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This article aims to describe the simulation studies of the hepatitis B virus

non-linear system using supervised neural networks procedures supported by

Levenberg-Marquardt back propagation methodology. The proposed strategy

has five distinct quantities: susceptible X(t), symptomatic infections Y(t), chronic

infections W(t), recovered population R(t), and a population that has received

vaccinations Z(t). The reference data set for all three distinct cases has been

obtained utilizing the ND-Solver and Adams method in Mathematica software.

The outcomes have been validated with performance plots for all cases. To check

the accuracy and e�ectiveness of proposed methodology mean square error has

are presented. State transition, and regression plots are illustrated to elaborated

the testing, training, and validation methodology. Additionally, absolute errors for

di�erent components of hepatitis B virus model are demonstrated to depict the

error occurring during distinct cases. Whereas the data assigned to training is 81%,

and 9% for each testing and validation. The mean square error for all three cases

is 10−12 this show the accuracy and correctness of proposed methodology.
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non-linear mathematical hepatitis B virus model, integer order, Levenberg-Marquardt
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1. Introduction

Hepatitis is a liver disease caused by a different type of virus. Hepatitis is an inflammatory

condition of the liver. It is commonly the result of a viral infection, but there are some

other possible causes of hepatitis. These are namely; autoimmune hepatitis and hepatitis

that occurs as a secondary result of medication, drugs, toxins, and alcohol consumption.

There are five types of hepatitis, according to WHO 354 million people worldwide are living

with this infectious disease. These types include A, B, C, D, and E type hepatitis. It has

been found through intensive studies that hepatitis A is more of a short-term disease and

is caused by a virus named HVA. Additionally, Hepatitis B and C are caused by HVB and

HCV viruses, respectively. It has been discovered that hepatitis B is often an ongoing and

chronic condition. Hepatitis C is a blood-borne viral infection and it is also assumed to be a

long-term condition. Whereas hepatitis D is a very rare form of hepatitis and it only occurs

when a patient already has contracted hepatitis B. It is worth mentioning here that a total of
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5% of hepatitis B patients always have hepatitis D. Hepatitis E

occurs due to bad sanitation and it could be really dangerous for

pregnant women.

Littlejhon et al. [1] discussed the origins and evolution of

hepatitis B and hepatitis D. Simmonds et al. [2] investigated human

hepatitis viruses in length. Wang et al. [3] examined the current

status of human genetic alleles which are associated with hepatitis

B. Chu et al. [4] explored the dispersion of hepatitis B in Taiwan and

its distribution through DNA in serum. McMahon et al. [5] studied

the genotype and sub-genotype of hepatitis B on natural hepatitis

B virus history. Krugman et al. [6] explained the prevention

of hepatitis B occurrence in humans. Ofori-Asenso and Adom-

Agyeman [7] provided a critical review and analysis of hepatitis B

through selective studies from 1995-2015 in Ghana. Schaefer et al.

[8] elaborated on the significance of the genotype for the hepatitis

B virus. Shi et al. [9] introduced a correlation between the hepatitis

B virus and its genotype. Beutels et al. [10] gave a detailed review of

the economic evaluation of hepatitis B immunization.

Zhao et al. [11] introduced a mathematical model of hepatitis

B virus transmission and its application for vaccination strategy

in China. Khan et al. [12] discussed the mathematical model

of the hepatitis B model with Caputo fractional derivative.

Recently, Din et al. [13] demonstrated the application of the ABC

derivative to analyze the mathematical model of the hepatitis

B virus. Zhang and Xu [14] described a mathematical model

of the hepatitis B virus with infection age structure. Khan

et al. [15] conducted a fractional analysis of a mathematical

model of hepatitis B virus transmission. Zhong et al. [16]

demonstrated an asymptotic class of ABC derivative for the

hepatitis B virus model. Shaikh et al. [17] conducted a numerical

study on the epidemic model of the hepatitis B virus model.

Otoo et al. [18] explained the dynamics of the hepatitis B

mathematical model with an optimal control strategy. Liu et al.

[19] examined the hepatitis B virus model with non-singular

and non-local kernels for the fractional mathematical model.

Manna and Hattaf [20] introduced a numerical study of a

generalized delay-distributed model of the hepatitis B virus

in presence of two kinds of transmission mode and adaptive

immunity. Shen et al. [21] conducted mathematical analysis of

HBV and HCV co-infection model using non-singular fractional

order derivative.

In recent years mathematicians have been exploring new

methodologies to examine different epidemics. The most

recent interest that had created chaos all over the world

has been extensively examined by researchers from all

fields of science. Volinsky et al. [22] discussed the stability

and Cauchy matrix of a mathematical model of hepatitis

B with control on the human immune system near the

neighborhood of equilibrium-free points. Din et al. [23]

explained the stochastic dynamics of the hepatitis B virus.

Ahmad et al. [24] addressed semi-analytical solutions of hepatitis

B with fractional order Caputo-Fabrizio type derivatives.

Chataa et al. [25] examined a mathematical model for

the transmission of the hepatitis B virus in the presence of

imperfect vaccination.

Alrabaiah et al. [26] discussed COVID-19 spread comparatively

using fractional order modified SEIR model. Kumar et al. [27]

Genocchi polynomials with a wavelet based numerical scheme

to investigate measles disease considering fractional order SEIR

model. Mohammadi et al. [28] presented theoretical analysis of

hearing loss due to mumps virus and optimal control using

Caputo-Fabrizio fractional approach. Kumar at al. [29] studied

fractional SIR model of infectious disease using Bernstein wavelets

with effective numerical method. Ghanbari et al. [30] used non-

singular fractional order to investigate the behavior of immune

and tumor cells in immunogenetic tumor model. Rehman et al.

[31] investigated cancer tumor disease using fractional order

mathematical model. Kumar et al. [32] discussed fractional tumor-

immune model to investigate tumor and effector cells for the

treatment of cancer. Hebanom et al. [33] conducted a numerical

simulation on the impact of vaccination and treatment using

fractional order mathematical model of hepatitis B virus.

In this work, the hepatitis B virus model with artificial

neural networks is examined. In addition, different components

of the model are investigated to check the high accuracy and

performance of proposed methodology. The goal of this study

is to introduce numerical simulations of the hepatitis B virus

non-linear system (HBVNS) of integer order (IO) together

with a numerical rehabilitation of stochastic neural network

(SNN) methodologies supported by Levenberg-Marquardt back

propagation (LBMQBP), also defined as ANNs-LBMQBP. The

ANNs-LBMQBP are suggested as a numerical method for solving

either IO-XYWRZ system. The local and global search efficiencies

based on the complex, singular, and stiff models have been used

to exploit stochastic solvers [35–39]. Following non-linear singular

frameworks [40] and fractional-order models [41–43] are a couple

of additional stochastic schemes. The ANNs-LBMQBP has been

used in this study to propose solutions for the integer order HBVNS

based on the XYWRZ. It has been discovered that the time IO

derivatives have been used in a variety of applications under various

conditions. The framework built on memory is represented by

the IO derivative [44–48]. Following novel features illustrate the

novelty of present work with help of the ANNs-LBMQBP are

presented as:

I. An initial design of its HBVNS is introduced based

on the non-linear differential system form of the

XYWRZ effects.

II. Stochastic solvers have never been used to present solutions

to the HBVNS system using the XYWRZ non-linear model.

III. The non-linear mathematical form of the XYWRZ has been

used to present the numerical stochastic measures based on

the ANNs-LBMQBP for the IO-HBVNS.

IV. To verify the superiority of stochastic computing solvers,

comparisons of the results obtained using ANNs-LBMQBP

with the reference (Adams-Bashforth-Moulton) solutions

have been presented.

V. The non-linear mathematical form of the XYWRZ has been

used to achieve the absolute error (AE) in good measures for

the IO-HBVNS.

VI. The developed ANNs-LBMQBP for solving the IO-

HBVNS system is validated for dependability and

consistency utilizing the regression, STs, MSE, EHs,

and similarity performances.
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TABLE 1 Parameters involved in the above XYWRZ-model 1.

Parameters Description

δ Vaccinated rate of hepatitis B virus

5 Rate of newborns who lack an effective immunization

κ Acute population transfer to chronic cases

η Recovery rate of chronically infected people

γ Recovery rate of infected people

β Contact rate between infected and uninfected peoples

ρ Virus death rate

µ Natural death rate

3 Birth rate

λ Vaccine induces immunity

2. Mathematical formulation of HBVNS
model

The dynamic behavior of the HBV disease has been extensively

examined over the years by numerous scientists. Mathematical

models for HBV infectious diseases are a hot research topic right

now. Din and Li [34] developed a mathematical model for HVB in

which the entire population, represented byN(t), is divided into five

groups at time t: acutely infected Y(t), susceptible S(t), recovered

with this virus R(t), chronically infectedW(t), and individuals who

have received vaccinations with Z(t).

The non-linear mathematical form of the hepatitis B virus

model along with initial condition [34]:



























dX(t)
dt

= ∧5−
βX(t)Y(t)

N − δX(t)− µX(t)+ λZ(t) X0 = k1,
dY(t)
dt

=
βX(t)Y(t)

N − γY(t)− µY(t)− κY(t) Y0 = k2,
dW(t)
dt

= κY(t)− µW(t)− ρW(t)− ηW(t) W0 = k3,
dR(t)
dt

= γY(t)+ ηW(t)− µR(t) R0 = k4,
dZ(t)
dt

= ∧− ∧5+ δX(t)− λZ(t)− µZ(t) Z0 = k5.

(1)

The parameters used in this model are described in the Table 1

below. Assume that the vaccination is not 100% effective in other

word if τ1 denotes the vaccination rate, then 0 ≤ τ1 ≤ 1, if

τ1 = 0 this means no vaccination and if τ1 = 1 indicate that whole

population is vaccinated. As the model illustrated in Equation (1)

is a deterministic model, it is quite easy to demonstrate that there

always exist a disease free fixed pointH0. This point can be obtained

form the model (1) by equating the model RHS equal to zero.

The following theoretical results are obtained using the following

studies [13, 23].

H0(X0,Y0,W0,R0,Z0) = (
δ3

[

3+ µ+ µ(1+5)
]

[

δ3+ (3+ µ)
] ,

0, 0, 0,
δ3−3+35
[

δ3+ (3+ µ)
] ). (2)

Using the next generation matric technique the threshold

parameter ϒD
0 is for the model (1) is given as

ϒD
0 =

βλk
[

5(λ+ µ)+ µ+ (1−5)
]

[

{(δ + µ)(λ+ µ)− δλ}µ0(µ+ γ + k)(µ+ ρ + η)
] . (3)

Where, (δ + µ)(λ+ µ) > δλ.

The disease epidemic situation is presented by E∗ and given as

E∗ = (X∗,Y∗,W∗,R∗,Z∗) for ϒD
0 > 1, where

q1 = (δ + µ), q2 = (µ+ γ + k), q3 = (µ+ ρ + η) , q4 =

(λ+ µ). (4)

Then X∗,Y∗,W∗,R∗, and Z∗ are equal to

X
∗

=
q2q3 − q2q335

β(k−35)
,

Y
∗

=
µ35(µ+ δ + λ)X

∗
(ϒD

0 − 1)

((β +3k−35)X∗ +3k)
,

W
∗

=
µβkµ(µ+ δ + λ)X

∗
q3X

2
∗ (ϒD

0 − 1)

q4(β(k−35)X
∗
+3

,

R
∗

=
1

µ
(γY

∗

+ ηW
∗

),

Z
∗

=
1

q4
(3(1−5)+ vX

∗

). (5)

Where the parameters detail used in the above XYWRZ-model is

given in Table 1 below.

Here, in this study, we incorporate the white noise

phenomenon to convert model (1) into a stochastic model.

Here, small perturbations of white noise phenomenon are taken

into account for stochastic model of HBV model (1) and can be

expressed as

dX(t) =

[

35−
βX(t)Y(t)

N
− δX(t)− µX(t)+ λZ(t)

]

dt + δ1X(t)dB1(t),

dY(t) =

[

βX(t)Y(t)

N
− γY(t)− µY(t)− kY(t)

]

dt + δ2Y(t)dB2(t),

dW(t) =
[

kY(t)− µW(t)− ρW(t)− ηW(t)
]

dt + δ3V(t)dB3(t),

dR(t) =
[

γY(t)+ ηW(t)− µW(t)
]

dt + δ4W(t)dB4(t),

dZ(t) =
[

3−35+ δX(t)− λZ(t)− µZ(t)
]

dt + δ5Z(t)dB5(t). (6)

Here, Bi(t) = [1, 2, 3, 4, 5] denotes the independent

Brownian motion and δi(t) = [1, 2, 3, 4, 5] represents the

intensities of Gaussian white noises. Furthermore, terms

δ1X(t)dB1(t), δ2Y(t)dB2(t), δ3V(t)dB3(t), δ4W(t)dB4(t), and

δ5Z(t)dB5(t). Shows individuals interactions with environment

biologically. Following subsidiary equations are associated with

above model (6) are


























X(t) = ψ1(t), Y(t) = ψ2(t),W(t) = ψ3(t),R(t) =

ψ4(t),Z(t) = ψ5(t),

ψi(t) ≥ 0, t ∈ [−τ , 0] ,

i = 1, 2, 3, 4, 5,

ψi(t) = [1, 2, 3, 4, 5] ∈ Q,

(7)

Where the symbol stands for Q the Banach space. Which

is Q([−τ , 0] : R5+) containing the continuous function from

[−τ , 0] : R5+.
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FIGURE 1

Designed ANN-LBVMBP method for HBVNS.

In this system (1), parameters are denoted by small

Greek and English characters. Each model parameter

has a particular value, and it was calculated using

actual information.

2.1. Existence and uniqueness for
integer-order HBV model

In this section, we determine the existence and

uniqueness of the solution for considered system (1). For

this purpose we will follow the methodology given by

Din et al. [13, 23]. In below theorem 1 authors intend

to present uniqueness and existence of positive solution of

presented model.

Theorem 1 There exist a unique solution of

[X(t), Y(t), W(t), R(t) and Z(t)] (2) for each t ≥ 0, and the

suitable initial data is (X0, Y0,W0, R0 and Z0) ǫ R
5
+. The solution

of (X, Y, W, R and Z) ǫ R5+ for all t ≥ 0.

Proof For the suitable initial data of components of HBVmodel

X (t) , Y (t) , W (t) , R (t) , and Z(t); the system coefficients are

Lipschitz locally as well as continuous. Thus, this suggest that there

exist a unique solution for stochastic system in local sense in the

interval t ǫ [0, τe].

Here, the τe notation denotes explosion time and it is

necessary to prove that this solution is naturally global. For

this purpose we need to prove that τe = ∞. In addition,

let us consider a large enough positive number l0 such

that the interval [ 1
l0
, l0] contains all the population at initial

stage for all components of HBV model. Furthermore, we

assume explosion time for each positive integer l ≥ l0 of

the form

τl = inf
{

t ǫ [0, τe] : (X(t), Y(t), W(t), R(t), Z(t))

≤
1

l
or max

{

(X(t), Y(t), W(t), R(t), Z(t)) ≥ l
}

}

.

Remaining proof is almost as given by Din

et al. [34].

TABLE 2 Values of the parameter utilized for computations.

Parameters Description

Training data 81%

Validation data 9%

Testing data 9%

Hidden neurons 15

Hidden/output/input Single

Datasets generation Adam

Maximum epochs 500

Minimum gradient 9.9354× 10−08

Maximummu performance 10−14

Decreasing mu performance 0.2

3. Proposed procedures:
ANN-LBVMBP method

To solve the IO-HBVNS system using the non-linear

mathematical form of the XYWRZ model, the ANN-LBVMBP

scheme is presented in two steps. Using the non-linear

mathematical form of the XYWRZ model, the fundamental

operations of the ANN-LBVMBP operator performances are

introduced along with the designed structure of the IO-HBVNS

system. The multi-layer optimization results using the stochastic

ANN-LBVMBP are displayed in Figure 1. The ANN-LBVMBP

procedures are put together in MATLAB using the “nf tool”

process, with data selected for training, testing, and authorization

totaling 81, 9, and 9% respectively. Table 2 give specific values of

parameters to perform the computations. The reference data set

to perform the proposed ANN-LBVMBP is generated with help

of Mathematica software employing the ND-solver and Adams

Bashforth method. The numerical representations using the results

of the HBVNS model are discussed using the ANN-LBVMBP

method with 15 neurons and data selection as 81, 09, and 09%,

respectively, for training, certification, and testing. The structure of

the input, hidden, and output neurons are depicted in Figure 1.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1072447
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Haider et al. 10.3389/fams.2023.1072447

FIGURE 2

MSE and STs performances for the HBV system. (A) MSE: Case 1. (B) EHs: Case 1.

4. Results and discussions

This section illustrates the numerical outcomes for three

WXWRZ model using the ANN-LBVMBP method. To solve the

model using the proposed technique three different cases and

different initial conditions have been used. These cases gives the

detail illustration of model 1 to perform the proposed technique

and analyze the achieved outcomes.

Case 1: Consider the XYWRZ model by taking the ∧ = 0.6,

µ = 0.05, ρ = 0.02, β = 0.005, γ = 0.6, η = 0.01, κ = 0.01,

λ = 0.07, δ = 0.02, 5 = 0.5, X0 = 0.1, Y0 = 0.2, W0 = 0.3,

R = 0.4, and Z0 = 0.5.



























dX(t)
dt

= (0.6)(0.5)− 0.005X(t)Y(t)
N − 0.02X(t)− 0.05X(t)+ 0.07Z(t) X0 = 0.1,

dY(t)
dt

=
0.005X(t)Y(t)

N − 0.6Y(t)− 0.05Y(t)− 0.01Y(t) Y0 = 0.2,
dW(t)
dt

= 0.01Y(t)− 0.05W(t)− 0.02W(t)− 0.01W(t) W0 = 0.3,
dR(t)
dt

= 0.6Y(t)+ 0.01W(t)− 0.05R(t) R0 = 0.4,
dZ(t)
dt

= 0.6− (0.6)(0.5)+ 0.02X(t)− 0.07Z(t)− 0.05Z(t) Z0 = 0.5.

4.1. Analysis of results: Case 1

Figures 2A, B, illustrate the mean square error and state

transition results of performance of integer-order Hepatitis B virus

model, respectively. Convergence analysis in terms of MSE for

training, testing and validation are presented in Figure 2A for case

1. It is observed that convergence of Hepatitis B virus is found at

10−12 for case 1. Figure 2B show the gradient and step size Mu for

case 1. The gradient achieved for case 1 is observed at 9.6458×10−08

for case 1 and step size is at 10−13.

Figures 3A, B, illustrate the performance of proposed ANN-

LBVMBP technique for the Hepatitis B virus model for case 1

and error histogram, respectively. Figure 3A, demonstrate best

performance for case 1 and it is found to be at 2.95×10−13. The best

performance of proposed scheme is achieved at 38 the epochs. It is

worth noting here that, through error histograms that there exist

zero error between −1.5 × 10−07 to 1.48 × 10−07(see Figure 3B).

It is evident that proposed ANN-LBVMBP technique validate the

outcome achieved.

Furthermore, the regression plot generated for case 1 using the

proposed ANN-LBVMBP technique is presented in Figure 4 for

hepatitis B virus model. It is evident that value of correlations of

R are found to be unity which validate accuracy of values used for

training, testing and validation processes. Moreover, the regression

plot of case 1 illustrate the perfect working scenario of case 1

hepatitis B virus model using integer-order mathematical model.

Case 2: Consider another case of the XYWRZ model by taking

the ∧ = 0.6, µ = 0.05, ρ = 0.02, β = 0.005, γ = 0.6, η = 0.01,

κ = 0.01, λ = 0.07, δ = 0.02, 5 = 0.5, X0 = 0.1, Y0 = 0.3,

W0 = 0.3, R0 = 0.4 and Z0 = 0.5.

4.2. Analysis of results: Case 2

Figures 5A, B, illustrate the mean square error and state

transition results of performance of integer-order Hepatitis B virus

model, respectively. Convergence analysis or curve analysis in

terms of MSE for training, testing and validation are presented in

Figure 5A for case 2. It is observed that convergence of Hepatitis B

virus is found at 10−13 for case 2. Figure 5B show the gradient and

step size Mu for case 2. The gradient obtained for case 2 is observed

at 9.9354× 10−08 and step size is at 10− 14.

Figures 6A, B, depict the performance of proposed ANN-

LBVMBP scheme for the Hepatitis B virus model for case 2

and error histogram, respectively. Figure 6A, demonstrate best

performance for case 2 and it is found to be at 2.12 × 10−13.

It is worth noting here that, with error histograms that there

exist zero errors at the −3.8 × 10−08. It is evident that proposed
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FIGURE 3

Results and EHs performances for the HBV system. (A) Results: Case 1. (B) EHs: Case 1.

FIGURE 4

Regression performances for the HBVNS model: Case 1.
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FIGURE 5

MSE and STs performances for the HBV system. (A) MSE: Case 2. (B) EHs: Case 2.

FIGURE 6

Results and EHs performances for the HBV system. (A) Results: Case 2. (B) EHs: Case 2.

ANN-LBVMBP technique validate the outcome achieved. The best

performance of proposed scheme is achieved at 44 the epochs.

Moreover, the regression plot generated for case 2 using the

proposed ANN-LBVMBP technique is presented in Figure 7 for

hepatitis B virus model. It is evident from that value of correlations

of R are found to be unity which validate accuracy of values used for

training, testing and validation processes. Moreover, the regression

plot of case 2 illustrate the perfect working scenario of case 2

hepatitis B virus model using integer-order mathematical model.

Case 3: Consider the third and last case of the XYWRZ model

by taking the ∧ = 0.6, µ = 0.05, ρ = 0.02, β = 0.005, γ = 0.6,

η = 0.01, κ = 0.01, λ = 0.07, δ = 0.02, 5 = 0.5, X0 = 0.1,

Y0 = 0.4,W0 = 0.3, R0 = 0.4 and Z0 = 0.5.



























dX(t)
dt

= (0.6)(0.5)− 0.005X(t)Y(t)
N − 0.02X(t)− 0.05X(t)+ 0.07Z(t) X0 = 0.1,

dY(t)
dt

=
0.005X(t)Y(t)

N − 0.6Y(t)− 0.05Y(t)− 0.01Y(t) Y0 = 0.4,
dW(t)
dt

= 0.01Y(t)− 0.05W(t)− 0.02W(t)− 0.01W(t) W0 = 0.3,
dR(t)
dt

= 0.6Y(t)+ 0.01W(t)− 0.05R(t) R0 = 0.4,
dZ(t)
dt

= 0.6− (0.6)(0.5)+ 0.02X(t)− 0.07Z(t)− 0.05Z(t) Z0 = 0.5.

4.3. Analysis of results: Case 3

Figures 8A, B, illustrate the mean square error and state

transition results of performance of integer-order Hepatitis B virus

model, respectively. Convergence analysis or curve analysis in

terms of MSE for training, testing and validation are presented in
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FIGURE 7

Regression performances for the HBVNS model: Case 2.

FIGURE 8

MSE and STs performances for the HBV system. (A) MSE: Case 3. (B) EHs: Case 3.
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FIGURE 9

Results and EHs performances for the HBV system. (A) Results: Case 3. (B) EHs: Case 3.

FIGURE 10

Regression performances for the HBVNS model: Case 3.

Figure 8A for case 3. It is observed that convergence of Hepatitis B

virus is found at 10−13 for case 3. Figure 8B show the gradient and

step size Mu for case 3. The gradient obtained for case 3 is observed

at 9.9569× 10−08and step size is at 10− 14.

Figures 9A, B, depict the performance of proposed ANN-

LBVMBP scheme for the Hepatitis B virus model for case 3

and error histogram, respectively. Figure 9A, demonstrate best

performance for case 3 and it is found to be at 1.82 × 10−13.
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FIGURE 11

AE for the performances of the integer order system. (A) AE: X(t). (B) AE: Y(t). (C) AE: W(t). (D) AE: R(t). (E) AE: Z(t).

It is worth noting here that, with error histograms that there

exist zero errors at the −1.8 × 10−08. It is evident that proposed

ANN-LBVMBP technique validate the outcome achieved.

The best performance of proposed scheme is achieved at 34

the epochs.

Furthermore, the regression plot generated for case 3 using the

proposed ANN-LBVMBP technique is presented in Figure 10 for

hepatitis B virus model. It is worth noting here that, correlations

of R are found to be unity which validate accuracy of values

used for training, testing and validation processes. Moreover,

the regression plot of case 3 illustrate the perfect working

scenario of case 3 hepatitis B virus model using integer-order

mathematical model.

4.4. Performance comparison of
components of HBV model

Figures 11A–E epitomize the comparative inquiries using

the consequence comparisons and AE measures to resolve

the ANN-LBVMBP procedures to solve the hepatitis B

virus. Figures 11A–E validates the values of the AE for each

component susceptible X(t), symptomatic infections Y(t), chronic

infections W(t), recovered population R(t), and a population

that has received vaccinations Z(t), respectively, using the

ANN-LBVMBP methodology.

Figure 11A, show the AE measures for the susceptible category

X(t) are performed as 10−04 to 10−05 for the mathematical
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TABLE 3 ANN-LBVMBP method for the HBVNS XYWRZ model.

Case MSE Performance Gradient Mu Epoch Time

(Training) (Verification) (Testing)

I 2.952× 10−13 7.986× 10−13 2.31× 10−13 2.95× 10−13 9.65× 10−08 1× 10−13 38 2

2 2. 115× 10−13 1.704× 10−13 2.12× 10−13 2.12× 10−13 9.94× 10−08 1× 10−14 44 2

3 1.819× 10−13 1.335× 10−13 1.08× 10−13 1.82× 10−13 9.96× 10−08 1× 10−14 34 2

FIGURE 12

Comparison of the performances for the integer order system. (A) AE: X(t). (B) AE: Y(t). (C) AE: W(t). (D) AE: R(t). (E) AE: Z(t).

model for all three cases. Figure 11B describe AE value for

symptomatic infections Y(t) is provided as 10−05 to 10−06 to

solve the mathematical model for three cases. Figure 11C illustrate

AE for chronic infections W(t) is measured as 10−04 to 10−06

for three distinct cases of formulated mathematical model of

hepatitis B virus model. Figure 11D depict AE measures for the
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recovered population R(t) are performed as 10−03 to 10−06 for

this model.

Figure 11E shows AE for population that has received

vaccinations Z(t) is provided as 10−03 to 10−06 to solve the

mathematical model. These AE depictions validate the exactness

of the ANN-LBVMBP procedures to solve the mathematical

system of hepatitis B virus model. Table 2 provides the model

convergence using the complexity, MSE, training, verification,

generations, and testing. Table 3 illustrate the best performance and

gradient obtained for proposed methodology of ANN-LBVMBP.

The computation time, epochs and step size for all three different

cases is also given the tabulated data set.

4.5. Absolute error of six components of
HBV therapy model

Figures 12A–E illustrate comparison performance for all three

cases with reference generated data set for five distinct quantities:

susceptible X(t), symptomatic infections Y(t), chronic infections

W(t), recovered population R(t), and a population that has received

vaccinations Z(t), respectively.

Figure 12A, show the susceptibles component of HBV model.

Comparison between of the data generated with Adams method

and outcomes of all three cases obtained with proposed ANN-

LBVMBP scheme are presented. The comparison confirm and

validate the proposed ANN-LBVMBP scheme. It is worth noting

here that for case1 produce high number of susceptibles for

hepatitis B virus when compared with case 2 and case 3.

Additionally, case 3 show the minimal safe guard for susceptibles

for hepatitis B virus.

Figure 12B, describe the comparison of generated reference

data and outcomes achieved with help of proposed ANN-LBVMBP

scheme. It is worth mentioning here that number of symptomatic

infections with hepatitis B virus rapidly decline for case 1. The

comparison plot also illustrate the case 1 produce more rapid

decrease in symptomatic infections with hepatitis B virus model

when compared with case 2 and case 3, respectively.

Figure 12C, depict comparison of chronic infections of hepatitis

B virus model for different cases. It is observed that when there

is when there is larger number of interaction occur high number

of chronic infections of hepatitis B are discovered. For instant,

minimal chronic infections of hepatitis B virus are observed for

case 3 and maximum number of chronic infections are obtained

for case 1.

Figure 12D, demonstrate the comparison of reference

data and outcome achieved with proposed scheme for the

recovered population for all three cases. It is observed that

when case 1 formulation produce more recovered population

response for hepatitis B virus. Whereas the case 2 and case 3

generate slow immune response combat hepatitis B virus model

effectively, consequently, these cases produce less recovered

population number.

Figure 12F, discuss the population that has received

vaccination. It is worth noting that using the proposed

methodology the and under the formulated cases for HBV

model 1, number of population that has received vaccination has

declined for case 1. Additionally, the performance of case 2 to

produce the high number of vaccinated population is moderate.

Furthermore, case 3 suggest the slow decline in population number

that has been vaccinated for HBV.

5. Conclusion

This study’s goal is to present simulation study of the non-

linear hepatitis B virus system using a numerical stochastic neural

network (SNN) scheme based on Levenberg-Marquardt back

propagation. The reference data sets are generated with help of

Mathematica software using ND-Solver and employing Adams

Bashforth method. Additionally, major outcomes of this study are

given as follow:

1. The achieved outcomes with help of proposed ANN-

LBVMBP procedures show the accuracy, effectiveness and

correctness of utilized scheme.

2. Performance plots validate the reference data and it is

concluded that case 1 is overall best performing case in terms

of MSE, EH, state transition of results and comparison plots.

3. Minimal step size 10−14 is achieved at 44 epochs and when

gradient is observed to be 9.94× 10− 08.

4. Error histograms shows that minimal zero error stage is found

for case 2 which is−3.7× 10− 08.

5. Best validation comparison performance achieved is

7.9863× 10−13 and it is obtained at 38 epochs.

In the future the ANN procedures will be tested for fractional

order epidemicmodels and fluidmechanics problems. One can also

investigate the infectious disease models to analyze the effectiveness

of ANN procedures.
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