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Mathematical analysis of the
impact of community ignorance
on the population dynamics of
dengue

Dipo Aldila*, Chita Aulia Puspadani and Rahmi Rusin

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia,

Depok, Indonesia

This study proposes a dengue spread model that considers the nonlinear

transmission rate to address the level of human ignorance of dengue in their

environment. The SIR − UV model has been proposed, where SIR denotes the

classification of the human population and UV denotes the classification of the

mosquito population. Assuming that the total human population is constant,

and the mosquito population is already in its steady-state condition, using the

Quasi-Steady State Approximation (QSSA) method, we reduce our SIR−UV model

into a more simple IR-model. Our analytical result shows that a stable disease-

free equilibrium exists when the basic reproduction number is <1. Furthermore,

our model also shows the possibility of a backward bifurcation. Themore ignorant

the society is about dengue, the higher the possibility that backward bifurcation

phenomena may appear. As a result, the condition of the basic reproduction

number being <1 is insu�cient to guarantee the extinction of dengue in a

population. Furthermore, we found that increasing the recovery rate, reducing the

waning immunity rate, and mosquito life expectancy can reduce the possibility of

backward bifurcation phenomena. We use dengue incidence data from Jakarta

to calibrate the parameters in our model. Through the fast Fourier transform

analysis, it was found that dengue incidence in Jakarta has a periodicity of 52.4,

73.4, and 146.8 weeks. This result indicates that dengue will periodically appear at

least every year in Jakarta. Parameter estimation for our model parameters was

carried out by assuming the infection rate of humans as a sinusoidal function

by determining the three most dominant frequencies. Numerical and sensitivity

analyses were conducted to observe the impact of community ignorance on

dengue endemicity. From the sensitivity analysis, we found that, although a larger

community ignorance can trigger a backward bifurcation, this threshold can be

minimized by increasing the recovery rate, prolonging the temporal immunity,

or reducing the mosquito population. Therefore, to control dengue transmission

more e�ectively, media campaigns undertaken by the government to reduce

community ignorance should be accompanied by other interventions, such as a

good treatment in the hospital or vector control programs. With this combination

of interventions, it will be easier to achieve a condition of dengue-free population

when the basic reproduction number is less than one.
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dengue, community ignorance, quasi-steady state approximation, basic reproduction
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1. Introduction

Dengue is an infectious disease that is caused by the dengue

virus (DEN virus or DENV). This virus is transmitted through

the bite of an infected female Aedes aegypti or Aedes albopictus

[1, 2]. It is estimated that ∼50% of the world population is

at risk of dengue every year [3]. Dengue has been the subject

of main concern in many tropical and subtropical countries,

including Indonesia. Since the first case of dengue in Indonesia

was reported in Jakarta and Surabaya way back in 1968, the

incidence of dengue in Indonesia continues to spread to this

day [4]. Based on a new report from the Ministry of Health

Indonesia, from early 2022 until 20 February 2022, the cumulative

number of dengue cases was recorded as 13,776 cases. Meanwhile,

the number of deaths due to dengue was recorded as 145

cases [5].

There are four different serotypes of DENV, namely, DENV-

1, DENV-2, DENV-3, and DENV-4 [6, 7]. In many cases, the

primary infection of dengue is often asymptomatic. In contrast,

the secondary infection with different serotypes from the primary

infection may develop more severe symptoms, such as bone

pain and headache, up to more occasionally fatal symptoms [8,

9]. Individuals who have already recovered from the primary

infection will maintain a lifelong immunity to the first DENV

that had caused the primary infection, but only temporal to the

other three serotypes [10]. When the short-term immunity to

other serotypes wanes, the recovered individuals may acquire

a secondary infection that can be even more severe than the

primary infection. This phenomenon is called the ADE process [11,

12].

There is no specific treatment to cure dengue-infected

individuals of the disease. The main action plan to treat dengue-

infected individuals is rendered feasible by giving them supportive

care, or if the case is severe, then the patient requires hospitalization

which becomes an obligation to be done. Recently, several

candidates for dengue vaccines have been in the process of

development [13, 14]. An affordable and effective dengue vaccine

will give importance to the control of dengue spread around the

world. The main control program adopted by many governments

worldwide to control the spread of dengue is the vector control

program and steps are taken to reduce the probability of a

successful infection through a mosquito repellent. Another option

to prevent the spread of dengue (and other diseases) is by

developing community awareness on the danger of the disease [15–

18]. Community participation in eliminating or at least suppressing

the spread of dengue can be done through several activities,

such as through media campaigns to disseminate knowledge

about how to prevent acquiring infection from mosquitoes from

individual levels up to community levels. The author in [15]

implies that the risk of dengue may be increased when there is a

lack of community awareness due to misunderstanding between

the community and the government. Therefore, maintaining

community awareness by reducing the ignorance of dengue is

essential to guarantee intervention success in controlling the spread

of dengue.

Mathematical models have been used widely by researchers

to understand how vector-borne diseases spread among the

population [19–23]. For the dengue transmission model, many

authors have used mathematical modeling to guide public health

strategies to control the spread of dengue. The mathematical

modeling process is very challenging due to the complexity of

the dengue transmission mechanism. A more complex model may

bring in a more realistic modeling, but finding the analytical results

and conclusion often entails difficulty. Hence, the researcher needs

to develop a realistic but simple model with realistic assumptions.

The use of real incidence data is also needed to calibrate the

performance of the model. There are many approaches that can

be used to construct the dengue transmission model, such as

with ordinary differential equations [24, 25], partial differential

equations [26, 27], fractional-order differential equations [28, 29],

stochastic differential equations [30–32], and other approaches.

Many mathematical models for dengue transmission use a

deterministic approach. Although the transmission process of

dengue involves a vector animal (Aedes mosquito) as the prime

spreader, some authors use a host-to-host modeling approach [30,

33, 34]. This approach does not involve the dynamics of mosquitoes

in their model since it can be argued that the mosquitoes’ life

expectancy is very short compared to the human life expectancy.

Hence, the dynamic of mosquitoes is much faster compared

to that of the human. The authors in [35] find that the only

essential dynamics are coming from the human population, and

mosquito dynamics only slightly perturb them. The other approach

is adopted by considering the dynamic of mosquitoes [24, 25].

With this approach, the mosquito population is explicitly involved

in the model. With the involvement of mosquito dynamics, such

implementation of vector control can bemodeled into the equation.

When the vector control is involved in the model, an optimal

control approach can be used to understand the short-term impact

of the intervention and determine the most effective strategy [36–

38]. Modeling dengue transmission is not only for the macro scale

(population scale). Some of the authors also construct the model

to understand the dynamic within the host [39, 40]. This modeling

is conducted to understand the interaction between the free virus

with susceptible targeted cells. Some interesting factors are involved

in this modeling approach, such as the infectivity of the virus and

immune response.

From the aspect of the impact of community awareness on the

dengue transmission model, there are some models which have

been introduced by authors. The authors in [41] introduced a

mathematical model of dengue where the effect of media awareness

was included. Mathematical analysis on the equilibrium points and

the basic reproduction number was included in it. The author

in [42] introduced a multistrain dengue model that combined

mosquito control programs and human awareness. They found

that the control of a large number of mosquitoes and human

awareness was required to control dengue effectively. The author

introduced an optimal control problem of dengue with human

awareness and vector control in [43]. The authors used Pontryagin’s

maximum principle to characterize the necessary conditions for

the optimal control problem. The author in [44] introduced a

modified host–vector model by considering low- and high-risk

susceptible populations. The author analyzed global stability on

all equilibrium points. The author in [45] introduced an optimal

control model of dengue transmission. The author developed the
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model by considering five control variables: information spread,

bed nets, treatment, screening, and insecticide. The impact of a

media campaign that can reduce the rate of infection was developed

by the author in [24]. The author conducted a cost-effectiveness

analysis to understand the most cost-effective strategy that can be

employed to control dengue transmission. Recently, the authors in

[25] combined vaccination, vector control, and media campaign

in their model where the seasonality was accommodated. All the

mentioned references consider the same assumption that (1) aware

individuals have a smaller probability of being infected due to their

awareness and (2) more prominent infected individuals will reduce

the infection rate more. The second assumption is reasonable

when we wish to model the spread of dengue among a population

where awareness of dengue could increase the participation of the

population in the dengue control programs.

To calibrate the proposed dengue model, many authors use

incidence data to estimate their parameters. The idea behind this

development is to find the best-fit parameters, such that the model

simulation output can fit the time series of the data. Please see the

following references for the use of incidence data in their dengue

research: Aguiar and Stollenwerk [30], ten Bosch et al. [31], Aguiar

et al. [34], and Aldila et al. [46]. With this parameter estimation,

the researcher can make a short time prediction on their model.

Some interventions can be included in their model and the possible

outcomes predicted in the near future.

Motivated by the above discussion, no authors had discussed

the impact of community ignorance on the spread of dengue.

In this circumstance, more infected individuals will increase the

probability of infection in the human and mosquito populations.

In some countries where dengue fever continues to emerge

throughout the year, the level of public ignorance of the spread of

dengue fever is no longer as high as for several newly discovered

diseases and it is quite a concern, such as Zika in 2018 or

COVID-19 in the late 2019. Hence, it is important to consider

the community’s ignorance of our proposed model. Based on

this background, here in this article, we introduce our SIR-UV

mathematical model to describe the spread of dengue under

the impact of community ignorance. The Quasi-Steady State

Approximation method was used to simplify the model. We

used the weekly incidence data of dengue from Jakarta during

the period from January 2008 to December 2021 to estimate

the parameter values in our model. We used the fast Fourier

transform to extract the most significant frequency from our

data. With this dominant frequency, we fit our model output

with the data by assuming the infection rate as a sinusoidal

function that depends on time. Some mathematical and numerical

analyses were conducted to understand the qualitative behavior

of our model and how it was related to the basic reproduction

number. Furthermore, we also analyzed how community ignorance

can trigger the appearance of a backward bifurcation, which

can cause dengue to exist, even though the basic reproduction

number is already <1. The layout of this article is as follows:

In Section 2, we construct our model. In the same section, we

perform our data assimilation to find out the best-fit parameters

of our model. The model analysis is given in Section 3,

which is followed by some sensitivity analyses and numerical

experiments in Section 4. The concluding remarks are given in

Section 5.

2. Mathematical model and data
assimilation

2.1. Model formulation

To develop our dengue transmission model, we introduce N

and M as the total human and female Aedes sp. populations. Let

the total human population be classified into Susceptible, Infected,

and Recovered compartments, which are denoted by S, I, and R,

respectively. On the other hand, the mosquito population is only

classified into Susceptible and Infected compartments, which are

denoted by U and V , respectively. Due to the short life expectancy

of mosquitoes, we do not consider the recovery process in the

mosquito population. Since dengue does not transmit vertically to

newborns, we assume that the recruitment rates of a human and

mosquitoes are going to be susceptible. The rates of a newborn

human and mosquitoes are given by 3h and 3v, respectively.

Susceptible humans can get infected by dengue only if infected

mosquitoes bite them. In many countries where dengue become

can be found all-year round, for instance in Indonesia, public

awareness of dengue fever is not as high as that of new disease

incidents such as COVID-19. Cases of dengue fever only received

attention when the cases were already very high and made the

hospital unable to accommodate the increasing number of patients.

Due to these phenomena, the authors feel that it is important to

discuss the factors of public neglect of news on dengue fever. Based

on this assumption, we notice that the infection rate will increase

when the number of infected individuals increases. Therefore, the

incidence of infection will occur at a much faster pace compared

to the standard mass action infection function (βhSV), where βh

is the infection rate in the human population. Hence, we assume

that the infection rate is nonlinear and depends on the number of

infected individuals. In this case, we choose βh(I) = βh(1 + αI),

where α > 0 represents the incidence increasing factor due to

community ignorance against dengue. For a further discussion on

this type of function, please see [47]. Based on this assumption,

we have βh(1 + αI)SV as the total number of new infections of

susceptible individuals due to contact with infected mosquitoes

with a probability of infection βh. Based on similar arguments,

we derived that the rate of new infected mosquitoes is given by

βv(1 + αI)UI, where βv is the infection rate of dengue in the

mosquito population. Let γ be the recovery rate, δ the waning rate

of temporal immunity, µh the natural death rate of a human, and

µv the natural death rate of mosquitoes, we have the dynamic of

dengue transmission under a nonlinear infection rate as given in

system (1).

dS

dt
= 3h − βh(1+ αI)SV + δR− µhS,

dI

dt
= βh(1+ αI)SV − γ I − µhI,

dR

dt
= γ I − δR− µhR.

dU

dt
= 3v − βv(1+ αI)UI − µvU,

dV

dt
= βv(1+ αI)UI − µvV ,

(1)
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with an initial condition S(0) > 0, I(0) ≥ 0,R(0) ≥ 0,U(0) >

0,V(0) ≥ 0. Our model is well defined both mathematically and

biologically. Please see Theorem 1 for the non-negative solution

property of each variable of system (1) and the feasible region of

the solution in Theorem 2.

THEOREM 1. Model (1) with initial condition S(0) > 0, I(0) ≥

0,R(0) ≥ 0,U(0) > 0,V(0) ≥ 0 always has a non-negative solution

for all times t ≥ 0.

PROOF. We use an integrating factor to solve this theorem. Under

the given initial conditions, from
dS

dt
in system (1), we have

dS

dt
= 3h − βh(1+ αI)SV + δR− µhS.

It can be written as

dS

dt
+ A(t)S = B(t) (2)

where

A(t) = βh(1+ αI)V + µh,

B(t) = 3h + δR,

Define an integrating factor C(t) = e
∫ T
0 A(t)dt and multiply (2)

with the integrating factor. Hence, we have

e
∫ T
0 A(t)dt dS

dt
+ e

∫ T
0 A(t)dtA(t)S = e

∫ T
0 A(t)dtB(t).

It can be written as

Dt[S(t)e
∫ T
0 A(t)dt] = e

∫ T
0 A(t)dtB(t).

By integrating both sides of the above equation, we obtain

∫ T

0
Dt[S(t)e

∫ T
0 A(t)dt]dt =

∫ T

0
e
∫ T
0 A(t)dtB(t)dt.

Therefore,

S(T) = e−
∫ T
0 A(t)dt

(∫ T

0
e
∫ T
0 A(t)dtB(t)dt + S0

)

> 0.

In a similar way, it can be shown that I(t) ≥ 0,R(t) ≥ 0,U(t) >

0, and V(0) ≥ 0, under the given initial condition I0 ≥ 0,R0 ≥

0,U0 > 0, and V0 ≥ 0. Thus, the solutions of S(t), I(t),R(t),U(t),

and V(t) are non-negative for all times t > 0.t

THEOREM 2. Model (1) with initial condition S(0) > 0, I(0) ≥

0,R(0) ≥ 0,U(0) > 0,V(0) ≥ 0 is bounded in the region

� =

{

(S, I,R,U,V) ∈ R
+
5 ∪ 05 :N = S+ I + R

=
3h

µh
,M = U + V =

3v

µv

}

.

(3)

PROOF. From model (1), we obtain

dN

dt
=3h − µhN.

dM

dt
=3v − µv.

We assume that the total population of human and mosquito

is constant, so we obtain the system bounded in N =
3h

µh
and

M =
3v

µv
. Hence, all feasible solutions of model (1) enter the region

� =

{

(S, I,R,U,V) ∈ R
+
5 ∪ 05 :N = S+ I + R =

3h

µh
,

M = U + V =
3v

µv

}

.

2.2. A quasi-steady state approximation

It is approximated that the life expectation of a mosquito is 30

days [48]. Considering human life expectation, which is around

70 years [49], a mosquito population can reach its equilibrium

in a much shorter duration compared to a human population.

It indicates that the mosquito population has a fast dynamics,

while the human population has a slow dynamics. Based on this

assumption, we may assume that the mosquito populations have

already reached their equilibrium condition in our simulation time

interval. Hence, using the quasi-steady state approximation, taking
dU
dt

= 0 and dV
dt

= 0, gives us

U∗ =
3v

βv(1+ αI)I + µv
,

V∗ =
βv(1+ αI)3v

(βv(1+ αI)I + µv)µv
.

Substituting the above quasi-steady state approximation of

(U∗,V∗) in model (1), we have

dS

dt
= 3h − βh(1+ αI)+ δR− µhS,

dI

dt
=

βh(1+ αI)2SIβv3v

((1+ αI)Iβv + µv)µv
− (γ + µh)I,

dR

dt
= γ I − δR− µhR.

(4)

Assuming that the total human population is constant. Then,

we have S = N − I − R. Hence, the system (4) now reads as

dI

dt
=

βh(1+ αI)2(N − I − R)IM

((1+ αI)I + κv)
− (γ + µh)I,

dR

dt
= γ I − δR− µhR.

(5)

where κv =
µv

βv
andM =

3v

µv
. The simple IR -model in system

(5) has an advantage compared to the original SIRUV -model in

system (1) from the perspective of data assimilation, which will

be described in the next section. Furthermore, we will analyze the

IR -model in system (5) to understand the long time behavior of

the SIRUV-model.
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2.3. Data assimilation

Jakarta is the capital of Indonesia with a total population of

more than 10 million people based on the census data of 2022.

The temperature in Jakarta is relatively stable throughout the year,

between 24 and 33◦C. The highest temperatures are recorded

between August and early November. The rainy season in Jakarta

falls between October and May every year with more than a 47%

chance of a rainy day. The highest rainfall occurs in January with

the average rainfall of 22.6 days [50].

Dengue fever has become an annual problem in Indonesia,

including Jakarta. The number of dengue fever cases in Jakarta

during 2008 to December 2021 can be seen in Figure 1A. High cases

of dengue fever are always associated with a high rainfall in Jakarta.

The existing literature indicates that the high cases of dengue fever

follow a seasonal (periodic) pattern. Based on this observation, it

is necessary to analyze the existence of periodicity in the data of

dengue fever cases in Jakarta city. Therefore, we apply a fast Fourier

transform to our data, and the result can be seen in Figure 1B. From

Figure 1B, we show that the three dominant frequencies are 0.019,

FIGURE 1

(A) The number of weekly infected dengue individuals in Jakarta from January 2008 to December 2021. (B) The result of fast Fourier transform

analysis from dengue data in Jakarta.
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0.013, and 0.006. These frequencies are correlated to a periodicity

of 52.43, 73.4, and 146.8 weeks, respectively.

Our aim in this section is to calibrate our proposed

mathematical models with the real situation in the field. To do this,

we construct a model fitting that involves parameter estimation,

which includes the identification of the parameter values that can

fit between the model solution [variable I in system (5)] with

the incidence data in Figure 1A. For the purpose of parameter

estimation, we used the “fmincon” toolbox in Matlab. Fmincon

can be used to find the minimum of constrained nonlinear

multivariable functions.

As we mentioned earlier, our incidence data indicate a periodic

solution. To capture this phenomenon, we treat the infection rate

βh as a sinusoidal parameter, which is given by

βh(t) = a+

3
∑

i=1

bi cos(2πdit)+ ci sin(2πdit), (6)

where a is the median value of βh(t), bi, and ci are

the amplitudes of βh(t), while di refers to the frequencies of

βh(t). Our problem lies in minimizing the Euclidean distance

between our model solution [I(t)] and the time series data in

Figure 1A using the best-fit parameter βh(t) with model in (5)

as the constraint. This task reads as minimizing the following

cost function

J =
1

2ω

734
∑

t=1

(Isolution − Idata)2, (7)

where ω is the variance of the data and Isolution is the solution
of I(t) from

dI

dt
=

(

a+
∑3

i=1 bi cos(2πdit)+ ci sin(2πdit)
)

(1+ αI)2(N − I − R)IM

((1+ αI)I + κv)

− (γ + µh)I,

dR

dt
= γ I − δR− µhR.

(8)

Our task is to find the best-fit parameter Ŵ1 =
{

a, bi, ci, di,α, κv
}

and the best initial condition Ŵ2 =
{

I(t = 0),R(t = 0)
}

. We choose other parameter values as

follows:

N = 10 000 000[51], M = 2N (assumption), γ =
1

4
[52],

µh =
1

70× 52
[49], δ =

1

9× 4
[52].

The result of the parameter estimation is given in Figure 2,

while the parameter values and the initial condition are given in

Table 1. We can see that our model can fit the qualitative behavior

of the data such as the time when the outbreak appears and also

when it decreases. However, our model cannot fit the data in all

simulation times. We extend our simulation time for the next 2

years until December 2023. We can see that the peak of dengue

cases in Jakarta is expected to still appear around April 2022 and

March 2023.

3. Model analysis

3.1. Equilibrium points and the basic
reproduction number

The dengue-free equilibrium of system (5) is given by

(I,R) = (0, 0). (9)

In this case, since S = N − I − R, then the complete

model gives the dengue-free equilibrium as given by (S, I,R) =

(N, 0, 0). Next, we calculate the respected basic reproduction

number of system (5). The basic reproduction number (R0) in

the context of dengue is the expected number of secondary cases

(in human/mosquitoes) due to one bite of infected/susceptible

mosquito to susceptible/infected human, respectively, during its

infection period in a fully susceptible population. To calculate

the respected basic reproduction number of system (5), we use

the next-generation matrix approach introduced by the authors

in [53]. First, we calculate the Jacobian matrix of the infected

subcompartment of system (5) evaluated in the dengue-free

equilibrium in (9). This matrix is given by:

J =

[

βhNM

κv
− γ − µh

]

.

Next, we can decompose J as F + V , where F is the

transmission matrix and V is the transition matrix. Hence, we have

F =

[

βhNM
κv

]

and V = [−γ − µh. Therefore, the next-generation

matrix of system (5) is given by:

K = FV
−1 =

[

βhNM

κv(γ + µh)

]

.

Therefore, the basic reproduction number of system (5), which

is taken by the spectral radius ofK, is given by:

R0 =
βhNM

κv(γ + µh)
. (10)

In many epidemiological models [], many authors can find

the relation between the disease extinction with a condition of

R0 > 1. In our proposed dengue model, we find this relation in

the following theorem.

THEOREM 3. The dengue-free equilibrium of system (5) is locally

asymptotically stable ifR0 < 1, and unstable ifR0 > 1.

PROOF. We use standard linearization to prove the theorem.

Linearization around the dengue-free equilibrium is given by

J|DFE =





βhNM

κv
− γ − µh 0

γ −δ − µh



 .

Eigenvalues of the above linearization matrix are given by

λ1 =
βhNM

κv
− γ − µh, λ2 = −δ − µh.

Equilibrium is asymptotically stable if all the real parts of

its eigenvalues are negative. All of our parameters are positive,
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FIGURE 2

Fitted dengue cases I(t), for the model (8), using data from Jakarta from 2008 to 2021.

therefore the second eigenvalue has negative real parts. To prove

that the first eigenvalue has a negative real part, it must be assumed

that
βhNM

κv(γ + µh)
< 1 ⇐⇒ R0 < 1.

The second equilibrium point is the endemic equilibrium point,

which is given by:

(I,R) =

(

I∗,
γ I

δ + µh

)

. (11)

where I∗ is taken from the positive roots of the following

third-degree polynomial

F(I, τ ) = a3I
3 + a2I

2 + a1I + a0 = 0, (12)

where τ = {βh,M,N,α, γ , δ, κv,µh}, and

a3 = βhMα2(γ + µh + δ),

a2 = Mβh

(

Nα(δ + µh)− 2(δ + γ + µh)
)

− (δ + µh)(γ + µh),

a1 = (Mβh + µh)(δ + γ + µh)+ δγ −MNαβh(δ + µh),

a0 = −(δ + µh)(γ + µh)κv(R0 − 1).

Since a0 < 0 ⇐⇒ R0 > 1 and a3 > 0, then we have the

following theorem.

THEOREM 4. The dengue IR-model in system (5) always has at

least one dengue-endemic equilibrium point ifR0 > 1.

PROOF. Since a3 > 0, then limI→−∞ F(I, τ ) = −∞ and

limI→∞ F(I, τ ) = ∞. For special cases when R0 = 1, we have

one zero root of F(I, τ ). Hence, when a0 < 0 which is equivalent to

R0 > 1, then the graphic of F(I, τ ) will be shifted downward as far

as a0 is concerned. Hence, we have at least one new positive root I

of F(I, τ ) whenR0 > 1.

Since the sign of a1 is not always positive or negative, it

is possible to have another dengue endemic equilibrium when

R0 < 1. Furthermore, since the existence of the dengue-endemic

equilibrium point depends on a third-degree polynomial, it is

possible to have more than one dengue-endemic equilibrium point.

TABLE 1 Best-fit parameter of system (8) for Figure 2.

Parameter Value Parameter Value

a 1.3965× 10−8 α 5.1021× 10−5

b1 1.9395× 10−9 c1 0

b2 0 c2 6.1745× 10−14

b3 0 c1 1.4867× 10−9

d1 0.019 d2 0.0104

d3 0.0059 κv 2.8192× 106

I(0) 50 R(0) 109.64

THEOREM 5. There exists a dengue-endemic equilibrium when

R0 < 1 if α > α∗, where α∗ =
(γ + µh + δ) κv + N (δ + µh)

2 (δ + µh)Nκv
.

PROOF. Let us choose βh as the bifurcation parameter. To conduct

the gradient analysis of I at R0 = 1 and I = 0 using polynomial

(12), we need to rewrite each ai for i = 0, 1, 2, 3 as a function ofR0.

First rewriting βh as a function ofR0 using the expression on (10),

we have

β∗
h =

(γ + µh)κvR0

MN
. (13)

Substitute βh = β∗
h
into F(I, τ ), differentiate I respect to R0,

and evaluate it atR0 = 1, I = 0. We obtain

∂I

∂R0
= −

κv(δ + µh)N

(2α(δ + µh)N − δ − γ − µh)κv − N(δ + µh)
. (14)

Hence, we have that
∂I

∂R0
< 0 if and only if α > α∗ where

α∗ =
(γ + µh + δ) κv + N (δ + µh)

2 (δ + µh)Nκv
. (15)

Since the condition of
∂I

∂R0
< 0 indicates the existence of a

positive root of F(I, τ ) = 0 when R0 < 1, we conclude that there
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TABLE 2 The possible number of dengue-endemic equilibria of model (5)

depends on whetherR0 is lesser or larger than 1.

Case a3 a2 a1 a0 R0 Possible
positive roots

1 + + + + R0 < 1 0

2 + + + − R0 > 1 1

3 + + − + R0 < 1 0 or 2

4 + + − − R0 > 1 1

5 + − + + R0 < 1 0 or 2

6 + − + − R0 > 1 1 or 3

7 + − − + R0 < 1 0 or 2

8 + − − − R0 > 1 1

exists a dengue-endemic equilibrium when R0 < 1 if α > α∗.

Hence, the proof is completed.

To analyze the possible number of dengue-endemic equilibria

of model (5), we use the well-known Descartes’ rule of signs. The

number of possible positive roots of F(I, τ ) is calculated by how

many times the sign of ai changed. The number of possible positive

roots F(I, τ ) is the same or slightly lower by an even/odd number

as the number of changes in the sign of the coefficients. The result

is given in Table 2.

3.2. Backward bifurcation analysis

In the previous section, we found that the dengue-endemic

equilibrium is always locally asymptotically stable if R0 < 1,

and unstable when R0 > 1. Furthermore, we also found that

our simplified IR-model does not always have a unique dengue-

endemic equilibrium point. It is possible to have multiple dengue-

endemic equilibria when R0 < 1. Hence, it is important to

analyze its local stability criteria. Furthermore, we analyze the

bifurcation type of our IR-model using the well-known Castillo–

Song bifurcation theorem [54]. The theorem is given as follows.

THEOREM 6 (Castillo–Song Bifurcation Theorem, [54]).

Consider a general system of ODEs with parameter φ:

dx

dt
= f (x,φ), f :Rn ×R → R

n and f ∈ C
2(Rn ×R). (16)

Without loss of generality, it is assumed that 0 is an equilibrium

of system (16) for all values of the parameter φ, that is

f (0,φ) ≡ 0 for all φ. (17)

Assume

1. A = Dxf (0, 0) =

(

∂fi
∂xj

(0, 0)
)

is the linearization matrix of

system (16) around the equilibrium 0 with φ evaluated at 0. Zero

is a simple eigenvalue of A and all other eigenvalues of A have

negative real parts.

2. Matrix A has a non-negative right eigenvector w and a left

eigenvector v corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a =

n
∑

k,i,j=1

vkqiwj
∂2fk

∂xi∂xj
(0, 0), (18)

b =

n
∑

k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0). (19)

The local dynamics of (16) around 0 are totally determined by

a and b.

1. a > 0, b > 0. When φ < 0 with |φ| ≪ 1, 0 is

locally asymptotically stable, and there exists a positive unstable

equilibrium; when 0 < φ ≪ 1, 0 is unstable, and there exists a

negative and locally asymptotically stable equilibrium;

2. a < 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable; when

0 < φ ≪ 1, 0 is locally asymptotically stable, and there exists a

positive unstable equilibrium;

3. a > 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable, and

there exists a locally asymptotically stable negative equilibrium;

when 0 < φ ≪ 1, 0 is stable, and there exists a positive unstable

equilibrium;

4. a < 0, b > 0. When φ changes from negative to positive, 0

changes its stability from stable to unstable. Correspondingly

a negative unstable equilibrium becomes positive and locally

asymptotically stable.

Now, we are ready to prove the existence of the backward

bifurcation phenomena of our simplified IR-model. Let us assume

x1 = I, x2 = R,

g1 =
dI

dt
, g2 =

dR

dt
.

Therefore, the IR-model can be written as

g1 =
βh(1+ αx1)

2(N − x1 − x2)x1M

(1+ αx1)x1 + κv
− (γ + µh)x1,

g2 = γ x1 − (δ + µh)x2.

Next, we linearize the above system around the dengue-free

equilibrium which yields

M = J|DFE,R0=1 =

[

0 0

γ −δ − µh

]

,

which has two eigenvalues

λ1 = 0, λ2 = −δ − µh.

Please note that we have a simple zero eigenvalue, and one

other eigenvalue is negative, which fulfills the first assumption of

the Castillo–Song bifurcation theorem.

Next, we determine the right eigenvectors of M by solving

Mw = 0, where w = (w1,w2) is a column vector. We obtained

w1 =
(δ + µh)w2

γ
, w2 = w2.
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Next, we determine the left eigenvectors ofM by solving vM =

0, where v = (v1, v2) is a row vector. We obtained

v1 = 1, v2 = 0.

Hence, we have also shown that our preliminary result

fulfills two assumptions, such that we can use the Castillo–Song

bifurcation theorem.

Next, we calculate a and b using the formula in the Castillo–

Song bifurcation theorem. In our case, 0 is the dengue-free

equilibrium.We assumed βh as the bifurcation parameter, such that

the critical value of βh makes R0 = 1. Since we have that v2 = 0,

there is no need to determine the partial derivatives of g2. Thus, we

had the non-zero derivatives of g1 as follows:

∂2g1

∂x21
(0, 0) =

2(γ + µh)(2Nακv − N − κv)

Nκv
,

∂2g1

∂x1∂x2
(0, 0) = −

γ + µh

N
,

∂2g1

∂x2∂x1
(0, 0) = −

γ + µh

N
,

∂2g1

∂x1∂βh
(0, 0) =

NM

κv
.

Using the above derivatives, we can obtain the values of a and

b as follows:

a =

2
∑

k,i,j=1

vkwiwj
∂2gk

∂xi∂xj
(0, 0),

=
2(δ + µh)

2(γ + µh)(2Nακv − N − κv)

Nκvγ 2
−

2(δ + µh)(γ + µh)

γN
,

b =

2
∑

k,i=1

vkwi
∂2gk

∂xi∂βh
(0, 0),

=
(δ + µh)NM

γ κv
.

From these calculations, we always obtain b with a positive

value, whereas a could be positive or negative. To make a positive,

we need to satisfy

α >
(γ + µh + δ) κv + N (δ + µh)

2 (δ + µh)Nκv
= α∗.

Hence, we obtained that a is positive when α > α∗ and a

is negative when α < α∗. Based on the Castillo–Song Theorem,

we would have that our IR-model undergoes a forward bifurcation

when a is negative and b is positive. On the other hand, we would

have that our IR-model undergoes a backward bifurcation when

a is positive and b is positive. Hence, our model could undergo

backward and forward bifurcation depending on the value of α.

THEOREM 7. Model (5) undergoes a backward bifurcation atR0 =

1 if α > α∗ where

α∗ =
(γ + µh + δ) κv + N (δ + µh)

2 (δ + µh)Nκv
.

Otherwise, model (5) undergoes a forward bifurcation when

α < α∗.

Please note that α∗ in Theorem 7 is the same as with α∗ in

Theorem 5. The results in this section enumerate some important

information from our proposed model.

1. The IR-model in system (5) has a dengue-free equilibrium point.

This equilibrium point always exists, and is locally stable if

R0 < 1. These results indicate that we can expect a dengue-free

condition in the community as long as we can reduce the basic

reproduction number to be <1.

2. The dengue-endemic equilibrium of the IR-model always exists

and is locally stable if R0 > 1. Hence, whenever the dengue-

free equilibrium is unstable, we always have a stable endemic

equilibrium.

3. It is possible to have a stable endemic equilibrium whenR0 < 1.

Hence, a condition R0 < 1 does not always guarantee the

disappearance of dengue from the community.

4. Numerical experiments

In this section, we conduct several numerical experiments to

understand the behavior of our model with respect to the level

of community ignorance (α). The first simulation will be the

bifurcation diagram, followed by numerical simulation on the

dynamic of the model with respect to time.

As previously mentioned in Theorem 7, a backward bifurcation

occurs when α > α∗, where α presents the ignorance level of the

community. Larger α means more ignorance in the community

about the spread of dengue. To present the situation, we conduct

numerical experiments to show a possible type of bifurcation that

could appear from our model. At first, we set up all coefficients on

the polynomial (12) as a function ofR0. By solvingR0 with respect

to βh, we have βh =
(γ+µh)κvR0

MN , and substituting it in (12), yields:

a3(R0)I
3 + a2(R0)I

2 + a1(R0)I + a0 = 0, (20)

where

a3(R0) = R0
κv(γ + µh)α

2(γ + µh + δ)

N
,

a2(R0) = −(α(γ + µh))

κv(Nα(δ + µh)− 2(γ + µh + δ))R0 − N(δ + µh)

N
,

a1(R0) = −(γ + µh)

κv(2Nα(µh + δ)− (δ + γ + µh))R0 − N(δ + µh)

N
,

a0(R0) = −(δ + µh)(γ + µh)κv(R0 − 1).

Next, we substitute the parameter values as given in Section 2.3

which gives us

0.0196R0α
2I3 −

(

19793α2
R0 + (0.039R0 + 0.007)α

)

I2 . . .

+
(

0.007+ (0.019− 39586α)R0

)

I +
(

19793(1−R0)
)

= 0.(21)

Using these parameter values, we have the value of α∗ as 6.729×

10−7. Therefore, we choose α = 5× 10−8 < α∗ to find the forward

bifurcation as shown in Figure 3A and α = 5 × 10−6 > α∗ to find

the backward bifurcation as shown in Figure 3B.

Backward bifurcation phenomena imply that a conditionR0 <

1 will not be enough to guarantee the disappearance of dengue
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FIGURE 3

Forward (A) and backward (B) bifurcation diagrams of system (5) for di�erent values of α∗. Red and blue curves present the dengue-free equilibrium

and dengue-endemic equilibrium points, respectively.

from the community. We can see that for some parameter value

when R0 < 1, we can have multiple stable equilibrium points,

i.e., the dengue-free equilibrium and the endemic equilibrium

point (please see Figure 3B). When the ignorance level of the

community is small enough (at least smaller than α∗, a condition

R0 < 1 is enough to guarantee the disappearance of dengue

from the community (please see Figure 3A). To illustrate the

bistability phenomenon when a backward bifurcation appears, we

show the phase portrait of system (5) with some initial conditions.

The results are given in Figure 4, where we have a stable node

dengue-free equilibrium and a stable-spiral endemic equilibrium

point. It can be seen that different initial conditions may lead to

a different final state condition. To see further impact of α on

the bifurcation phenomena of our model, we conduct numerical

experiments as shown in Figure 5. These numerical experiments

confirm our previous results on the impact of α on the appearance

of backward bifurcation phenomena at R0 = 1. Smaller the level

of ignorance of the community, higher the chance to have a free

endemic equilibrium whenR0 < 1.

The public health implication of backward bifurcation is that

it is not enough to only reduce the basic reproduction number

to eliminate dengue. Another factor, which in our case is the

community ignorance level of dengue, should also be considered

for further intervention in the field. Therefore, it is necessary

to find the impact of model parameters on the critical level

of community ignorance. To determine this, we calculate the

normalized sensitivity of α∗ with respect to γ ,µh, δ, and κv. Using

the formula given by [55], we have:

Ŵ
γ

α∗ =
γ κv

N(δ + µh)+ κv(δ + γ + µh)
,

Ŵ
µh
α∗ = −

µhκvγ

(δ + µh)
(

N(δ + µh)+ κv(δ + γ + µh)
)

Ŵδ
α∗ = −

δκvγ

(δ + µh)
(

N(δ + µh)+ κv(δ + γ + µh)
)

Ŵ
κv
α∗ = −

N(δ + µh)

N(δ + µh)+ κv(δ + γ + µh)
.

From a previous analysis, we know that a backward bifurcation

will appear when α > α∗ and a forward bifurcation if α < α∗.

We can see from the expression of Ŵα∗ , we have that Ŵ
γ

α∗ >

0, which indicates that increasing γ will increase α∗. Hence, a

larger recovery rate will increase the chance of non-appearance of

backward bifurcation phenomena atR0 = 1, since we have a larger

interval of α ∈ [0,α∗]. On the other hand, we can see that Ŵ
µh
α∗ ,Ŵδ

α∗ ,

and Ŵ
κv
α∗ are negative, which indicates that increasing natural death

rate of human (µh), waning immunity (δ), and mosquito dynamic

parameters (κv) will reduce α∗. Hence, different with the effect of

recovery rate, increasing µh, δ, and κv will increase the chance of

appearance of backward bifurcation phenomena, since the interval

of α ∈ [0,α∗] is getting smaller. Therefore, we can conclude

that longer the temporal immunity of human (smaller δ−1) will

increase the chance of finding the only possible condition that

dengue disappears when R0 < 1. Furthermore, we also find

that when κv increases (larger life expectation of mosquitoes or

a smaller infection rate in mosquitoes) will increase the possible

existence of dengue-endemic situation in the field, even thoughR0

is already <1.

Next, we carry out numerical simulation in Figure 6

using MatLab to understand the impact of the human level

of ignorance on the spread of dengue. We use the same

parameter values that we used to produce Figure 2. We can

see that less ignorance of the community (smaller α) to the
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FIGURE 4

Trajectories of system (5) in I− R plane show bistability phenomena

when R0 = 0.5. Parameter values used are the same as they have

been used for Figure 3B. Red curve tends to the endemic equilibrium

point, while blue curve tends to the dengue-free equilibrium point.

FIGURE 5

The impact of α on the type of bifurcation phenomena at R0 = 1.

Red, magenta, cyan, green, and black curves present the condition

of α being equal to 5, 2, 0.9, 0.5, and 0.2× 10−6, respectively.

dynamics of infected individuals will reduce the number of

infected individuals. The impact will be more significant as

time increases.

FIGURE 6

Simulation results showing the impact of the level of ignorance of

the community on the dynamics of infected individuals. The red,

blue, and green curves present α = 5.1021× 10−5,

α = 4.1021× 10−5, and α = 3.1021× 10−5, respectively.

5. Summary and concluding remarks

Amathematical model was presented and studied in this article

to assess the impact of the level of human ignorance on the

spread of dengue. At the beginning of the study, we introduced

our SIR-UV model. Using the QSSA approach, we simplified the

model to an IR-model. With this approach, we converted our host–

vector dengue model to a host-to-host dengue model. A host-

to-host dengue model is a common approach adopted by several

researchers to reduce the complexity of their model, by considering

the fact that the dynamic of mosquitoes is very fast compared

to that of human dynamics [30, 33, 34]. Two types of equilibria

emerged from the model, namely the dengue-free equilibrium and

the endemic equilibrium point. The basic reproduction number,

denoted by R0, was calculated. We found that the dengue-free

equilibrium point was always locally asymptotically stable when

R0 < 1. The center manifold theory was used to establish the

stability of the endemic equilibrium point, and it showed that

the existence of backward bifurcation appears when the level of

community ignorance increases. In this situation, we conclude that

ensuring the size of the basic reproduction number to be <1 does

not always guarantee the disappearance of dengue. Several authors

have shown the appearance of a backward bifurcation in the dengue

transmission model in their models [56–59]. Their analysis showed

that some crucial aspects were not included in the calculation of the

basic reproduction number. This aspect may trigger the backward

bifurcation phenomena, making the dengue control program more

difficult to achieve. In our model, we show that, even though

the level of community ignorance does not appear in the basic

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2023.1094971
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Aldila et al. 10.3389/fams.2023.1094971

reproduction number, it does trigger the backward bifurcation.

More ignorant the population about dengue, the more difficult

it is for dengue to be controlled since the condition of basic

reproduction number <1 no longer guarantees the disappearance

of dengue.

To test our model, we fit our model output with dengue

incidence data in Jakarta, Indonesia. Our preliminary analysis of

the time series dengue data reveals the existence of periodicity

of dengue incidence data in Jakarta from 2008 to 2021. Three

dominant frequencies of the data related to a periodicity of

53, 74, and 147 weeks. These results indicate that dengue cases

in Jakarta always recur every year. A numerical experiment on

the bifurcation diagram has shown that reducing community

ignorance can significantly change the endemic situation. The

chance of the existence of dengue-endemic equilibrium when

the basic reproduction number is <1 can be avoided when the

community ignorance is relatively small. To reduce community

ignorance, a media campaign to increase people’s awareness of

dengue could be an alternative intervention. On the other hand,

we find that we can increase the chance of the non-existence

of backward bifurcation by increasing the recovery rate of a

human, prolonging the temporal immunity, or reducing the life

expectancy of a mosquito. Our non-autonomous simulation was

conducted by assuming the infection parameter as a sinusoidal

function with three dominant frequencies. It has been shown

that reducing community ignorance of dengue could suppress

the incidence of dengue in Jakarta. Although the outbreak

still appears, the outbreak can be reduced significantly. The

longer period of intervention of media campaigns to reduce

community ignorance will give a more significant reduction in

dengue outbreaks.
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