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Carrot or stick? A study on
“bid-rigging norms” by
simulation: inducing factors and
deterring measures

Hideyuki Morofuji* and Setsuya Kurahashi

Graduate School of Business Sciences, Humanities and Social Sciences, University of Tsukuba, Tokyo,

Japan

This study aims to analyze the structure of the emergence and maintenance of

the cartel mechanism as an informal organization and the measures to deter

bid-rigging. We propose an agent-based bid-rigging norms model and validate

it with a mathematical model. We clarify that the auction system primarily used in

public procurements has a structure inducing bid-rigging in which meta-norms

are unnecessary. We also show that punishment for deviation from bid-rigging

plays a critical role in establishing and maintaining it. In addition, we explore the

authorities’ actions to deter bid-rigging by examining three measures: the flexible

setting of reserve prices, the administrative surcharge and leniency system under

the Antimonopoly Law, and applying the bid-rigging o�ense under the Criminal

Law. As a result, the study reveals that the administrative surcharge and the

leniency system are insu�cient to deter bid-rigging, and the adequate measures

are the flexible setting of reserve prices and applying the bid-rigging o�ense.

Furthermore, the simultaneous implementation of these three measures more

e�ectively enables deterring bid-rigging.
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1. Introduction

The mechanism and structure of social cooperation have long been a critical issue in

game theory, sociology, social psychology, biology, and other fields. This issue has been

discussed concerning the n-person prisoners’ dilemma problem.

This study focuses on bid-rigging in public procurements as a social problem because

bid-rigging is a state of cooperation even though the bidding system does not assume

cooperative behavior. First, we clarify factors that cause and maintain bid-rigging.

We require a bottom-up approach instead of the top-down one required when analyzing

a formal organization because we should consider that the cartel mechanism is an informal

organization and that the actions of individual agents establish collusion. Agent-based

modeling (ABM) is a bottom-up approach, and Axelrod [1] is a typical example. In addition,

it is noteworthy that we introduce the existence of punishment explicitly in the model.

This study aims to analyze the structure of the emergence and maintenance of the cartel

mechanism as an informal organization and the measures to deter bid-rigging. There are

three reasons for this.
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First, although the problem of bid-rigging is a social problem,

there is a lack of previous studies analyzing its structure due to the

nature of the problem; this is because it is challenging to conduct

empirical research on data. We need to establish and verify a

certain specific hypothesis by constructing a model to overcome

this difficulty. In this way, it can serve as the groundwork for better

mechanism design.

Second, we can think that the cartel mechanism resolves

social dilemmas in an aspect; thus, we want to provide academic

contributions to social dilemmas problems that have been

academically challenging.

Finally, we should demonstrate other practical solutions where

the criminalization of bid-rigging poses various problems.

Therefore, relying on the model of Axelrod [1], we hypothesize

that “bid-rigging norms” are established in the cartel mechanism,

and we construct and simulate the model.

2. Related works

This section provides an overview of studies on bid-rigging

issues.

2.1. Theoretical studies

2.1.1. Auction theory
We cite two representative studies on the problem of collusion

in auction theory: McAfee and McMillan [2] and Graham and

Marshall [3]. The former studies collusion in first-price sealed

bid auctions, while the latter studies collusion in second-price

English auctions.

McAfee and McMillan [2] characterized cooperative bidding

strategies in two cases. One case is Weak Cartels, where payoff

redistribution is not possible. The other case is Strong Cartels,

where payoff redistribution is possible, and members can eliminate

new entrants and redistribute payoff. In Strong Cartels, the cartel

mechanism wherein bidders report their evaluation of an object

in an auction; this mechanism determines the winner using a

preliminary first-price sealed-bid auction.

In this cartel mechanism, bidders always have incentives to

defect, even though they can earn high profits by cooperating in

collusion; because bidders canmake large profits by bidding slightly

above (or below in public procurement) the price reported to the

cartel mechanism. However, defection leads to competitive bidding

and bidders can only minimize profits. Thus, we can see that

this situation is the n-person-iterated prisoners’ dilemma (n-IPD),

which has long been considered in game theory.

McAfee and McMillan [2] followed the results of previous

studies on enforcement to maintain the cartel mechanism; they

listed the two enforcements: a grim-trigger strategy under game

theory and the existence of punishing agents. Concerning the grim-

trigger strategy, Fudenberg [4] proved the Folk Theorem that a set

of agent behaviors achieved Nash equilibrium through the grim-

trigger strategy, but notably under the assumption that the discount

rate was sufficiently high.

Following McAfee and McMillan [2], Aoyagi [5, 6] showed

theoretically that the bid rotation could be established in repeated

sealed-bid auctions. To derive the equilibrium, he introduced two

schemes to his theories: bid rotation, which adjusted bidders’

payoffs, and direct adjustment of payoffs. The former states that a

“center” as a communication device of bidders, equivalent to the

cartel mechanism, compensates the loss of a loser by changing the

winning permutation. The latter is equivalent to side payments of

the strong cartels. These studies showed that efficient establishment

of bid-rigging required equalizing profits between bidders.

Therefore, we focus on Strong Cartels in this study. Meanwhile,

the auction theory assumes that bid-rigging is established and

discusses how to prevent deviation through the grim-trigger

strategy but does not clarify the factors inducing bid-rigging;

therefore, we should investigate how bid-rigging emerges.

At the same time, Thomas [7] investigated the discount factor

to sustain two bid-rigging strategies (Strong and Weak Cartels) of

McAfee and McMillan [2] through the grim-trigger strategy. As a

result, he revealed that to deter bid-rigging, the buyer must select

the lowest reserve price for the lowest discount factor to ascend.

Conversely, Section 6 shows that bid-rigging is deterred by allowing

flexible setting of reserve prices, i.e., by ascending reserve prices.

2.1.2. Leniency system
To detect and deter bid-rigging, leniency systems, which reduce

sanctions against cartel members that self-report to the authorities,

have been introduced in many countries since the US first adopted

it in 1978 and revised it in 1993. In line with this introduction, the

effectiveness of leniency systems has been theoretically investigated

in many studies.

Brisset and Thomas [12] theoretically investigated the

effectiveness of the leniency system in the EU concerning bid-

rigging in first-price sealed-bid procurement auctions. Their study

focused on incentives of members in the cartel mechanism to

report to the authorities. It revealed that the leniency system

in the EU had no effect if investigation by the authorities was

underway. At the same time, it clarified that introducing rewards

for reporting members was effective even before the authorities

began an investigation.

As representative studies regarding the leniency system in a

standard Bertrand oligopoly, we refer to the studies of Motta and

Polo [8], Spagnolo [9], Harrington [10], and Chen and Rey [11].

Their common aim was to investigate how to prevent firms in a

Bertrand oligopoly from exploiting the leniency system, i.e., how to

deter taking the strategy to collude and reveal in turn, and to specify

an optimal leniency policy, e.g., optimal reduction rates.

Although their studies are in line with the game theory and

auction theory of McAfee and McMillan [2], the model settings

and the derived results differ in some points. We summarize these

differences in Table 1, including the models of Brisset and Thomas

[12] and our model.

Concerning the models, there are three characteristic

differences: “Application of leniency before/after the

authorities’ investigation,” “Prosecution success probability,”

and “Punishment.” The first indicates whether applying leniency

under the authorities’ investigation is within the scope of the study,

the second indicates whether the probability of the authorities’

prosecution success by receiving evidence of collusion is set in
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TABLE 1 Comparison of studies on leniency systems.

Motta and
Polo [8]

Spag-
nolo
[9]

Harri-
ngton
[10]

Chen and
Rey [11]

Brisset and
Thomas [12]

Our
Model

Model setting

Market type Bertrand Auction

Firms type symmetric Low/high cost

firms

Symmetric

Application of leniency Before/after the authorities’ investigation Before/after Before Before Before/after Before/after Before

Probability to be observed by the authorities ◦ ◦ ◦ ◦ ◦ ◦

Prosecution success probability ◦ – ◦ ◦ ◦ –

Prosecution cost ◦ ◦ – – – –

Punishment Grim-Trigger ◦ ◦ ◦ ◦ ◦ –

Material – ◦ – – – ◦

Results of investigations

Leniency has effect before the authorities’ investigation No Yes Yes Yes No Yes

Leniency/reward should be limited to the first reporter Yes Yes Yes Yes – –

Necessity of reward Negative Yes – – Yes –

the model, measures to punish defecting firms from collusion :

grim-trigger and material punishment; and the third shows the two

punishments: the grim-trigger strategy, and amaterial punishment.

“The material punishment” here means the punishment with cost

in contrast to the grim-trigger strategy that means to defect forever.

Concerning the results of investigations, there are two

characteristic differences: “Leniency system has effect before the

authorities’ investigation” and “Necessity of reward”. The first

concerns whether leniency has effect before the authorities’

investigation is underway, and the second concerns whether a

reward is required in addition to leniency for deterring collusion.

Based on these differences, to analyze the effectiveness of the

leniency system, we demonstrate the direction of building our

model shown in Section 7.1, which is built by applying the model

presented in Section 3, according to the following five points:

1. We set no leniency in our model in the case in which the

authorities’ investigation is underway because the leniency

systems in Japan and the EU have strict limitations for reduction

rates after the authorities’ investigation. Notably,Motta and Polo

[8] and Brisset and Thomas [12] denied the effectiveness of

leniency before the authorities’ investigation.

2. We do not set “Prosecution success probability,” which weakens

the effectiveness of leniency and decreases the simplicity of

analysis because we focus on balancing “carrot” and “stick”

following Spagnolo [9].

3. We focus on material punishment concerning “Punishment,”

as discussed in Section 2.4. Notably, Spagnolo [9] modeled the

punishment including material one.

4. Although four related studies derived the result that leniency

had to be limited to the first reporter, our model allows all

reporters to receive full leniency because the leniency system

of Japan allows for reporters to add the reduction rate of

up to 40% to the normal reduction rate if the second and

subsequent reporters submit enough evidence to the authorities.

In addition, Spagnolo [9] commented that despite treating

leniency only for the first reporter as optimal, if a second

reporter’s evidence would increase the probability of conviction,

granting more leniency to a second reporter would become

optimal in his model. Therefore, considering that our model

omits the “Prosecution success probability,” we assume that all

reporters submit enough evidence, receive full leniency, and the

authorities can prosecute entirely.

5. We should focus on the studies of Spagnolo [9] and Brisset and

Thomas [12], which insisted that a reward for the first reporter

was required to efficiently deter collusion. At the same time, our

model has a reward equivalent to the flexible setting of reserve

prices, which we introduce as a “carrot” in Section 6.

2.1.3. Cryptography
Electronic bidding is promoted in public procurement. Abe and

Suzuki [13] pointed out the risk of bid-rigging in electronic sealed-

bid auctions and proposed a receipt-free sealed-bid auction scheme.

At the same time, Howlader et al. [14, 15] mentioned that receipt-

free mechanisms proposed in previous studies were based on strict

assumptions, one of which was that the authorities were honest and

not included in collusion. They proposed a receipt-free sealed-bid

auction mechanism that could withstand colluded authorities.

2.2. Empirical studies

Suzuki [16] reviewed the 167 decisions on bid-rigging of the

Japan Fair Trade Commission (JFTC) from 1947 to 2000. At the

same time, Asker [17] analyzed the cartel mechanism, which he said

was the internal organization of stamp dealers in the 1990s, which
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used knock-out auctions. In these studies, most of the bid-rigging

cases involved pre-auction meetings of ring members designed to

determine the winner, as modeled by McAfee and McMillan [2].

The study of Wachs and Kertsz [18] pointed out that the cartel

in the 1980s Ohio school milk bidding market had high cohesion

and exclusivity by presenting a network-based framework. The

study of Maxime Reeves-Latour and Carlo Morselli [19], also

using a network-based framework and a dataset compiled from

more than 7,000 public construction tenders in Canada, noted the

existence of the core participants in bid-rigging.

In game theory, we can interpret high cohesion, exclusivity, and

the existence of the core participants as corresponding with n-IPD,

which assumes no player change.

Andrighetto et al. [20] showed that the interaction of norms

communication and material punishment in public goods games

led to higher and more stable cooperation at a lower cost to

the group than when used separately. Furthermore, they showed

that norms communication enhanced cooperation, and material

punishment helped to maintain it.

Porter and Zona [21, 22], Pesendorfer [23], Abrantes-Metz [24],

and Ishii [25, 26] analyzed the problem of bid-rigging using data

on cases uncovered by bid-rigging regulators. On the other hand,

they also point out that the limited data on bid-rigging made the

analysis difficult.

On the other hand, not relying on numerical data, Bajari [27]

applied Bayesian statistical methods and developed a structural

estimation model of competition and collusion models, focusing

on the US seal coat industry and estimating prior distributions

under findings from “experts.” Furthermore, Asker [17] employed

structural analysis, applying the nonparametric estimation to

recover the distribution of the valuation of bidders from limited

numerical data and contributed to estimating the ring benefit and

non-ring bidders’ damage.

2.3. Legal studies

Competition Law has regulated bid-rigging [28, 29].

In recent years, the criminalization of bid-rigging and collusion

has accelerated. The US is the pioneer in criminalizing bid-rigging

and collusion. The US Department of Justice (DOJ) and US Federal

Trade Commission (USFTC) have imposed criminal penalties

under the traditional approach since the Sherman Act. Under the

US Antimonopoly Law, bid-rigging is “illegal par se,” meaning that

the mere act of engaging in bid-rigging constitutes a crime [28–30].

It has been noted that this concept extends to the EU, Japan, South

America, and other countries through legal reforms [29].

Although EU law does not have criminal penalties, the size

of the penalties is evaluated as going beyond the scope of

administrative penalties and becoming de facto criminal penalties.

In Germany, a member country of the EU, Section 298 of the

Criminal Code was established in 1996, making bid-rigging a

criminal offense. The law is actively used to detect bid-rigging [31].

In Japan, the 2005 amendment to the Antimonopoly Law made

criminal penalties statutory in Article 89. This article also states that

“attempted crimes shall be punished,” which means that a crime is

committed by the bid-rigging act [29, 32]. In addition, Article 96-5

of the Penal Code was enacted in 2011. As clearly stated in this

article, bid-rigging is a mere act that constitutes a crime, and it is

not a requirement that bid-rigging be established.

In competition law enforcement, there is the administrative

model with adjudicatory authority and a prosecutorial model with

adjudicatory authority held by the courts. The advantage being that

the former is efficient and the latter accurate. At the same time,

the former has a disadvantage in accuracy, while the latter has a

disadvantage in time and administrative costs [33].

In enforcement and effectiveness of criminal penalties, similar

to the prosecutorial model above, while costly regarding time and

administrative effort, they can inflict significant damage on the

offender, including not only monetary penalties but also social

stigma and disapproval. At the same time, there are doubts

regarding the moral grounds for criminalizing cartels, including

bid-rigging, and how they should be placed within the criminal

legal system [33–35].

The criminalization of bid-rigging is indeed a worldwide trend.

However, its enforcement requires a balance between the legal

systems in each country and social and cultural consensus; thus, the

criminalization of bid-rigging is not without difficulties [28, 29, 36].

2.4. The n-IPD

In this study, we focus on punishing agents, which McAfee and

McMillan [2] did not make the main subject and have the potential

to change the structure of the n-IPD.

2.4.1. Social theory
We can think of bid-rigging as collective action. Olson [37]

developed his theory of collective or organizational behavior;

rational, self-interested individuals will act to achieve the common

good or the group’s interests in two cases. One is that the number

of individuals comprising the group is minimal, and the other is

that coercion or some other device makes the individuals act in the

common interest.

From this point of view, Yamagishi [38] proposed the

“Structural/Goal Expectation Theory,” which was a modification of

Pruitt and Kimmel [39]’s theory. The basic idea of Yamagishi [38]

is that the only way to achieve agent cooperation is to change the

structure such that cooperation is more profitable for the agents

than defecting and that a subgroup of agents engages in establishing

cooperation by punishing other agents.

2.4.2. Social physics-based studies
The works of Nowak et al. [40], Santos et al. [41], and Kojima

et al. [42] showed that introducing some structures, lattices, and

networks achieved cooperation in the n-IPD.

The works of Masuda [43] showed that introducing zealots

who kept offering cooperation enhanced cooperation in the n-

IPD theoretically; conversely, Matsuzawa et al. [44] showed that

introducing zealots could not achieve cooperation in a spatial

structure by simulations with a large number of agents in the order

of n = 104.
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Although it does not directly address the n-IPD, Ishii et al.

[45] analyzed the hit phenomenon using the mathematical model

established in a social physics-based study. Their study showed the

mathematical model was consistent with actual big data.

2.4.3. The norms game
Although it does not directly address collusion in auctions or

the bidding system, the norms game model of Axelrod [1] is a

study that showed that punishment played a critical role in norms

maintenance.

At the same time, the cartel mechanism is an informal

organization. Considering that the actions of individual agents

establish the cartel mechanism, bottom-up approaches are required

rather than top-down ones when analyzing official organizations.

The investigation by Axelrod [1] is an example of ABM, a bottom-

up approach.

Axelrod [1]’s norms game model is as follows: An agent’s

strategy has two dimensions. One is boldness (bi), which

determines when the agent will defect. The agent will defect

whenever the chance of being seen by someone is less than the

agent’s boldness, which is represented by S < bi. The other is

vengefulness (vi), which is the probability of punishing defecting

agents. The greater an agent’s vengefulness, the more likely they are

to punish defecting agents.

Axelrod [1] demonstrated that meta-norms were necessary to

maintain norms by modeling from an evolutionary approach and

simulating over 100 generations.

Conversely, Galán and Izquierdo [46] demonstrated that norms

were not onsistentlymaintained, even withmeta-norms, expanding

Axelrod’s norms gamemodel to a mathematical model and running

simulations with increasing generations.

Similarly, Yamamoto and Okada [47, 48] showed that meta-

norms maintained norms when there were defective agents in

society. They called types kinds of agents “social vaccines.”

3. Bid-rigging norms model

In this study, we apply the norms game model of Axelrod [1] to

the bid-rigging norms model.

Axelrod [1] defined a norm in his study as follows:

Definition 1. A Norm

A norm exists in a given social setting to the extent that

individuals usually act in a certain way and are often punished when

seen not to be acting in this way.

We follow this definition in this study.

We explore whether bid-rigging norms emerge and are

maintained by replacing the meta-norms in Axelrod [1]’s norms

game model with the basic structure of the bidding system, where

only one of the participants can be the winner and take payoff in a

single game.

Figure 1 depicts the bid-rigging norms model.

Each agent has a strategy with two dimensions: boldness (bi)

and vengefulness (vi), and a strategy assumes random variables

ranging from 0
7 to 7

7 as discrete values, following Axelrod [1]. First,

each agent decides whether to defect or cooperate with the cartel

mechanism according to its boldness bi. If all n-participating agents

cooperate, the cartel mechanism redistributes the winner’s payoff R

among all (
R

n
).

If more than one agent defects, the defecting agents will

compete. A winner who gets a payoff T is selected with a probability
1

nD
, where the number of defecting agents is nD. The other agents

then punish only the winner with the probability of vengefulness

(vi), giving P. The agent that punishes bears the punishment cost E.

The differences from the norms game model comprise the

following four points:

1. Only one defecting agent can get T because one winner is

selected in the bidding system or auctions (Figure 1, upper part

of Stage 2). By contrast, in the norms game model, all defecting

agents can get T by exploiting public goods.

2. We do not consider Hurt(H) (Figure 1, upper part of Stage 2);

we cannot impose “hurt” on other agents by defecting in the bid-

rigging norms model, whereas “hurt” makes sense in the norms

game model. After all, we can consider the norms game model

as one of the social models for public goods.

3. This model introduces reward (R, Figure 1, lower part of Stage

2). In the norms game model, cooperative agents will get R = 0.

4. It is the defecting winner whom all agents punish, whereas it

is all defecting agents in the norms game model. Furthermore,

we do not consider S, representing the probability of being

observed or seen (Figure 1, upper part of Stage 3). Because the

bidding system only discloses the winner and the winning bid

amount, the defecting winner is always observed or seen by the

other agents, and defecting agents who are not the winner are

never observed or seen. McAfee and McMillan [2] also assumed

that this information is made available, by law, in government

procurement auctions and pointed out that this information is

necessary to implement an enforcement strategy in bid-rigging.

We follow the parameter values used in the norms game model

listed in Table 2.

Here, we assume that the value of R, which is not utilized in

the model of Axelrod [1], is greater than T = 3 and set 4 in

the simulation run because the incentive for following the cartel

mechanism is due to the bid-rigging payoff being greater than the

competition payoff.

4. Simulation

We use simulation to explore the bid-rigging model’s behavior

following Axelrod [1] and Galán and Izquierdo [46].

4.1. Simulation environment and source
code

We use NetLogo. The source code of this simulation is available

at openABM.

One generation comprises four steps: “initialization,”

“execution,” “calculate standard deviation,” and “evolution”

(selection by payoff and evaluation strategy), where we repeat

“execution” four times, which we refer to as “game.”
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FIGURE 1

The bid-rigging norms model.

TABLE 2 Parameter value used by Axelrod [1].

Parameters Values

Number of agents n = 20

Number of games per generation 4

Mutation rate 0.01

Temptation payoff T = 3

Enforcement payoff E = −2

Punishment payoff P = −9

Reword payoff R = 4

The source code of “evolution.” is demonstrated in

Appendix A. In “evolution,” we implement an evolutionary

approach to the bid-rigging norms model in Figure 1. The

evolutionary approach is as follows. First, we calculate the standard

deviation of the payoffs obtained in each generation, consisting

of four games. Second, we replace the strategies of agents whose

payoffs are less than the standard deviation with those whose

payoffs are greater than the standard deviation.

Axelrod’s model adjusts the number of offspring so that the

population size n does not change between generations but does not

demonstrate the method. Thus, we use Yamamoto and Okada [47]’s

Adjustment 2, a method of randomly moving individuals from the

group within the standard deviation to the smaller group out of the

two groups above and below the standard deviation.

The strategy is then mutated with a 1% probability. The

mutation can vary between 7
7 and 0

7 .

4.2. Simulation result

Figure 2A depicts the average values of strategies (boldness

and vengefulness) for each generation of 50 trials, following

Yamamoto and Okada [47], up to the 1,000th generation. The

FIGURE 2

Simulation results (average of strategies per generation for 50 trials)

(A) bid-rigging norms game model. (B) Norms game model.

vertical axis indicates the average values of the strategies (boldness

and vengefulness), and the horizontal axis indicates the number of

generations. After the 500th generation, boldness drops to almost

zero, and the vengefulness converges to approximately 0.5; boldness
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FIGURE 3

Number of agents with a boldness of zero or one (one example of

50 trials) (A) bid-rigging norms game model. (B) Norms game model.

does not drop to zero entirely since mutations constantly arise in

each trial, leading to an average value of zero over 50 trials.

For comparison, Figure 2B depicts the average values of the

strategies (boldness and vengefulness) for each generation of 50

trials in the norms game model without considering the damage

(H) caused to other agents by defecting (hereafter, we call this

model the “norms game model”). Boldness decreases in the

early generations but gradually increases; vengefulness decreases

gradually from the early generations.

The results confirm that bid-rigging norms are quickly

established in the bid-rigging norms model, while the norms

collapse in the norms game model.

4.3. Number of agents with boldness of
zero or one (average number of 50 trials)

To examine the strategy transition in detail, we focus on the

number of agents whose boldness is zero or one.

Figure 3A depicts one result of 50 simulation trials of the

bid-rigging norms model. The vertical axis indicates the average

number of agents with a boldness of zero or one for each generation

of 50 trials up to the 1,000th generation, and the horizontal axis

indicates the number of generations. For comparison, Figure 3B

depicts one result of 50 simulation trials of the norms game model.

By comparing Figure 3A with Figure 3B, we can see that the

common feature is that the number of agents with a boldness of

zero in the initial generation becomes 20 agents. In the bid-rigging

norms model, this state becomes stable; by contrast, in the norms

game model, a phase transition occurs where the number of agents

with a boldness of one becomes 20 after the number of agents with a

boldness of zero decreases. The slight fluctuation after the number

of agents reaches zero or 20 is due to mutation.

This difference is because agents’ boldness decreases faster than

agents’ vengefulness; this phenomenon brings the number of agents

with a boldness of zero up to 20 in the initial generations of

both models. The bid-rigging norms model does not change from

this state; however, boldness increases again in the norms game

model, and a phase transition occurs where the defect becomes

dominant. Figure 2B shows that the timing of phase transitions

varies across trials.

5. Validation

Galán [46] re-examined the simulation results of Axelrod [1]

using a mathematical model and showed that meta-norms do not

always establish norms.

Following Galán [46], we use the mathematical model to verify

why the simulation results in the previous section differ between

the bid-rigging norms model and the norms game model.

5.1. Mathematical model of bid-rigging
norms

We formulate the Payoff equation in the bid-rigging norms

model as

Payoffi = βiT ∗ T + βiR ∗
R

n
+

n
∑

j=1
j 6=i

υij ∗ E+

n
∑

j=1
j 6=i

υji ∗ P (1)

where T, E, and P follow Axelrod’s parameter values listed in

Table 2; the second term indicates that R is given equally to n

rigging agents.

The variable βiT is one if agent i defects and wins the bidding

and zero if agent i cooperates or defects and loses the bidding.

Therefore, the probability of being one is defined as bi divided by

the summation of all agents’ bi because only one of all defecting

agents can get T. Thus, βiT is calculated as

βiT =







































Prob (βiT ≡ 1) =
bi
n

∑

i=1

bi

Prob (βiT ≡ 0) = 1−
bi
n

∑

i=1

bi

.

(2)

The variable βiR is one if agent i cooperates and zero if agent

i defects. Therefore, the probability of being one is defined as the
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production of all agents’ (1 − bi) because agent i can get R
n if all

agents cooperate. Thus, βiR is calculated as

βiR =























Prob (βiR ≡ 1) =

n
∏

i=1

(1− bi)

Prob (βiR ≡ 0) = 1−

n
∏

i=1

(1− bi)

.

(3)

The variable υij follows those in Galn and Izquierdo [46];

however, (
bj
2 ), which represents S, is omitted because the defecting

agent should be observed, as mentioned earlier. υij can be

described as

υij =







































Prob (υij ≡ 1) =
bj
n

∑

i=1

bi

∗ vi

Prob (υij ≡ 0) = 1−
bj
n

∑

i=1

bi

∗ vi

.

(4)

Consequently, the expected payoff of agent i in one round can

be calculated as

Exp(payoffi) = T bi
n

∑

i=1

bi

+ R
n ∗

n
∏

i=1

(1− bi)

+E ∗ vi ∗

n
∑

j=1
j 6=i

bj
n

∑

i=1

bi

+ P ∗
bi
n

∑

i=1

bi

∗

n
∑

j=1
j 6=i

vj

.

(5)

5.2. Evolutionary stable state

We define the concept of a stability point, namely an

Evolutionary Stable State (ESS), following Smith [49], Weibull [50],

and Galn and Izquierdo [46].

Definition 2. ESS

An ESS is a state (determined by every agent’s boldness and

vengefulness) where:

a) Every agent in group 2 receives the same expected payoff (such

that evolutionary selection pressures will not lead the system

away from the state):

Exp(Payoffi) = Exp(Payoffj) ∀i, j ∈ 2.

b) Any single (mutant) agent m who changes its strategy (let

bm be its new boldness and vm its new vengefulness) gets a

strictly lower expected payoff than any of the other agents in the

incumbent group I ≡ 2 − m (such that if a single mutation

occurs, the mutant agent will not be able to invade the group):

Exp(Payoffm) < Exp(Payoffi) ∀m; ∀i ∈ I(m /∈ I).

c) After any single (mutant) agent m has changed its strategy, all

the other agents in the incumbent group I get the same expected

payoff (such that a single mutant cannot distort the composition

of the group except potentially by random drift):

Exp(Payoffi) = Exp(Payoffj)

∀i, j ∈ I(m /∈ I); ∀m ∈ 2; ∀bm, vm.

.

Let m be an arbitrary mutant agent in a given population of

agents 2, and let bm be its boldness and vm its vengefulness. Let I

be the set of incumbent agents in the population 2, excluding m.

If we assume continuity of agents’ properties, we can formulate a

necessary condition for ESS as


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
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∀m ∈ 2 (6)

and
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.

∀m ∈ 2 (7)

5.3. Necessary and su�cient conditions for
ESS

We can derive the following lemma.We demonstrate the proofs

in Appendix B.

Lemma 1. A necessary condition for an ESS is that every agent

follows the same strategy:

bi = B, vi = V ∀i ∈ 2.

We can derive the following propositions using Definition

2 and Equations (6) and (7). We demonstrate the proofs in

Appendix C.
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Proposition 1. The necessary and sufficient condition for an ESS

subject to B 6= 0 is as

B = 1,V = 0 ∀i ∈ 2.

5.4. Comparison of two models: bid-rigging
norms model and norms game model

We think that the simulation results shown in Figure 3A satisfy

the necessary condition that every agent follows the same strategy

in Lemma 1 since mutations that cause fluctuations of strategies in

Figure 3A do not lead to a strategy’s drift that other agents follow.

Thus, we can say that the mathematical model confirms the validity

of the simulation.

Conversely, Proposition 1 states that bid-rigging norms

collapse except in the case of B 6= 0, which seems inconsistent

with the simulation results in Figure 2A. By contrast, Galán and

Izquierdo [46] showed that the mathematical norms game model

is consistent with the simulation results in Figure 2B.

However, it is in the case of B 6= 0 that Proposition 1 holds;

thus, we can assume that the state of B = 0 is also the ESS state.

Therefore, we can assume that Figures 2A, 3A demonstrate the ESS

state in the case of B = 0. At the same time, Proposition 1 does not

demonstrate the process leading to B = 0, whereas Figures 2A, B

demonstrate the process leading to B = 0, which is the same for the

bid-rigging norms and norms game models.

Thus, we can assume no contradiction between the

mathematical model and simulation results. In this respect,

the mathematical model can confirm the simulation’s validity.

Furthermore, the simulation results demonstrate the process of

arriving at the mathematical model results.

Proposition 1 has the condition B 6= 0 because the

denominator, in the partial derivative of the expected payoff due

to the boldness of the mutating agent, has B (see Appendix C). In

other words, it is because the bidding system, which the bid-rigging

model characterizes, has a structure wherein “only one agent can be

the winner and get a payoff in a single game” (see the first term on

the right-hand side of Equation (5)).

Consequently, we can assume that the bidding system has

a structure that induces bid-rigging if the cartel mechanism

uses punishment.

6. First measure to deter
bid-rigging—Flexible setting of reserve
prices

In the previous sections, we modeled the role of punishment in

the cartel mechanism in establishing bid-rigging norms and verified

it through simulation. In this section, we examine the measure to

increase the bidder’s defect payoff T by the flexible setting of reserve

prices, i.e., by providing incentives to defect, as one measure to

deter bid-rigging. Proposition 1 of the mathematical model holds

even when the bidder’s defecting payoff T increases. From this, we

verify the actual behavior in the simulation.

Since punishment P plays a critical role in establishing bid-

rigging norms, we set the payoff for defecting T to be a multiple

of the absolute value of P (we call this multiple as “Tmultiple”) and

varied Tmultiple from 1 (T = 9) to 20 (T = 180), implementing

simulations of 50 trials over 1000 generations.

Figure 4 depicts the simulation results. The left side of the

vertical axis indicates the average values of the strategies (boldness

and vengefulness) of 50 trials over the 200 - 1000th generations,

and the horizontal axis indicates the number of Tmultiple. The

solid line indicates the average value of boldness, and the dashed

line indicates the average value of vengefulness. At the same time,

the right side of the vertical axis indicates the number of games

per generation where all 20 agents cooperate. The thick dashed

line indicates the average number of games in which all players

cooperate, i.e., the average number of games in which bid-rigging

is established. Note that we calculate the average values from the

data over the 200th generation because it is at this point that the

strategies and bid-rigging are stable.

The flexible setting of reserve prices is a measure to promote

boldness. Hence, increasing Tmultiple increases the average value

of boldness. For example, when Tmultiple reaches 10 (T = 90),

the number of games under which bid-rigging is established is less

than 0.1 out of 4 games, and when it reaches 11 (T = 99) or more,

the number of games is almost 0. Note that there is no significant

variation in vengefulness.

The simulation results confirm that the measure of the flexible

setting of reserve prices effectively deters bid-rigging. However,

whether the operation that guarantees a payoff of nearly 100 is

socially acceptable is questionable.

In the next section, we will examine the effectiveness of two

systems in actual operation to deter bid-rigging.

7. Second and third
measures—Comparative study of the
e�ectiveness of existing systems to
deter bid-rigging

The simulation analysis and mathematical modeling show that

deterring bid-rigging requires a mechanism to favor boldness.

Existing mechanisms are the administrative surcharge and

leniency system under the Antimonopoly Law, which we denote as

Hal, and applying the bid-rigging offense under the Criminal Law,

whose pecuniary loss we denote asHcl. Wemodel these two existing

systems and examine their effectiveness through simulations.

7.1. Administrative surcharge and leniency
system under the Antimonopoly Law

In this section, we introduce the administrative surcharge

and leniency system under the Antimonopoly Law to the

bid-rigging model shown in Figure 1 and implement the

simulation to verify its anti-bid-rigging effect. The practical

application of the administrative surcharge and leniency
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system is complex; therefore, we focus on those necessary

for comparison when applying the bid-rigging offense under

Criminal Law.

Figure 5 depicts the bid-rigging norms model introducing

the administrative surcharge and the leniency system under the

Antimonopoly law. Here, we model the leniency system under the

Antimonopoly Law in Japan.

We add the following elements:

1. The authorities impose the administrative surcharge under

the Antimonopoly Law only when bid-rigging is established,

whereas the authorities apply the bid-rigging offense under

Criminal Law even for attempting bid-rigging,

2. Following the norms game model, one generation consists of

four games; the flow of one game is the same up to Stage 2 in

Figure 1,

3. If bid-rigging is established (Figure 5, lower part of Stage 2), each

agent decides whether or not to report to the authorities through

FIGURE 4

Simulation results of the flexible setting of reserve prices—impact of

Tmultiple.

the leniency system with probability bi (Figure 5, lower part of

Stage 3 and 4),

4. The authorities exempt all agents who report under the leniency

system from the administrative surcharge (Figure 5, upper part

of Stage 5),

5. Based on the report, the authorities impose the administrative

surcharge Hal on the agents who have not reported, double

surcharge the agents who have led bid-rigging, i.e., have

punished the defecting agent in earlier games in the current

generation, and 1.5 times surcharge the agents who have been

caught for over the second time in the current generation

(Figure 5, Stage 5),

6. If no report is made (Figure 5, lower part of Stage 4), the

authorities begin investigations (Figure 5, lower part of Stage 5),

7. The authorities observe bid-rigging with probability S and

impose a surcharge Hal. The condition for increasing the

surcharge is the same as in 5,

8. The agents punish the defecting agents if vi > S, considering

the probability of being observed by the authorities S (Figure 5,

upper part of Stage 4).

We implement this model in simulation by varying Hal from 0

to -100 for 1000 generations over 50 trials.

Figure 6 depicts the simulation results; the horizontal axis

indicates the same as in Figure 4, the vertical axis indicates the Hal

value from 0 to -100, and the three lines indicate the same as in

Figures 4, 6A depicts the result of themodel with the administrative

surcharge and leniency system, and Figure 6B depicts the result of

the model with only the administrative surcharge (without leniency

system) for reference.

Concerning Figure 6A, even if Hal is set to –100, the number

of games under which bid-rigging is established cannot drop to

zero out of four games. However, we can see that the leniency

system has the effect of deterring bid-rigging, compared with

Figure 6B, especially in the area where Hal are large numbers

(small absolute numbers). We should note the following difference:

bordering –24 in concert withHal decreasing (increasing absolute);

FIGURE 5

Model for introducing the administrative surcharge and leniency system under the Antimonopoly Law.
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in Figure 6A, the average value of vengefulness stop falling; and

in Figure 6B, the average value of boldness begins increasing in

concert with decreasing of vengefulness. This difference is caused

as follows: bidders who exploit the leniency system, as pointed

out in Section 2.1.2, avoid social punishment and preserve their

strategies, including the vengefulness dimension; however, if the

leniency system does not exist, only social punishment is effective,

so selection diminishes vengefulness. Therefore, it is the leniency

system that affects this difference.

Meanwhile, in Figure 6, the average value of boldness does not

increase enough, and the average number in which bid-rigging

is established does not fall enough compared with Figure 4. This

difference is caused by two factors: the requirement for imposing

the surcharge under the Antimonopoly Law, which is only the case

in which bid-rigging is established, and the leniency system itself.

Concerning the first factor, this requirement leads all 20 agents

participating in the cartel mechanism to be surcharged basically,

with no payoff difference or evolution. Figure 5 shows that there are

differences in surcharge between agents who have punished other

agents or have been caught in previous games and those that have

not. However, Figure 6B shows that the surcharge is insufficient

to lead to the evolution of decreasing vengefulness and increasing

boldness. Concerning the second factor, as mentioned earlier, in

Figure 6A, the average value of vengefulness does not decrease by

the leniency system, which curtails the increase of boldness. By

FIGURE 6

Simulation results of the model for introducing the administrative

surcharge and (or without) leniency system under the Antimonopoly

Law—E�ect of Hal. (A) The administrative surcharge and leniency

system. (B) The administrative surcharge without leniency system.

contrast, the flexible setting of reserve prices makes the defecting

winner’s payoff bigger than that of the other agents, leading to

sufficient evolution to decrease vengefulness and increase boldness.

From this simulation result, we can consider that the

administrative surcharge and leniency system under the

Antimonopoly Law has a limited effect in deterring bid-rigging.

Next, we examine the effects of applying the bid-rigging offense

under the Criminal Law.

7.2. Applying the bid-rigging o�ense under
the Criminal Law

It is unique because the surcharge and leniency system

requirement in the Antimonopoly Law is that “bid-rigging must

be established.” By contrast, the requirement for applying the bid-

rigging offense under the Criminal Law is that “bidders attempt

to conduct collusion” is sufficient. We model this requirement as

applying the bid-rigging offense toward the agents who lead bid-

rigging, i.e., the agents who punish other agents in the bid-rigging

normsmodel, because punishment has a critical role in establishing

bid-rigging norms. Applying the bid-rigging offense under the

Criminal Law is a mechanism to control the vengefulness level.

Figure 7 depicts the model for introducing the bid-rigging

offense under the Criminal Law.

We add to Figure 1 the following elements:

1. Following the norms game model, one generation consists of

four games; the flow of one game is the same up to Stage 2 in

Figure 1.

2. The agents punish the defecting agents if vi > S, considering

the probability of being observed by the authorities S (Figure 7,

upper part of Stage 3).

3. The authorities observe agents who lead bid-rigging, i.e., have

punished the defecting agent, with probability S and apply the

bid-rigging offense Hcl (Figure 7, Stage 5).

We implement this model in simulation with Hcl varied from 0

to -100 for 1000 generations over 50 trials.

Figure 8 depicts the simulation result; the horizontal axis

indicates the same as Figure 4, the vertical axis indicates the Hcl

value from 0 to -100, and the three lines indicate the same as in

Figure 4.

As a result, if Hcl is set to less than -40, the number of games

under which bid-rigging is established drops to zero out of four

games. At the same time, comparing Figure 8 with Figure 6, as Hcl

decreases, the average value of boldness decreases, and the average

value of vengefulness increases.

This difference is because the requirement for applying the

bid-rigging offense under the Criminal Law is sufficient (that

is, “bidders attempt to conduct collusion”). In other words, the

authorities can apply the bid-rigging offense under the Criminal

Law as soon as observing the agents who punish other agents; this

feature leads to a decrease in vengefulness through evolution, which

leads to a increase in boldness. Thus, the number of games under

which bid-rigging is established drops to zero.

This simulation result confirms that applying the bid-rigging

offense under the Criminal Law effectively deters bid-rigging.
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FIGURE 7

Model for introducing the bid-rigging o�ense under the Criminal Law.

FIGURE 8

Simulation results of model for introducing the bid-rigging o�ense

under the Criminal Law—E�ect of Hcl.

However, considering that the criminalization of bid-rigging

has difficulties in balancing with the legal system in each country

and the necessity of social and cultural consensus compared to the

administrative penalty, actively applying the bid-rigging offense has

a higher social cost.

In the next section, we examine measures to increase the

effectiveness of the administrative surcharge and leniency system

under the Antimonopoly law.

8. Combination of three measures to
increase the e�ectiveness of the
administrative surcharge and leniency
system under the Antimonopoly Law

We consider adding two measures to the administrative

surcharges and leniency system under the Antimonopoly Law in

Section 7.1: the flexible setting of reserve prices in Section 6 and the

application of the administrative penalty, similar to the bid-rigging

offense under the Criminal Law in Section 7.2.

We cannot allow too great payoffs to the winner. Instead, we

must search for a socially acceptable level of payoff. In addition,

we should reduce the bid-rigging offense under the Criminal

Law, which can effectively punish bid-rigging leaders but involves

social stigma and disapproval, to the level of the administrative

penalty deterring bid-rigging less costly and making administering

more simple.

The issues here are the following two points:

1. We should make Tmultiple as small as possible from the

minimum value of 10 that can deter bid-rigging, as shown in

the simulation results in Section 6 as the benchmark value.

2. We should make the administrative penalty as small as possible

from the minimum value of –40 of the bid-rigging offense under

the Criminal law that can deter bid-rigging, as shown in the

simulation results in Section 7.2 as the benchmark value.

Here, we set the benchmark value for deterring bid-rigging as

0.1 of the number of games out of 4 games, which is the number in

the case of setting Tmultiple as 10 (T = 90) in Figure 4.

We implement the previous three models of Figures 1, 5,

7 simultaneously in simulation with Hal varied from –20 to 0,

Tmultiple varied from 0 (T = 0) to 10 (T = 90), and Hcl as

administrative penalty varied from –10 to 0, for 1,000 generations

over 50 trials. Note that bid-rigging has been established for these

values ofHal, Tmultiple, andHcl, as demonstrated in the simulation

results of previous sections.

Figure 9 depicts the scatter plot matrix created by extracting the

data where the average number of games per generation in which

collusion has been established is less than 0.1.

Since there are no data for which Tmultiple are 0 and 1, it is

necessary to set Tmultiple as two or more, i.e., to set reserve prices

that guarantee at least twice the absolute payoff of P. In the case

Tmultiple is two, to make the average value of each generation

under which bid-rigging is established lower than 0.1, we should
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FIGURE 9

Scatterplot matrix with data created by extracting the data where the average number of games per generation in which collusion has been

established is less than 0.1 games.

set administrative surcharges Hal under the Antimonopoly Law to

-12 or less. We note a missing value in the case where Hal is -16;

therefore, we must set Hal to -18 or less to avoid this missing value.

At the same time, we should set administrative penalties Hcl to -9

or less.

Therefore, to increase the effectiveness of the surcharge and

leniency system under the Antimonopoly Law, we should set the

surcharge from 1.5 times to 2.0 times P, the administrative penalty

to the same amount as P, and the reserve price to twice as much as

the absolute value of P.

9. Discussion and conclusion

In this study, from the aspect of enforcement to the cartel

mechanism, which was not the subject of McAfee and McMillan

[2], we modeled bid-rigging norms following the model of Axelrod

[1]. We implemented this model under simulation to analyze the

critical factors that led to the evolution of punishment. The results

revealed that the structure of the bidding system or auctions, i.e.,

only one agent between agents who participate in the bidding

system or auctions can take a payoff, is the critical factor.

Furthermore, we compared the simulation results and

mathematical model of the bid-rigging norms model and the

norms model; as a result, we confirmed no contradiction between

the results of the simulation and the results of the mathematical

model, as well as the validity of the simulation.

At the same time, using this bid-rigging norms model and

simulations, we investigated the measures to deter bid-rigging.

We examined three measures: the flexible setting of reserve

prices, the administrative surcharge and leniency system under the

Antimonopoly Law, and applying the bid-rigging offense under

the Criminal Law. As a result, we clarified that the administrative

surcharge and leniency system under the Antimonopoly Law is

insufficient to deter bid-rigging and that the flexible setting of

reserve prices and applying the bid-rigging offense under the

Criminal Law are effective.

Finally, we implemented these three measures simultaneously.

We investigated the lower limits of the three measures: reserve

price, the administrative surcharge under the Antimonopoly Law,

and the administrative penalty similar to applying the bid-rigging

offense under the Criminal Law. As a result, we could reduce the

bid-rigging offense under the Criminal Law to one-fourth, which

we consider to be at the same level as the administrative penalty,

and reduce the administrative surcharge under the Antimonopoly

Law up to a maximum of twice the punishment, i.e., –18. Note

that by setting the reserve price over twice the absolute values of

punishment used in the cartel mechanism, we had to allow a payoff

over 18 to defecting agents. With this, we could deter bid-rigging

effectively.

The individual anti-bid-rigging measures presented in this

study are already well-known or used. The contribution of this

study is to clarify that using these measures separately is insufficient

to deter bid-rigging and that their combination is effective.

The limitation of this study is that the number of agents is only

20, following Axelrod [1]. However, it is appropriate to conduct

simulations with a small number of agents due to the nature of bid-

rigging, which means that the cartel mechanism is not composed
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of a large number of agents as implemented in simulations in social

physics-based studies. As shown in Section 2.4.2, in social physics-

based studies, theoretical results are verified by simulations, which

are conducted with a large number of agents or by big data [43–

45]; at the same time, simulations can implement rich structures

that mathematical models cannot represent. In this study, we

implemented a mathematical model by simulations to change

parameter values or implement actual structures and attempted

to elucidate more complex phenomena. So, we are following the

style of social physics-based studies in verifying theoretical results

with simulations.

A future issue is the practical applicability of the measures

presented to deter bid-rigging. As the first step, we should verify the

measurability of the magnitude of the punishments (which are not

necessarily measurable in monetary value) that are practiced in the

cartel mechanism. In the second step, even if the punishments are

measurable, we should verify the feasibility of the existing system,

especially regarding the flexible setting of reserve prices and the

administrative penalty similar to the bid-rigging offense under the

Criminal Law.

Furthermore, we should explore how to deter bid-rigging that

authorities initiate; as Howlader et al. [14, 15] pointed out, this is a

critical case.
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