAHF), combined with a matching procedure. The

implementations should then be done in Python, as this language

and all of its libraries can be used to build a larger machine

learning framework based on a look-up table of GMM statically

relevant brain slices. In future work, the histogram to match

would be a synthetic GMM-based histogram; nonetheless, in this

proof-of-concept work, this study demonstrated how matching

behaves with various histograms by gradually simulating a

real-world scenario.

Finally, all of these tests should be carried out in a more realistic

environment. For example, the technique can be tested against the

BCU Imaging Biobank, a non-profit biorepository dedicated to the

collection and retrieval of diagnostic images, derived descriptors,

and clinical data [62].

Our method improved overall image quality for all sequences

and outperformed in all individual categories; using this dual-stage

method, homogeneous objects/tumors in medical images can be

segmented. Finally, as preprocessing medical images is a de facto

standard first step, our model can be used in almost all deep

learning pipelines for medical image segmentation.
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