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We analyze the forces that explain inflation using a panel of 122 countries from
1997 to 2015 with 37 regressors. Ninety-eight models motivated by economic
theory are compared to a boosting algorithm, non-linearities and structural breaks
are considered. We show that the typical estimation methods are likely to lead to
fallacious policy conclusions, which motivates the use of a new approach that we
propose in this paper. The boosting algorithm outperforms theory-based models.
Furthermore, we extend the current software implementation of conditional
Akaike Information Criteria for additive mixed models with observation weights.
We present a novel two-step selection process suitable for a wide range of
applications that enables to empirically compare theory- and data-driven models
with varying data availability.
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1 Introduction

In the late 1970s and early 1980s, many countries experienced high inflation. A

broad consensus emerged that this was unacceptable. Accordingly, policymakers worldwide

adopted or were enabled to adopt policies designed to bring inflation down. As can be

inferred from Figure 1, one of the most striking developments of the past two decades has

been a steadily declining trend in inflation measured by consumer price index (CPI) and its

volatility. In 1997, the average inflation was 21%. By 2015 it had dropped to 5%.

Many factors are believed to have contributed to this development. They range from

stronger commitments to price stability, improved monetary policy, the emergence of the

New Economy and the attendant acceleration of productivity growth, forces of globalization

that increased competition and enhanced the flexibility of labor and product markets,

the weakening influence of trade unions, disciplined fiscal policy, favorable exogenous

circumstances, and even luck. All these factors likely played a role, and disentangling the

relative contribution of each remains an important challenge.

The general acceptance that the key objective of monetary policy should be price stability

has aroused considerable interest in understanding the determinants of inflation. Empirical

work in a cross-country setup is broad and diverse in its conclusions. Most of it addresses few

potential sources for a limited number of countries or periods.Model comparisons are hardly

made, and non-linearities have often not been analyzed. Robustness checks with alternative

estimation techniques are rare. Moreover, commonly applied estimation methods are too

restrictive and exhibit low explanatory power, which in the end may lead to fallacious policy

conclusions. We corroborate this hypothesis in Appendix B.3, where we show that additive

mixed models (AMMs) outperform common estimation techniques.
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FIGURE 1

Truncated (99.5% percentile) distribution of inflation over time across 122 countries with a LOESS estimate.

Empirical work that takes these shortcomings into account may

help improve our understanding of what explains the inflation

process over time and across countries. This offers the background

to our paper, which identifies and quantifies various determinants

of inflation, and motivates our extension of the empirical literature

along several dimensions.

First, since the behavior of inflation has become increasingly

difficult to understand,1 we tested several models and variables

based on abundant theoretical and empirical research. The

explanatory variables were properly lagged to account for potential

causal links.

Second, although the downward trend is a global phenomenon

that had been noted years ago [3], research has typically focused

on low-inflation (advanced) countries. For this reason, we base

our analysis on not only as many theoretical explanations as

possible but also the highest number of countries, including

advanced countries, emerging market and developing economies

(EMDEs), as well as low-income countries (LICs). To this

end, we pre-processed and analyzed an exceptionally large and

comprehensive data set, including annual observations of 37

explanatory variables for 122 countries during the period from

1997 to 2015.

Third, to properly consider the longitudinal structure of the

data and the countries’ heterogeneities, we recurred to mixed

models whose variables were motivated by economic theory on

the one hand and by a data-driven variable selection procedure on

the other hand. Next, to allowing for a combination of countries

with different characteristics, we extended the literature—which

is focused on linear regressions, where inflation is regressed

against a specific variable and control variables—by accounting

for potential non-linear relationships between inflation and the

regressors. For this purpose, we introduce additive mixed models

to empirical research on inflation (which may find application

in macroeconomic analyses in general) and provide the software

implementation of conditional Akaike Information Criteria (cAIC)

for additive mixed models with observation weights. The resulting

1 Blanchard [1] and Borio [2] have even put into question economists’

knowledge of its process.

assignment of cAIC to the models enabled us to compare several

theories and the data-driven approach to one another.

The remainder of this paper is organized as follows. In

Section 2 we review the literature and the ensuing explanatory

variables underlying our empirical models. Section 3 presents the

data. In Section 4 we lay out our estimation methods and the

model selection procedure. The main findings are summarized in

Section 5. Section 6 concludes the paper. Data and code for the

reproduction of the analysis is available on a GitHub repository.

2 Literature

A number of empirical studies show that the sources of

inflation are quite diverse and include excess demand or slack,

a country’s institutional set-up, the monetary policy strategy in

place, fiscal imbalances, globalization and technology, demography,

(shocks to) prices of natural resources, and past inflation. We

discuss them in more detail, explain the choice of variables

and their abbrevations for the empirical analysis in Appendix C.

For an exhaustive survey of the literature we refer to Baumann

et al. [4].

Based on this literature survey, we set up eight economic

theories and various testable models, which capture a diversity

of country characteristics. In the literature, money and output-

related variables are often part of the explanatory variables. For this

reason, they are also included in each of our models. Because it is

not straightforward which variables best reflect the development

of money stock and GDP, each model includes either M2 Gr. (%)

or Credit (% GDP) Gr. (%) in combination with either GDP pc

(USD) or GDP Gr. (%), extended by theory-specific explanatory

variables. As a result, we obtained a range of four to 24 alternative

specifications. This gave rise to an estimation of 98 model-specific

variable combinations. The exact variable combinations of each

economic model can be gleaned from the Appendix A. In addition

to variable compositions suggested by economic theory, we also

predefined interactions of variables for which we assumed the

existence of a mutual impact on inflation. This applies to En. Prices

(USD) and En. Rents (% GDP) as well as Trade Open. (% GDP) and

Fin. Open.
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3 Data

Our aim is to cover as many countries as possible. This entails

a trade-off between the number of countries and the completeness

of the data set. We were able to collect annual data running from

1995 to 2015 for 124 countries for 21 explanatory variables and

for the dependent variable from publicly accessible sources, mainly

the IMF and the World Bank. For inflation we finally relied on the

IMF’s change in the CPI due to data availability. Further, we derived

growth rates from level variables, rolling averages from growth

rate variables and further transformations from level variables.

Thirty variables and the dependent variable resulted from this with

missing information for some variables (2.8% of the observations).

We imputed the missing observations by means of an EM-

Algorithm on bootstrapped samples [5]. We limited the analysis

to a single imputation instead of multiple imputed data sets due

to the lack of theoretical background for averaging random effects.

The contemporaneous measurements of the resulting variables

were replaced by their 1- or 2-year lagged counterpart according

to theory and empirical results.2 We excluded two countries with

outliers from our sample since these countries heavily impaired

model selection. This led to 122 countries spanning from 1997 to

2015. We refer to these data as the full sample. In addition to the 30

variables, we also collected eight explanatory variables from various

scientific publications and the World Bank that were not available

across the whole time span from 1995 to 2015 or were only available

for a subset of countries. Due to a non-compliance with theMissing

At Random assumption these predictors were not imputed. These

variables are associated with the economic theories Institutions,

Monetary Policy Strategies, Public Finance, and Globalization and

Technology. Their limited availability is one of the reasons for our

two-stage selection procedure described in Section 4.5.

Finally, this gives rise to a classic longitudinal/panel data

structure for a data set comprising 37 predictors and the World

Bank’s income classification. We provide summary statistics in the

Appendix (cf. Figures A1, A2). According to the World Bank’s

income classification, ∼21% of the countries are low-income

countries, 35% belong to the lower-middle-income category, 19%

to the upper-middle-income category, and 25% to the high-

income category.

4 Methods

In this section we discuss the details of the statistical models

and procedures underlying the analysis. First, we present the

basic structure of AMMs on which we rely to model annual

inflation rates. To capture the country-specific correlation and

the heterogeneity of countries, we specify these AMMs with

either subject-specific random or fixed effects and country-specific

weights. All estimated AMMs are compared by their cAIC. We

discuss the cAICs’ central pillars in the context of AMMs and

present our contribution to its software implementation in Section

4.2. We provide the details to model-based boosting for variable

selection which we used as the starting point of our data-driven

inflation modeling. We then present the two-stage model selection

2 See Baumann et al. [6] for details.

procedure that we developed. Finally, we add varying coefficients

based on Hastie and Tibshirani [7] to the AMMs that exhibit the

lowest cAIC to tackle the question of a structural break during the

financial crisis 2007/2008.

4.1 Additive mixed models

Mixed models are a natural choice for modeling longitudinal

data and have been frequently applied, for example, in

epidemiology.3 However, to our knowledge, mixed models

have not been applied to model inflation. In general, mixed models

include (population) fixed and (subject-specific) random effects.

When modeling macroeconomic data, a violation of the random

effects assumptionmay arise, which eventually leads to inconsistent

estimators For this reason, we apply a procedure proposed by

Mundlak [10] to check if the random effects assumption holds or if

random effects have to be replaced by country-specific fixed effects.

In general, the country-specific effects should act as surrogates

for effects that have not been measured and induce heterogeneity

between countries. Further, since non-linear relationships between

the many predictors used in this paper and inflation cannot be

excluded, we extend the mixed models in an additive manner by

model terms which are functional forms of the predictors. This

leads to the class of AMMs on which our main analysis is based.

The formal structure of the AMMs is as follows: 37 (metric

and categorical) predictors and the dependent variable inflation (in

percent), denoted by ỹi,t , are given for i = 1, . . . , n = 122 countries

and for t = 0, . . . ,T = 18 consecutive years from 1997 to 2015

such that ỹi = (ỹi,0, . . . , ỹi,T)
⊤. The vector ỹ = (ỹ1

⊤, . . . , ỹ⊤
n )

⊤

has been transformed by the natural logarithm y : = ln(ỹ +

10.86) after shifting the support to values ≥ 1 to avoid numerical

instabilities. We chose the natural logarithm transformation to

meet the distributional assumptions specified for ǫi in (1). The

generic AMM used to explain yi,t by a set of predictors Aj,l is given

in Equation (1). Each of the eight economic theories is represented

by a set Gl : = {{A1,l}, {A2,l}, . . . , {Aml ,l}}, l = 1, . . . , 8, containing

ml : = | Gl | sets of predictors Aj,l. Each Aj,l is composed of disjunct

subsets Bj,l and Cj,l of predictors with linear and non-linear effects,

respectively, as well as pairs Dj,l of variables in Bj,l and pairs Ej,l
of variables in Cj,l with linear and non-linear interaction effects,

respectively. Non-linear effects h of predictors x ∈ Cj,l are estimated

by univariate cubic P-splines [11] with second-order difference

penalties. Interaction effects f (·, ·) of pairs (x, x∗) of variables in Ej,l
are modeled using penalized bivariate tensor-product splines. The

assignment to Bj,l, Cj,l, Dj,l and Ej,l can be found in Tables A1, A2.

Each model Mj,l corresponding to one Aj,l ∈ Gl is of the following

form:

yi,t = β0 + ηi,t + Zi,tbi + ǫi,t , (1)

ηi,t =
∑

x∈Bj,l

xi,tβx +
∑

(x,x∗)∈Dj,l

(xi,tx
∗
i,t)β(x,x∗) +

∑

x∈Cj,l

hx(xi,t)

+
∑

(x,x∗)∈Ej,l

f(x,x∗)(xi,t , x
∗
i,t) (2)

3 See, e.g., Degruttola et al. [8] and Pearson et al. [9].
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with bi = (bi,0, bi,1)
⊤ iid

∼ N(0,G), where a random intercept bi,0
and a random slope bi,1 with design vector Zi,t ≡ Zt = (1, t)

and non-diagonal covarianceG are (always) included to capture the

serial within-country correlation. Further, ǫi ∼ N(0,Ri) is assumed

with ǫi ⊥⊥ bi, where Ri is a diagonal matrix with potentially

heterogeneous country-specific variances σ 2
i on its diagonal. The

observation weights wi = σ 2/σ 2
i emerge implicitly and are

contained on the diagonal of the matrix W̃i such that Ri = σ 2W̃−1
i .

On a sample level, the error covariance structure is a block-diagonal

matrix R with Ri on its diagonal.

Assuming ǫi ⊥⊥ bi further implies that the bi have to be

uncorrelated with all xi,t and x∗i,t included in the subsets of Aj,l

for all t. This assumption may seem unreasonable given the data

and question under investigation. For this reason, we question

the random effects assumption (i.e., E[bi|xi,t , x
∗
i,t] = E[bi] for

all t) and alternatively specified country-specific fixed effects to

take the country-specific correlations into account. Specifically,

we alternatively specified each Mj,l as in (1) but without any

distributional assumption for the country-specific parameters:

yi,t = ηi,t + Zi,tγi + ǫi,t , (3)

where γ i = (γi,0, γi,1)
⊤. To decide if the random effects assumption

under (1) or the country-specific fixed effects under (3) are more

reasonable for eachMj,l, we follow Mundlak [10], whose procedure

enables us to derive a statistical test which examines if the time-

invariant error components of the error in (1) might not be

correlated with the time-varying regressors specified in (2). We

test this hypothesis by specifying a further model M̄j,l for each

Mj,l which is specified as the corresponding Mj,l but with a

linear predictor η̄i,t that additionally encloses the time-averaged

transformations of the regressors (i.e., x̄i =
1

T+1

∑T
t=0 xit) specified

in (2). As a result, each M̄j,l is of the form

yi,t = β0 + η̄i,t + Zi,tbi + ǫi,t , (4)

η̄i,t = ηi,t +
∑

x∈Bj,l

x̄iβ̄xB +
∑

(x,x∗)∈Dj,l

x̄iβ̄xD + x̄∗i β̄x∗D
+

∑

x∈Cj,l

x̄iβ̄xC

+
∑

(x,x∗)∈Ej,l

x̄iβ̄xE + x̄∗i β̄x∗E
(5)

We test if all the parameters of the time-averaged

transformations of the regressors are jointly zero, i.e.,

H0 : β̄xB = β̄xD = β̄x∗D
= β̄xC = β̄xE = β̄x∗E

= 0 against the

alternative HA, that at least one of these parameters differs from

zero based on a likelihood-ratio test (cf. Appendix B.1). When we

could not reject H0 at the 5%-significance level, we favored the

specification under (1) over (3) for the corresponding Mj,l. We

interpret the test result as an indication rather than a statement

that provides definitive certainty for the choice between fixed and

random effects.

In total, there are 98 (=
∑8

l=1 ml) such AMMs for all predictor

sets Aj,l associated with each economic theory Gl. For each Gl there

is one set of models Ml which includes all corresponding Mj,l. We

estimated these AMMs by (penalized) maximum likelihood with

the mgcv package [12] and the gamm4 package [13] as extensions

to the statistical software R [14].

The typical working horse model for studying inflation is

the vector autoregressive (VAR) model as used, for example, by

Karlsson et al. [15]. However, we prefer AMMs over VAR models

for two reasons. The first is that AMMs can be parameterized

more parsimoniously, given the large number of predictors (37)

and countries (122) underlying our analysis. The second reason is

that AMMs do not require any specification of the time lag order of

the variables, contrary to VAR models.

4.2 cAIC

Model selection based on the Akaike information criterion

(AIC) is a common approach in econometrics. The criterion was

initially introduced by Akaike [16] and is composed of twice the

maximized log-likelihood and a bias correction term, which, under

certain regularity conditions, can be estimated asymptotically

by two times the dimension of the unknown parameter vector

specifying this log-likelihood [17]. To apply this criterion to mixed

models, two considerations were taken into account in our case.

First, a joint Gaussian distribution of the random vectors y

and b is assumed. This allows us to decide between two common

views regarding the inference and predictions in mixed models.

The distribution of y cond. on b leads to the cond. likelihood

of y given b, which then forms one component of our utilized

cAIC. In contrast, when the random effects are integrated out, the

marginal distribution of y emerges and thus provides the marginal

likelihood. We demonstrate our reasoning for the conditional over

the marginal view on the AIC in Section 4.3.

Second, the bias correction term needs to be adjusted owing to

the alternated number of parameters estimated in mixed models. A

body of literature [18–20] provides the theoretical underlying for

the derivation of the bias correction. We give a brief overview in

Section B.2 in the Appendix. We base our analysis on the term

introduced by Greven and Kneib [20] [cf. (3) in the Appendix],

which assumes independent and identically distributed errors

across the subjects (countries in our case). As a result, its current

software implementation in the cAIC4 package [21] originally

provided for mixed models emerging from the lme4 package [22]

and the gamm4 package [13] incorporates this assumption as well.

However, in our case subject-specific error variances need to be

modeled to capture the heterogeneity across countries, making

the assumption of identically distributed errors inappropriate.

The derived bias correction is thus no longer applicable since it

disregards the additional parameters used for the estimation of R

as defined in Section 4.1. In order to account for the estimation of

a more complex error covariance structure in the bias correction,

we incorporate the proposed extension of Overholser and Xu [23].

Since Overholser and Xu do not take into account the estimation

uncertainty of G, we implemented a working version that adds

the number of unknown parameters r, which we used for the

estimation of the error covariance matrix R, to the bias correction

term of (3) in the Appendix and obtained

cAIC = −2logf (y|θ , b)+ 2

(

tr

(

∂ ŷ

∂y

)

+ r

)

. (6)

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1070857
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Baumann et al. 10.3389/fams.2023.1070857

We implemented Overholser and Xu’s proposal for diagonal

error covariance matrices into the cAIC4 package and further

extended the package formixed and additivemodels estimated with

the mgcv package [12]. As a result, we provide, to our knowledge,

the first software implementation for the estimation of the cAIC for

mixed and additive models with non identically distributed errors.

This novel extension of cAIC4 is made available to the CRAN

repository for further applications. The proof of the asymptotic

result of Overholser and Xu [23] gives an upper bound for the

bias correction term that can also be provided through derivations

based on the partial derivative of the prediction vector ŷ for y with

the random effects set to their predicted values.

4.3 Conditional over the marginal view on
the AIC

We prefer the conditional over the marginal perspective on the

AIC due to the mixed model representation of P-splines. To see the

link in general, following Saefken et al. [17], we consider an additive

model of the following form

y = Ba+ ε, ε ∼ N(0, σ 2I) (7)

where B is the design matrix containing the evaluations of

predictors based on B-spline basis functions constructed from

piece-wise polynomials and a is the corresponding vector

containing the basis coefficients. We can apply an eigenvalue

decomposition to the quadratic penalty matrix P = D⊤D with

column rank k, where D is the differences matrix such that P =

V6̃V⊤. The k eigenvectors inV , which correspond to the k positive

eigenvalues, can be assigned to V1 while the remaining d column

vectors can be assigned to V0. We are then able to non-uniquely

decompose the functional estimate Ba into two bases

Ba = BV0V
⊤
0 a+ BV1V

⊤
1 a = Xβ + Zb (8)

yielding the common mixed model representation [24], where β

specifies d unpenalized parameters with the corresponding fixed

effects design matrix X spanning the polynomial null space of

P, while b specifies k penalized parameters corresponding to the

random effects design matrix Z which spans its complement

[25], respectively. Currie et al. [26] extend this representation

for penalized functionals in higher dimensions. The specification

under (8) differs from our generic mixed model (1) by different

column ranks of the fixed and randomdesignmatrices and different

dimensions of the corresponding parameter vectors, depending on

the employed predictor setsAj,l as defined in Section 4.1. As a result,

with d = 2 in our case, the marginal AIC would only take the

fixed polynomial trend of degree one into account while the smooth

deviation from this polynomial can now be taken into account in

(6) as well. Thus, the cAIC, considered as a predictive measure in

this context, accounts for the plausible assumption that the non-

linear functional relation between the predictors and y estimated

in our data set represents a more general relationship which is

expected to hold also for new country observations.4

4 See Saefken et al. [17] and Greven and Kneib [20].

4.4 Model-based boosting

In order to maximize predictive performance on out-of-sample

data, we in addition relied on a machine learning approach which

could also be used for forecasting purposes. Specifically, we apply

a model-based boosting algorithm [27–29]. It disregards the block

by block segmentation of the predictors presented in Section 2,

which was based upon the associated economic theories. For this

reason, we next want to find an optimal prediction function f ∗ for y

through some prediction function f which is found by minimizing

the expected loss EY ,X[L(y, f (x))] (i.e., risk) through a gradient

descent algorithm in function space [28]. We assume that f is

composed of a sum of functions of predictors and country-specific

random effects which are all parameterized through different base

learners. We specified 34 base learners. We now discuss the

employed loss function, the choice of base learners, the gradient

descent algorithm and the base learner selection procedure.

4.4.1 Loss function
The boosting algorithm minimizes the empirical risk which is

given by

R : =
1

n

n
∑

i=1

L(yi, f (xi)) (9)

where (yi,xi) is one out of i = 1, . . . , n realizations of (y,x). The

Huber-Loss, L, was chosen because of its advantages in handling

outliers compared with other approaches. The Huber-Loss is

defined as

L(y, f ; δ) =

{

1
2 (y− f )2 for |y− f | ≤ δ,

δ(|y− f | − δ
2 ) for |y− f | > δ

(10)

and δ was chosen in each boosting iterationm by

δm = median(|yi − f̂m−1|, i = 1, ..., n).

4.4.2 Base learners
All predictors specified in Section 2 which are available in the

full sample were collected in x : = (x1, . . . , xp). For the case of

inflation, four kinds of base learners are specified. The first type

are penalized least squares base learners whichmodel all categorical

predictors in x. The second type are P-spline base learners which

model all continuous predictors in x. The third type are bivariate

P-splines base learners allowing for the estimation of smooth

interaction surfaces. We allow for the same bivariate interactions

of predictors as we have done for the models specified by economic

theory—En. Prices (USD) and En. Rents (% GDP) denoted by f1,2
and Trade Open. (% GDP) and Fin. Open. denoted by f3,4. The last

type are random effect base learners for country-specific random

intercepts, fintercept , and country-specific random slopes, fslope, with

Ridge-penalized effects. We finally add a global intercept such that

the following additive model results

E[y|x] = β0 + f1 + . . . + fp + f1,2 + f3,4 + fintercept + fslope. (11)
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4.4.3 Gradient descent algorithm
The utilized gradient boosting algorithm starts with an initial

function estimate f̂[0] and proceeds in a stagewise manner. At each

iteration m it computes the negative gradient of the loss function

and updates the current function estimate f̂ ∗[m]. Simultaneously,

the algorithm descends along the gradient of the empirical risk

R whereby only one base learner is selected at each iteration for

updating the current function estimate. The decision when to stop

the algorithm, mstop, is crucial. However, it has been commonly

suggested to enforce a stop of the algorithm before it converges to

avoid overfitting and thus a suboptimal prediction [27].

4.4.4 Base learner selection
We employ a 10-fold bootstrap to find mstop by choosing

the minimum out-of-sample risks averaged over all folds [29].

To take the longitudinal structure of our data into account this

procedure was stratified by countries. To enforce variable selection,

we decided to include only the base learners that were selected at

least 1% of allmstop iterations. Finally, 14 out of the 34 base learners

were selected. By stopping the algorithm before it converges, a

shrinkage effect is imposed onto the effect estimates of the model.

Therefore, we refitted the predictors associated with the 14 base

learners collected in the predictor set AB as an AMM as specified

in (3) and dubbed it MB. We favored (3) over (1) due to the result

of the testing procedure proposed by Mundlak [10].

4.5 Selection procedure

Themodel selection procedure is as follows: At a first stageSfir ,

a winner model M∗
l
with the lowest cAIC (6) among models Mj,l

in the set Ml is selected for each economic theory. At a second-

stage, M∗
l
, l = 1, . . . , 8 and MB are collected in the set MP.

Some predictors associated with M2, M3, M4 and M5 are not

imputed as these predictors are not available either across time

and/or countries whichmakes a direct model comparison bymeans

of the Likelihood and thus the cAIC invalid. As a result, if the

predictor sets included inM∗
2 ,M

∗
3 ,M

∗
4 andM

∗
5 are only available for

a subsample of data, they are instead added to M
′′
to be compared

to the AMM with the lowest cAIC in MP later. The winner MP

has the lowest cAIC in the set of models MP and its cAIC is finally

compared to each M
′′
∈ M

′′
on the corresponding different data

subsets to yield the overall winner M∗∗. If the computation of

any AMM on any subset of the data fails, this AMM is assigned

the highest cAIC in the given comparison. This can happen in

particular for complex models on smaller subsets of the data.

First- and second-stage selection are together labeled Ssec. M
∗∗

represents the model with the highest empirical relevance and

provides the most reasonable set of inflation drivers.

The reasoning behind this two-stage approach is twofold. First,

from a monetary economics perspective it is not known a priori

which set of predictors has the most explanatory power for each

economic theory (Gl). Second, the availability of certain predictor

sets Aj,l across time and countries enforces this procedure to ensure

an admissible model comparison by means of the Likelihood and

thus cAIC.

4.6 Varying coe�cient models

After the model selection procedure, we additionally answered

the important question of a structural break for the parameters

comprised byM∗
l
, l = 1, . . . , 8 andMB through varying coefficient

models. That is, we let each parameter interact with a two-level

categorical variable ei,t,k which is coded with ei,t,1 = 1t≤2007 and

ei,t,2 = 1t>2007 such that (2) was replaced by

η̃i,t = −β0 +
∑

k∈{1,2}

(

β0,kei,t,k +
∑

x∈Bj,l

xi,tβx,kei,t,k +
∑

(x,x∗)∈Dj,l

(xi,tx
∗
i,t)β(x,x∗;k)ei,t,k

+
∑

x∈Cj,l

hx,k(xi,t)ei,t,k +
∑

(x,x∗)∈Ej,l

f(x,x∗;k)(xi,t , x
∗
i,t)ei,t,k

)

(12)

for eachM∗
l
, l = 1, . . . , 8 andMB. The first level of ei,t is considered

when t ≤ 2007 and the second level when t > 2007. Consequently,

we obtain two simultaneous estimations of the same effect—one for

each of the two levels. However, apart from the specification of (12),

everymodel specification was identical to themodel specification of

the originalM∗
l
, l = 1, . . . , 8 orMB, respectively.

5 Results

The results of the AMMs presented in Section 4 are discussed

in this section which is organized in two subsections. In the

first, we present the results of Sfir as described in Section 4.5.

Ordered by theory, we present the winning models, M∗
l
, assessed

by their cAIC and the resulting variables, discuss the linear links

and plot the pattern of the variables that were estimated as P-

splines together with their pointwise 95% confidence intervals [30].

The empirical degree of non-linearity is assessed based on the

effective degrees of freedom [EDFs; [31]] associated with each

penalty specified in (2). The EDFs are reported along the y-axis.

For example, an EDF equal to 1 indicates that the estimated Mj,l

penalized the corresponding smooth term to a linear relationship.

To solve the identifiability issue of the AMMs specified in Section

4.1, all splines estimated incorporate a sum-to-zero constraint [e.g.,
∑

i,t ĥGDPpc(USD)(GDPpc(USD)i,t) = 0 for M6,1]. As a result, the

corresponding effects can only be interpreted on a relative scale.

In addition, for each model term enclosed by either (2) or (12)

we performed a statistical test [30], where under the null the

parameters associated with this model term are equal to zero.

The order of magnitude of the p-value associated with this test is

reported by means of asterisks.5 Simultaneously, we evaluate the

existence of structural breaks in the wake of the financial crisis and

juxtapose the evidence of the pre-crisis period with that after the

crisis. To this end we applied the varying coefficient approach as

defined in Section 4.6. As discussed in Sections 3 and 4.5, not all

models could be estimated and compared on the full sample. The

models included in M1, M2, M6, M7 and M8 were fitted on the

maximum of observations possible.

For the estimates of the institutional characteristicM2, we fitted

the model on 26 countries and for a time span from 2000 to 2012

5 When x corresponds to the EDF or the linear e�ect, x∗∗∗ corresponds to

significance at the 0.1% level, x∗∗ at the 1% level, x∗ at the 5% level, x· at the

10% level and no asterisks indicates no significance at the 10% level.
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at the first stage due to the missing structure of the predictors as

described in Section 3. However, we refitted M∗
2 on the full sample

at the second stage since the predictors attached to its predictor set,

A16,2, are available for all 122 countries and all 19 points in time.

The models examining monetary policy strategy variables, M3,

were fitted on 30 countries and a time interval from 1997 to 2012.

The models examining effects from public finance, M4, were fitted

on 79 countries from 1997 to 2015. The AMMs enclosed by M5,

that is globalization and technology, were fitted on 93 countries

and from 1997 to 2012. Since the predictors, A3,3, A14,4 and A20,5,

are not available in the full sample, M∗
3 ,M

∗
4 and M∗

5 were excluded

from Ssec.

In the second subsection, we describe the results of Ssec which

were characterized by the addition of MB to the winners of Sfir .

Here, we identify the overall winning model, M∗∗, and describe its

links to log inflation.

5.1 First stage selection

This subsection describes the results organized by economic

theory. It first presents the winning model within the estimated

model combinations and compares the empirical relevance of the

variables involved. The winning model is characterized by the

lowest cAIC value. Tables A1, A2 display the results divided by

theory. The first section lists the results for money, credit and

slack, M1, the second section those for institutions M2, the third

for monetary policy strategies, M3, the fourth for public finance

M4, the fifth for globalization and technology, M5, the sixth for

demography, M6, the seventh for natural resources, M7, and the

eighth for past inflation, M8. As can be gleaned from the p-values

reported in Tables A1, A2, we specified country-specific fixed effects

rather than random effects if the tested hypothesis specified based

on the proposal of Mundlak [10] in Section 4.1 was significant at

the 5% level. The results were rounded to the second digit. In case

of a value below 0.01, the results were rounded to 0.01. Similarly, in

case of a value >0.99, the results were rounded to 0.99.

The subsequent discussion focuses on whether the effects are

linear or not, based on the EDF values. Three figures plot the results

for three different periods of observations. A left-hand panel plots

the results for the whole sample, a middle panel those relating to the

pre-crisis and a right-hand panel those for the post-crisis period.

5.1.1 Money, credit, and slack
AMMs that include M2 growth exhibit higher empirical

relevance than those that include credit growth, while the models

that include output gap are more relevant than those that account

for GDP growth. However, the output gap is less relevant than

GDP pc. M6,1 is the winning model. It exhibits GDP pc and

credit growth. There is evidence of a linear and positive association

between credit growth and log inflation. A one percentage point

increase leads to a rise in log inflation of 0.022∗ (∼2.2% increase

in inflation). The estimated effect after the global financial crisis

(GFC) (0.136∗∗) has strengthened relative to the pre-crisis period

(0.0178). In contrast, GDP pc affects inflation in a non-linear way

as seen in Figure 2. An increase up to 50,000 USD is associated with

a sharp increase in log inflation and peters out at this income value.

5.1.2 Institutions
In all cases models with credit growth are more relevant than

the models with M2 growth. GDP growth does better than GDP

pc in 10 out of 12 cases. The freedom status variable bears also

empirical relevance. However, these results are derived from a

reduced sample size of 26 countries and a period from 2000 to 2012.

The winning model is M16,2 which features civil liberties next to

credit growth and GDP pc. Due to the full-sample availability of

civil liberties, we refitted the winning model on the full sample.

The results are as follows: In the winning model all variables

show evidence of a weak linear relationship with log inflation. In

particular, credit growth (Figure 3) affects log inflation in a linear

way. However, after the GFC, as indicated by missing asterisks of

the EDFs, it cannot be told if the effect differs from zero. Estimated

across the entire time span, the transition from no civil liberties

to higher civil liberties is associated with an increasing impact on

log inflation (0.01∗ at most across levels). However, before the

crisis, this effect was positive (0.12 at most) and turned negative

afterwards (−0.2∗ at most). GDP pc exerts a significant negative

effect (−0.00001∗∗∗) across the entire period.

5.1.3 Monetary policy strategies
Models including exchange-rate arrangements (ERA) do better

than those with inflation targeting. Credit growth and M2 growth

do equally well in terms of empirical relevance, whereas GDP

growth outperforms GDP pc in four out of four cases. M3,3 is

the winning model. According to it, ERA are important next to

credit and GDP growth. The transition from a situation with no

legal tender, actually a fixed-exchange-rate regime, to managed

floating leads to a rise in log inflation (0.052∗). This effect is slightly

weaker (0.031) for a transition to a crawling-peg and weakest

for the transition to free-floating (0.002). No structural changes

could be estimated for ERA due to singularities. Credit growth

displays a positive linear relationship with log inflation (Figure 4).

This holds before the crisis but vanishes after that, although

estimated with high uncertainty. GDP growth also exhibits a linear

effect (1.059∗∗∗), which has slightly strengthened after the crisis

(1.439∗∗∗).

5.1.4 Public finance
Models with M2 growth do better than those with credit

growth in seven out of eight comparisons. Models with GDP pc

turn out to be better than the models that include GDP growth.

Debt denomination [Denom. (%)] plays a dominant role while the

maturity structure (Matur.) is less relevant. M14,4 is the winner.

Figure 5 summarizes the estimations which exhibit some non-

linearities. It includes M2 growth, GDP pc and debt denomination.

M2 growth exhibits a positive linear link with log inflation. In

contrast, GDP pc (USD) reveals a clear non-linear link (Figure 5D).

While the effect varies somehow below a threshold of 10,000 USD,

it strongly increases beyond this income level. This pattern arises

after the crisis (Figure 5F). Debt denomination exhibits a cubic

association with log inflation over the entire period (Figure 5G).

Beyond a share of public and publicly guaranteed external long-

term debt denominated in a foreign currency of 20%, a further

issuance reduces log inflation. The comparison between the pre-

crisis period summarized in Figure 5H with the post-crisis period
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FIGURE 2

The estimate ĥGDP pc (USD)[GDP pc (USD)] results from the winning model M6,1 specified under (2) and (12). The corresponding EDFs are reported
along the y-axis. The ticks on the x-axis indicate the ranges of strong (dense ticks) and weak (sparse ticks) data support of the GDP pc (USD) variable.

FIGURE 3

The estimate ĥCredit (%GDP) Gr.(%)[Credit (%GDP) Gr.(%)] results from the winning model M16,2 specified under (2) and (12). The corresponding EDFs are
reported along the y-axis. The ticks on the x-axis indicate the ranges of strong (dense ticks) and weak (sparse ticks) data support of the Credit (%
GDP) Gr. (%) variable.

FIGURE 4

The estimate ĥCredit (%GDP) Gr.(%)[Credit (%GDP) Gr.(%)] results from the winning model M3,3 specified under (2) and (12). The corresponding EDFs are
reported along the y-axis. The ticks on the x-axis indicate the ranges of strong (dense ticks) and weak (sparse ticks) data support of the Credit (%
GDP) Gr. (%) variable.

(Figure 5I), shows a clear break. Since then, increasing the share

of foreign-currency debt linearly boosts log inflation. Due to data

availability, this evidence is obtained for observations of low and

middle-income countries where an effect may be more likely than

in advanced countries. However, the results after the crisis contrast

with theoretical predictions from the time-inconsistency literature.

One possible explanation is that the more debt is issued in a form

that protects investors from unexpected inflation, the higher the

level of inflation required to reduce the inflation-sensitive part of

the debt.

5.1.5 Globalization and technology
Models with GDP growth are superior to models that exhibit

GDP pc in eight out of nine comparisons. Credit growth stands

out in comparison with M2 growth in eight out of eight cases.

The winning model is M20,5 which features information and

communication technology capital over the total capital stock (ICT

Capital) next to credit and GDP growth. When ICT Capital is

increased by one unit, log inflation rises by 4.088∗∗∗ c.p. on average

(∼4.1% increase in inflation). The effect weakens when separated

into the pre-crisis (2.537∗∗∗) and the post-crisis (2.748∗∗∗) era.

As illustrated in Figure 6 credit growth reveals a linear link

with log inflation over the whole sample period and in the pre-

crisis period but disappears subsequently. In contrast, while GDP

growth hardly affected log inflation before the crisis (0.123), it has

boosted inflation (1.581∗∗∗) thereafter, leading to an inflation rising

relationship over the whole period (0.083∗∗∗).

5.1.6 Demography
AMMs with credit growth fare better than those with M2

growth in three out of four cases. This also holds for the models

featuring the share of the population older than or equal to 65

[Age 65 (%)] compared to those exhibiting the share of population

older than or equal to 75. Models that include GDP pc are superior

to the models with GDP growth in three out of four cases. M4,6

exhibits the variable combination that best explains a relationship

between demography and log inflation. It includes Age 65 (%) next

to credit growth and GDP pc. Age 65 (%) exerts a significant (at
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FIGURE 5

The three variables displayed result from the winning model M14,4 specified under (2) and (12). The corresponding EDFs are reported along the y-axis.
The ticks on the x-axis indicate the ranges of strong (dense ticks) and weak (sparse ticks) data support of the variables. *** indicates significance at the
0.1% level, ** indicates significance at the 1% level, · indicates significance at the 10% level.

FIGURE 6

The estimate ĥCredit (%GDP) Gr.(%)[Credit (%GDP) Gr.(%)] results from the winning model M20,5 specified under (2) and (12). The corresponding EDFs are
reported along the y-axis. The ticks on the x-axis indicate the ranges of strong (dense ticks) and weak (sparse ticks) data support of the Credit (%
GDP) Gr. (%) variable.

all levels) negative effect on log inflation. If this share increases by

1% point, log inflation decreases on average by 0.039∗∗∗. This effect

is of similar magnitude before the crisis (−0.032∗∗∗) but weakens

afterwards (−0.022∗∗∗). From Figure 7 which displays the non-

linear estimates of GDP pc, we can infer a similar non-linearity

over the whole sample period as for GDP pc in the winning model

M6,1 illustrated in Figure 2. However, in contrast toM6,1, where the

non-linearity holds up in all three (sub)periods, the effect changes

from quadratic before the crisis to linear after the crisis. Note that

we observe higher values of GDP pc after the crisis than before.

Credit growth exhibits a positive linear association (0.023∗) across

the whole sample. Before the crisis the effect is similar to the overall

observation (0.025∗∗∗) but strengthens (0.085∗∗∗) after that.

5.1.7 Natural resources
In three out of four comparisons, AMMs that include credit

growth instead ofM2 growth yield a better result. Models with GDP

pc are superior to those that contain GDP growth in two out of

three cases. M12,7 results as the winning model. It is composed of

credit growth, GDP pc, and the interaction of energy prices with

energy rents. From Figure 8 we can infer non-linear relationships.

An acceleration in credit growth in the range between 0 and 150%

(Figure 8A) pushes log inflation non-linearly. The effect is positive

and linear before the crisis (Figure 8B) but becomes negative and

non-linear in the post-crisis period (Figure 8C). Turning to GDP

pc (Figures 8D–F), the relationship with log inflation is again

similar to Figure 2. It is cubic throughout. Figures 8G–I illustrate

the bivariate interaction effects between energy prices and energy

rents using contour plots. They show the joint relationship between

energy prices on the x-axis, energy rents on the y-axis, and log

inflation. The passage from a blue to a red area denotes mounting

inflationary pressure. Conversely, the passage from a red to a blue

area indicates a decrease in inflation. The black contour (iso-effect

value) lines indicate the strength of the effects which can only be

interpreted on a relative scale, as discussed at the beginning of this

section. Along the same iso-effect line the interaction effect does not

change. From Figure 8G, a non-linear interaction effect between

energy prices and rents can be inferred. When energy prices are

below 75 USD while rents are high (above 25), the strongest impact

on log inflation arises from an increase in energy prices. The

effect from rising energy prices beyond 75 USD is still positive but
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FIGURE 7

The estimate ĥGDP pc (USD)[GDP pc (USD)] results from the winning model M4,6 specified under (2) and (12). The corresponding EDFs are reported
along the y-axis. The ticks on the x-axis indicate the ranges of strong (dense ticks) and weak (sparse ticks) data support of the GDP pc (USD) variable.

weakens sharply. When energy rents hover below 25, an energy

price increase still boosts log inflation, but by a much smaller

magnitude than when rents are high. In the pre-crisis period, the

relationship remains non-linear (Figure 8H). The post-crisis still

exhibits a non-linear interaction as long as energy prices are below

50 USD, but disappears beyond this level. While an increase in

energy prices still leads to more log inflation, a change in energy

rents leaves log inflation unaffected for any value of energy prices

above 50 USD (c.p.).

5.1.8 Past inflation
AMMs that feature M2 growth strictly outperform AMMs

that exhibit credit growth. No clear picture emerges from the

comparison of AMMs that include GDP pc with models that

include GDP growth. The winning model isM2,8 and includes past

inflation together withM2 growth andGDP pc. There is evidence of

a positive linear effect (0.001∗∗∗) from past inflation estimated over

the whole sample period.While the relationship did not change, the

strength of the effect increased somewhat since the crisis (0.011∗∗∗)

compared with the preceding period (0.001∗∗∗). As seen in the left

panel of Figure 9, there is a quadratic relationship between M2

growth and log inflation in the whole sample, but with evidence

for a linear relationship in the region with the most data support.

The uneven distribution of the data should limit the interpretation

of the effects in areas without any data support. An acceleration of

M2 growth below a level of 100% raises inflation. Beyond 100%,

the impact becomes highly uncertain. In contrast, before the crisis

the center panel suggests that M2 Gr.(%) impacted log inflation

linearly. After the crisis, the effect strengthened slightly. In contrast,

GDP pc exhibits a positive and linear effect over the whole period

(0.00002∗∗∗), before (0.00002∗∗∗) and after the crisis (0.00002∗∗∗).

We do not explicitly examine how people form their inflation

expectations. However, the importance of past inflation suggests

the existence of (at least a share of) “adaptive expectations users”

in practice.

5.2 Second stage selection

In Sfir , discussed in Section 5.1, we derived the winning

model for each economic theory. In this subsection, we discuss

the derivation of the overall winning model, M∗∗. This required

a second stage selection because the winning model of the first

stage for four of the theories examined was obtained from a

lower number of countries and a reduced period. This applies to

theories associated with institutions, monetary policy strategies,

public finance, and globalization and technology (M2, M3,M4

and M5). Their Likelihood and thus their cAICs cannot be

directly compared with the AMMs from the other theories—

M1, M6, M7, M8—and the AMM selected by the boosting

algorithm, MB. However, since some AMMs comprised by M2,

M3, M4 and M5 contain Mj,l associated with predictor sets

Aj,l that are also available for the full sample, these Mj,l can be

refitted on the full sample, in case they were selected during

Sfir . This is the case for M∗
2 . As a result, M∗

2 has been

refitted on the full sample and was added to the comparison

of the AMMs that were already estimated during the first

stage comparison (i.e., M6,1,M20,5,M4,6 and M12,7). We next

present MB and compare its cAIC against the cAIC of the

first-stage winners.

5.2.1 AMM selected by the boosting algorithm
The boosting algorithm selected the set of predictors AB

which can be inferred from the last subsection of Table A2

exhibited in the Appendix. This subsection also includes separating

all selected predictors into disjoint subsets, informing which

predictors were modeled (non-)linearly and/or through a bivariate

interaction. For the boosting algorithm we added more predictors

to those exhibited in the AMMs presented in Section 5.1. These

additional variables are domestic credit level by the financial

sector in percent of GDP [Credit Fin. (% GDP)] and its growth

rate [Credit Fin. (% GDP) Gr. (%)]. The remaining additional

variables are M2 (% GDP), Credit (% GDP), Debt (% GDP),

En. Price Gr. (%), En. Rents Gr. (%), GDP (USD) and GDP pc

Gr. (%).

Figures 10–12 present the non-linear effect estimates included

in MB. Past inflation (Figures 10A–C) suggests such a pattern

across the whole sample but with high uncertainty when assessed

over the whole sample period. However, in the range where

most observations lie (< 250%), the relationship is linear with a

positive slope. The same observation holds for the pre- and post-

crisis period. The bivariate interaction of energy prices and rents

(Figure 10D) confirms the results from the estimation of M12;7

illustrated in Figure 8, at least over the entire sample. In the pre-

crisis period the interplay between energy prices and rents weakens

(Figure 10E). An increase in energy prices beyond 75 USD would

lower log inflation, irrespective of the value of energy rents. Below

energy prices of 75 USD a rise in energy prices would increase
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FIGURE 8

The three variables displayed result from the winning model M12,7 specified under (2) and (12). The corresponding EDFs are reported along the y-axis.
The ticks on the x-axis indicate the ranges of strong (dense ticks) and weak (sparse ticks) data support of the variables.

FIGURE 9

The estimate ĥM2 Gr. (%)[M2 Gr. (%)] results from the winning model M2,8 specified under (2) and (12). The corresponding EDFs are reported along the
y-axis. The ticks on the x-axis indicate the ranges of strong (dense ticks) and weak (sparse ticks) data support of the M2 Gr. (%) variable. *** indicates
significance at the 0.1% level, ** indicates significance at the 1% level.

log inflation and still for any level of energy rents. On the other

hand, if energy rents rise, there is hardly any effect on log inflation,

regardless of the level of energy prices. Finally, in the post-crisis

era (Figure 10F), the impact of the interaction of energy prices

and rents vanishes completely. When interpreting these results it

has to be kept in mind that MB estimates the univariate effects

of energy prices and rents in contrast to M12,7 which estimates

their interaction.

Figures 10G–I display the results of energy price growth.

Over the whole sample, the relationship is highly non-linear

(Figure 10G). For a growth rate of energy prices below 20% a rise in

the growth rate increases log inflation. Beyond a growth rate of 20%

a further energy price rise has an inflation abating effect, followed

again by an acceleration above 50%. The evidence for the pre-crisis

period can be seen in Figure 10H and in the post-crisis period in

Figure 10I. Note that the variation for the energy price variable (and

its growth) results exclusively from the time variation and not from

the cross-country variation, as we have identical energy prices for

each country in the estimation. The resulting uneven distribution

of the data weakens the reliability of the effects in areas without any

data support.

Figure 11 summarizes the results of financial openness, energy

prices and credit. As long as values of financial openness hover

below 0.6, an increase in openness lowers log inflation but increases

it beyond this threshold (Figure 11A). This pattern also holds

before the crisis (Figure 11B) but turns linear (Figure 11C) after the

crisis. Energy prices show again a strong non-linear relationship

(Figure 11D). Below 80 USD, a rise in energy prices is conducive

to inflation, although subject to high uncertainty. Afterward, the

effect turns negative. The evidence preceding the crisis (Figure 11E)

suggests that energy prices were associated with lower inflation,

especially beyond 80 USD. However, this changed dramatically

after the crisis (Figure 11F) where energy price boosts below

80 USD are linked with continuously higher log inflation and

stagnation afterward. For credit the relationship is also non-linear

but positive and strong for values below 50 over the whole sample

(Figure 11G). When separating into the pre- (Figure 11H) and the

post-crisis period (Figure 11I), the effect does not differ from zero.

The last non-linear effects comprised by MB are shown in

Figure 12 and relate to the output gap whose pattern suggests a

cubic relationship with log inflation. Log inflation is boosted by

a widening gap between −5 and 20% and followed by a negative
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FIGURE 10

The first out of three plots that displays the estimated non-linear e�ects from MB.

FIGURE 11

The second out of three plots that displays the estimated non-linear e�ects from MB.

effect (although subject to increasing uncertainty). This pattern

holds over the whole sample and in the period preceding the crisis.

However, after the crisis, the relationship has changed, becoming

negative for output gap values below−5% and positive after that.

Finally, all linearly estimated effects of MB are insignificant at

the 10% level. One exception is M2 growth (0.0005∗) whose impact

weakens before the crisis (0.0004) but turns stronger (0.003∗∗∗)

after the crisis. The second exception is trade openness which

exhibits a negative impact on log inflation (−0.001∗) across the

whole sample but turns insignificant when separated into a pre- and

post-crisis effect.

5.2.2 Overall winner
As seen in Tables A1, A2 the comparison among theory-based

winning models yieldsM12,7 as the best model.

The estimation equation forM12,7 is given by

yi,t = β0 + ηi,t + Zi,tbi + ǫi,t , (13)

where

ηi,t = hCredit(Credit)+hGDPpc(GDPpc)+f(Credit,GDPpc)(Credit,GDPpc)

(14)

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2023.1070857
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Baumann et al. 10.3389/fams.2023.1070857

FIGURE 12

The third out of three plots that displays the estimated non-linear e�ects from MB.

TABLE 1 Summary of the estimates of the spline function of the

theory-based winning modelM12,7.

EDF F-value Pr(>F)

s(Credit (% GDP) Gr. (%)) 2.787 8.408 8.11e-05

s(GDP pc) 3.307 15.386 <2e-16

t2(En. Prices (USD), En. Rents (% GDP)) 11.446 3.059 0.001

R2 (adj.) 0.717

and bi is a vector of fixed country effects. Table 1 summarizes

the results of this model. Its predictor ηi,t consists of three non-

linear terms only which motivates conducting three F-tests, one

for each non-linear term. Each test is significant at all common

significance levels.

However, the lowest cAIC overall is exhibited by MB. Since

both AMMs feature variables associated with natural resources,

we conclude that these variables play a key role in the inflation

(disinflation) process. In particular, the interaction of prices and

rents of natural resources exhibited in MB and M12,7 seems to

have particularly high explanatory power. The empirical relevance

is higher when energy rents and prices interact than when they

enter as two separate univariate terms. Moreover, their interacting

effects are highly non-linear. The boosting algorithm supports this

interaction and shows the importance of energy prices and their

growth rate as additional univariate drivers of inflation. Finally, we

computed the cAIC for models that do not contain any economic

variable at all (that is, they exhibit no effects other than for time

and country-level) and found a substantially higher cAIC for these

models compared to every other model included in the first and

second stage selection. Consequently, it can be inferred that model

compilation based on economic theory significantly improves the

goodness-of-fit.

Summarizing the evidence of the pairwise comparisons on a

meta-level yields that credit growth outperforms M2 growth and

GDP pc outperforms GDP growth.

6 Conclusions

We contribute to the literature on what determines inflation

and how by estimating a large quantity of macro, institutional and

political models in a sample of 122 countries at different stages of

development from 1997 to 2015.

From among the eight theories, the winning model includes

energy prices whose importance has already been highlighted

in previous work. However, we find that the most compelling

determinant of inflation are not energy prices alone but their

interplay with energy rents which exhibits a strong non-linear

association with inflation. The atheoretical boosting algorithm

confirms the importance of the interplay of energy prices with

energy rents. It outperforms all theoretically motivated models in

terms of explanatory power and suggests, in line with previous

analyses, a particular role for energy prices. Energy rents by

themselves do not seem to be as important.

The results have a bearing on monetary policy. The empirical

importance of energy prices (and rents) has implications for

when and how central banks need to respond to oil price

shocks. Another challenge to monetary policy-making arises from

the link between past and current inflation in a low-inflation

environment. One way to lift inflation has been the stimulus of

credit creation. However, there is little evidence that this policy

was successful. It cannot be excluded that it even backfired. A

promising tool to boost inflation is higher GDP per capita level.

This suggests that economic policies geared toward growth should

be more promising than monetary policies aimed at enhancing

credit growth. Another result relates to the output gap. While in

monetary theory and policy it is considered a key variable in the

determination of inflation, it plays a minor role compared to GDP

per capita.

We used AMMs to represent inflation rates. AMMs proved

to be an effective technique for this purpose for a variety of

reasons. First, they allow for a smooth integration of model

complexities, making it easier to model non-linearities, which

represents one focal objective of this paper. Second, AMMs allow

for a straightforward “ceteris paribus” interpretation, which is

beneficial to the analysis of the relationship between predictors

and inflation. Third, AMMs enable researchers to make model

comparisons using information criteria, simplifying the model

selection process.
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