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A mixed e�ects changepoint
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longitudinal data with application
on COVID-19 data

Wafaa I. M. Ibrahim, Ahmed M. Gad* and

Abd-Elnaser S. Abd-Rabou
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Introduction: Longitudinal individual response profiles could exhibit a mixture

of two or more phases of increase or decrease in trend throughout the follow-

up period, with one or more unknown transition points (changepoints). The

detection and estimation of these changepoints is crucial. Most of the proposed

statistical methods for detecting and estimating changepoints in literature rely on

distributional assumptions that may not hold. In this case, a good alternative is

to use a robust approach; the quantile regression model. There are methods in

the literature to deal with quantile regression models with a changepoint. These

methods ignore the within-subject dependence of longitudinal data.

Methods: We propose a mixed e�ects quantile regression model with

changepoints to account for dependence structure in the longitudinal data. Fixed

e�ects parameters, in addition to the location of the changepoint, are estimated

using the profile estimation method. The stochastic approximation EM algorithm

is proposed to estimate the fixed e�ects parameters exploiting the link between

an asymmetric Laplace distribution and the quantile regression. In addition, the

location of the changepoint is estimated using the usual optimization methods.

Results and discussion: A simulation study shows that the proposed estimation

and inferential procedures perform reasonably well in finite samples. The practical

use of the proposed model is illustrated using COVID-19 data. The data focus on

the e�ect of global economic and health factors on the monthly death rate due to

COVID-19 from 1 April 2020 to 30th April 2021. the results show a positive e�ect

on themonthly number of patients with COVID-19 in intensive care units (ICUs) for

both 0.5th and 0.8th quantiles of new monthly deaths per million. The stringency

index, hospital beds, and diabetes prevalence have no significant e�ect on both

0.5th and 0.8th quantiles of new monthly deaths per million.

KEYWORDS

longitudinal data, change pointmodel, COVID-19,mixed e�ects quantile regression, bent

line quantile regression, missing data

1. Introduction

Longitudinal studies play a prominent role in the health, social, and behavioral sciences,

and many other disciplines. A response variable, of the same individual, is measured

repeatedly over time, or under different conditions. The main aim of longitudinal studies

is to study the change in the response variable over time. Due to the nature of the

longitudinal data, in which a set of measurements for each subject is observed over time,

there will be a correlation within the subject, i.e., measurements for each subject are

correlated. Hence, special statistical analysis methods are needed for longitudinal data to

accommodate the potential patterns of correlation. Ignoring such correlation may lead to

invalid statistical inferences [1].
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The longitudinal individual response profiles could exhibit

a mixture of two or more phases of increase or decrease

in trend, throughout the follow-up period. This could be at

one or more unknown transition points, usually referred to

as breakpoints or change points. Such change points are quite

common in public health, medical, and many other disciplines.

Change point models are useful to determine when changes

have taken place and to use one model for the whole data.

Change point models with one change point and two linear

phases are most used especially in biological data [2]. Recently,

there has been an increased interest in the application of

change point models to longitudinal data. In the Bayesian

framework, see for example, Ghosh and Vaida [3], Yang and

Gao [2], and McLain and Albert [4]. Xing and Ying [5]

proposed a semi-parametric change point regression model

for longitudinal data. Lai and Albert [6] proposed a linear

mixed effects modeling framework for multiple change points in

longitudinal Gaussian data.

Most of the proposed techniques to fit longitudinal data

with change points rely upon distributional assumptions, such

as normality. These distributional assumptions may not generally

hold. On the contrary, in some applications, the relationship

between the response and covariates at the tails, rather than the

center of the distribution is of main interest [7]. The quantile

regression model is a good alternative when the distributional

assumptions do not hold. The quantile regression does not

require distributional assumptions. The quantile regression fits

the conditional quantiles of the response variable given a set

of covariates. The main advantage of quantile regression is its

ability to provide a more complete picture of the conditional

distribution of the response variable given the covariates. The

quantile regression is particularly useful when upper or lower

(or any other) quantiles are of interest. It is more flexible

for modeling data with heterogeneous conditional distributions.

Moreover, the quantile regression is robust to outliers in the

response variable. There is research in the literature on using

quantile regression or median regression in a longitudinal data

context. Some of these works of literature employ the marginal

models, see for example, Gad and Ibrahim [1], Jung [8], and

Wang and Fygenson [9]. Others employed mixed effect quantile

regression, see for example, Galarza et al. [10], Yirga et al. [11], and

Tian et al. [12].

Li et al. [7] extended the quantile regression model with

a change point, introduced by Li et al. [13], to accommodate

longitudinal data. These models ignore the within-subject

dependence of longitudinal data [7, 14]. Incorporating random

effects in these models is a remedy to accommodate the within-

subject dependence. Yu and Moyeed [15] used the connection

between an asymmetric Laplace distribution (ALD) and the

quantile regression model to incorporate random effects in the

model. Liu and Bottai [16] developed a likelihood-based inferential

approach for estimating parameters of mixed effects quantile

regression models. They assume an ALD for the errors and the

multivariate Laplace distribution (MLD) for the random effects.

They use the MCEM algorithm for estimation and inference.

Abdelwahab et al. [17] proposed a CUSUM test for testing the

existence of change points in the quantile regression model

for longitudinal datasets.

There are different stochastic algorithms to estimate the

parameters for mixed effects quantile models rather than MCEM,

such as the stochastic approximation EM (SAEM) algorithm

[18]. The SAEM algorithm approximates the E-step of the EM

algorithm, by splitting the E-step, into a simulation step and an

approximation step. The SAEM algorithm has been proven to be

more computationally efficient than the classical MCEM algorithm.

This is because of the reusing of simulations from one cycle to

another within the smoothing phase of the algorithm. Meza et al.

[18] stated that the SAEM algorithm converges in a small number

of simulations unlike the MCEM algorithm, which needs a large

number of simulations.

The aim of this article is to extend the quantile regression

model with a change point to accommodate the within-

subject dependence of the longitudinal data. This is tackled via

incorporating random effects into the model. A likelihood-based

inferential approach is developed by assuming an ALD for the

errors and the MLD distribution for the random effects. The

advantage of using the multivariate Laplace distribution is to

accommodate any number of possible outliers. Moreover, it can

handle heavy-tailed distributions. The stochastic approximation

EM (SAEM) algorithm is proposed and developed to obtain the

MLE of the model parameters. The location of the change point

is estimated using optimization methods. The SAEM algorithm

exploits the link between an asymmetric Laplace distribution

(ALD) and the quantile regression. The proposed techniques are

evaluated using a simulation study. Furthermore, the proposed

techniques are illustrated by real data. The rest of this article

is organized as follows: Section Proposed model and estimation

procedure presents the proposed quantile regression model and the

estimation procedure. Simulation studies are conducted to assess

the performance of the proposed techniques and to study the

goodness-of-fit for the proposed model. Section Simulation study

presents the simulation results. Section Application: COVID-19

applies the proposed model to COVID-19 data. We test whether

there is a threshold effect (change point) in the relationship between

the HDI and new monthly deaths per million. Finally, Section

Conclusion is devoted to the concluding remarks and future study.

2. Proposed model and
estimation procedure

2.1. Model

Li et al. [7] extended the quantile regression model with

a change point, introduced by Li et al. [13], to accommodate

longitudinal data. However, this model ignores the within-subject

dependence in Li et al. [7] and Sha [14]. We suggest extending

this model to account for the within-subject dependence by adding

random effects, to capture the dependence structure of longitudinal

data. Hence, the authors modify the Li et al. [7] model by adding a

random effect term (zTijUi). The modified model is as follows:

yij = ατ +
(

β1,τ I
{

xij ≤ tτ
}

+ β2,τ I
{

xij ≥ tτ
}) (

xij − tτ
)

+ sTijγτ + zTijUi + ετ ,ij, (1)
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for j = 1, . . . . . . .,mi, and i = 1, . . . . . . ., n, where I. is an

indicator function, I{a} = 1 if a is true, and 0 otherwise. The yij is

the response variable of subject i at time point j, xij is the covariate

whose slope changes at an unknown change point tτ , and sij is

a q-dimensional vector of linear covariates with constant slopes.

Moreover, zij is a p × 1 subset of sij with random effects; Ui is

a p × 1 vector of random regression coefficients; τ th conditional

quantile of ετ ,ij gives xij , zij, and sij is 0, and ετ ,ij is assumed to

be independently distributed as an asymmetric Laplace distribution

(ALD). The random regression coefficients Ui, which account for

the correlation among observations, are assumed to be mutually

independent and to follow the multivariate Laplace distribution

(MLD). Independence between Ui and ετ ,ij , and between the

random regression coefficients Ui and the explanatory variables

xij , sij , are assumed. All the model parameters may be expressed

as θτ = ( ητ , tτ , )
T and ητ =

(

alphaτ , β1,τ , β2,τ , γ T
τ

)T
.

In practice, the normality assumption of the random effects

may be violated for many reasons, such as outliers, contaminated

data, and heavy-tailed distributions. The multivariate Laplace

distribution is a good robust alternative in this case [19]. The

distribution of the random effects Ui in model (1) is assumed to

be a symmetric–multivariate Laplace distribution with zero mean

as follows [19]:

f (Ui| 6) =
2

(2π)
P
2 |6|−

1
2

(

UT
i 6−1Ui

2

)
ν
2

× Kν

√

2 (UT
i 6−1Ui), (2)

Where Σ is a P × P covariance matrix, and ν = 2− P
2 and

Kν(u) is the modified Bessel function of the third kind, which is

given in Equation (3) as follows [19]:

Kν (u) =
1

2

(u

2

)ν
∫ ∞

1
t−λ−1 exp

(

−t −
u2

4t

)

dt , u > 0 . (3)

2.2. Estimation and inference

The estimates θ̂n (τ ) are obtained by minimizing the objective

function as discussed in Li et al. [7], which is given in Equation (4)

as follows:

Qn,τ (θ) =
∑

ijρτ (yij−µij), (4)

Where ρτ (u) = u (τ − I (u ≤ 0)) is the quantile loss function

and µij = ατ +
(

β1,τ I
{

xij ≤ tτ
}

+ β2,τ I
{

xij ≥ tτ
}) (

xij − tτ
)

+

sTijγτ + zTijUi. However, due to the presence of a change point,

the objective function Qn,τ (θ) is non-convex [7]. Hence, the

estimates θ̂n (τ ) are obtained via profile estimation. The stochastic

approximation EM algorithm is used to estimate the fixed effects

parameters ητ . The estimates can be obtained using the link

between an ALD and the quantile regression as suggested by Yu

and Moyed [15]. In addition, the location of the change point is

estimated using optimization methods.

2.2.1. SAEM algorithm to estimate ητ (t)
At fixed t, the initial value of t is determined graphically, the

profile estimator η is given in equation (5) as discussed by Li et al.

as follows [7]:

η̂n,τ (t) = arg Qn,τ (η, t) (5)

We propose the stochastic approximation EM algorithm

(SAEM) to estimate ητ (t). Galarza et al. [20] used the SAEM

algorithm to develop a likelihood-based approach to fit the quantile

regression model for continuous longitudinal data using an ALD

distribution. They assume that the distribution for the random

effects is the multivariate Gaussian. In this article, we assume

that the random effects follow an ALD. At fixed t, minimizing

the loss function in Equation (5) is the same as maximizing an

ALD likelihood function. A likelihood-based inferential approach

is developed to estimate ˆηn,τ (t) in Equation (2) by using

the connection between an ALD distribution and the quantile

regression [15]. This is done by assuming an ALD for the errors

and the multivariate Laplace distribution for the random effects. At

fixed t, the conditional density function of yij|Ui can be written as

follows [16]:

f
(

yij
∣

∣Ui, xij, Sij; ητ (t) , σ )=
τ (1− τ)

σ
exp

{

−ρτ

(

yij − µij

σ

)}

,(6)

where

µij = ατ +
(

β1,τ I
{

xij ≤ tτ
}

+ β2,τ I
{

xij ≥ tτ
}) (

xij − tτ
)

+ sTijγτ + zTijUi (7)

is a linear predictor of the τ th quantile function at fixed t. The τ is

assumed to be fixed and known.

Let f (Yi|Ui, Xi, Si; ητ (t) , σ ) =
∏mi

j = 1 f
(

yij
∣

∣Ui, xij, sij; ητ (t) , σ )be the density for the

ith subject conditional on the random effect Ui, where

Yi = [yi1&yi2 . . . .&yimi ]
T , Xi = [xi1&xi2 . . . .&ximi ]

T , and

Si = [si1&si2 . . . .&simi ]
T . The complete data density of (Yi, Ui)

for i = 1, 2, . . . . . . . . . ..,mi, can be written as follows:

f (Yi, Ui| Xi, Si;ω) = f (Yi|Ui, Xi, Si; ητ (t) , σ )

. f (Ui| Xi, Si;6).

f (Yi,Ui| Xi, Si;ω) = f (Yi|Ui,Xi, Si; ητ (t) , σ ).f (Ui|6). (8)

As Ui and the explanatory variables Xi , Si are assumed to

be independent, f (Ui| 6) is the density of Ui, and ω =

(ητ (t) , σ , 6) is the set of parameters of interest. If we let

Y = (Y1,Y2, . . . . . .Yn), X = (X1,X2, . . . . . .Xn), S =

(S1, S2, . . . . . . Sn), and U = (U1,U2, . . . . . .Un), the joint density

of (Y, U) based on the n subjects can be derived as follows:

f (Y , U| X, S;ω) =
∏

n
i=1f (Yi|Ui, Xi, Si; ητ (t) , σ ). f (Ui|6) (9)
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The maximum likelihood estimates for the parameter ω are

obtained by maximizing the marginal density f (Y|ω) , which is

obtained by integrating out the random effect U in Equation

(9), that is, L (ω;Y) =
∫

(f (Y|U; ω) . f (U; 6) d U [16].

In many cases, this integral has no closed form. Hence, the

SAEM algorithm is proposed to maximize this function. Within

this algorithm, the random effects are considered unobserved

(missing values).

The three steps of the SAEM are as follows:

2.2.1.1. Simulation step

In the simulation step, at the (s+1)th step, a sample

of size l(s+1) is generated from the conditional distribution

f (Ui|Yi; ωs ), i.e.,

Us+1
ik

∼ f
(

Ui

∣

∣Yi; ωs
)

for k = 1, 2, 3, . . . , l(s+ 1 ).

The conditional distribution does not have a standard form.

Thus, theMetropolis–Hastings algorithm is adopted. The iterations

are as follows [21]:

1. Initialize the parameters ωs = (ηsτ (t) , σ s, 6s) at s =

0. The initial values of(ηsτ (t) , σ s) are calculated using the

fixed quantile regression model. While the initial values of

6s are calculated using moment methods for the simulated

random effects.

2. For each subject, independently draw a sample {Us
i k:

k = 1,. . . ., l(s+1)} from the conditional distribution

f (Ui|Yi; ωs) using the Metropolis–Hastings algorithm.

The proposal distribution is the density of the

random effects f (Ui), while f (Ui|Yi; ωs) is the target

distribution that takes the following form as suggested

in equation (10) [21]:

f
(

Ui

∣

∣Yi; ωs
)

∝ f (Yi|Ui, Xi, Si; η
s
τ (t) , σ ). f (Ui| 6s). (10)

The choice of the proposal distribution is essential for the

convergence of the Metropolis–Hastings algorithm. Different

choices of the proposal covariance matrix lead to different results.

If the variability is very small, then all moves will be accepted.

However, the chain will not mix well. On the contrary, if the

variability is very large, then most proposed moves will be rejected;

consequently, the chain will not move. A simple solution to this

problem is to calculate the acceptance rate (the fraction of proposed

moves that is accepted) and choose the value of the standard

deviation so that the acceptance rate is far from 0 and far from

1 [22].

2.2.1.2. Approximation step

The EM algorithm [23] evaluates the expected value of the Q

function as Q
(

θ
∣

∣θ (t)
)

= E{l(θ |Y)|Yobs}, where l(θ |Y) is the log-

likelihood function. At the (s+1)th iteration, the SAEM algorithm

(the adopted algorithm) approximates the Q function as follows

[10, 20]:

Q
(

ω

∣

∣

∣
ω(s+1)

)

= (1− ϕs)Q
(

ω

∣

∣

∣
ω(s)

)

+ ϕs
1

ls+1

ls+1
∑

k = 1

L
(

ω; Yi,U
(s+1)
ik

)

= Q
(

ω

∣

∣

∣
ω(s)

)

+ ϕs

{

1

ls+1

∑

ls+1

k = 1
L
(

ω; Yi,U
(s+1)
ik

)

− Q
(

ω

∣

∣

∣
ω(s)

)}

, (11)

Where ϕs is a smoothness parameter which is a decreasing

sequence of positive numbers such that
∑∞

t = 1 ϕt → ∞,
∑∞

t = 1 ϕt
2

< ∞, and L
(

ω; Yi,U
(s+1)
i

)

is the pseudo log-

likelihood for the ith subject at (s+1)th step. It can be easily seen

that the pseudo log-likelihood takes the following form:

L ( ω; Y ,U) = log

n
∏

i = 1

f (Yi|Ui, Xi, Si; ητ (t) , σ ). f (Ui| 6)

=

n
∑

i = 1

log( f (Yi|Ui, Xi, Si; ητ (t) , σ ). f (Ui| 6))

=
∑

n
i = 1log( f (Yi|Ui, Xi, Si; ητ (t) , σ ))

+
∑

n
i = 1log( f (Ui| 6)). (12)

2.2.1.3. Maximization step

In the maximization step, Q
(

ω
∣

∣ω(s)
)

is maximized to update

the parameter estimates.

The aforementioned steps are repeated until convergence. The

value of the smoothing parameter ϕt governs the convergence

of the estimates. If the smoothing parameter ϕt is equal to 1

for all iterations, then the SAEM algorithm will be equivalent to

the MCEM algorithm. This is because the algorithm does not

take any memory into consideration. In this case, the SAEM will

converge quickly (convergence in distribution) to a neighborhood

solution. On the contrary, when the smoothing parameter ϕt is

different from 1, the algorithm will converge slowly (almost sure

convergence) to the ML solution [20].

Galarza et al. [20] suggested the following choice of the

smoothing parameter:

ϕt =











1 1 ≤ S ≤ cW
1

T−cW cW + 1 ≤ S ≤ ≤ W











,

Where W is the maximum number of Monte Carlo iterations,

and c determines the percentage of initial iterations with no

memory. It takes a value between 0 and 1, that is, the algorithm

will have memory for all iterations if c = 0, and in this case, the

algorithm will converge slowly to the ML estimates, and W needed

to be large to achieve the ML estimates. However, if c = 1, the

algorithm will have no memory and so will converge quickly to

a neighborhood solution. In this case (c = 1), the algorithm will

result in a Markov chain where the mean of the chain observations
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can be a satisfactory estimate, after removing a burn-in period [20].

A number between 0 and 1 (0 < c < 1) will ensure an initial

convergence, in distribution, to a solution neighborhood for the

first cW iterations and an almost sure convergence for the rest of

the iterations. Hence, this combination will lead to a fast algorithm

with good estimates.

For the SAEM algorithm, the E-Step coincides with the MCEM

algorithm, but a small number of simulations l (advised to be l ≤

20) is necessary. This is feasible because the SAEM algorithm not

only uses some or all previous simulations but also the current

simulation of the missing data. This “memory” property is set by

the smoothing parameter ϕt , and this is unlike the traditional EM

algorithm and its variants [20].

When implementing the SAEM algorithm, several settings

must be fixed. These include the number of total iterations W and

the cut point c that defines the starting of the smoothing step.

However, choosing those parameters depend on the model and the

data. A graphical approach is possible to choose these constants

such that the convergence of the estimates for all the parameters

can be monitored. Moreover, it is possible to monitor the

difference (relative difference) between two successive evaluations

of the log-likelihood l (ω|Y) given by
∥

∥l (ωs|Y) − l
(

ωs+1
∣

∣Y
)
∥

∥

or
∥

∥

∥

l(ωs+1|Y)
l(ωs|Y)

− 1
∥

∥

∥
, respectively. Furthermore, the Akaike

information criteria (AIC) can be calculated from the final

estimated log-likelihood to evaluate the model fit [10].

2.2.2. Estimation of the location of the
change point

An estimator of the change point t is as follows [7]:

t̂η,τ = arg
min

t ∈ (a, b) ∩ (Xn(2), Xnn− 1))Qn,τ

(

η̂n,τ (t) , t
)

, (13)

where a and b are two constants such that tτ is thought to be

in the interval (a, b), usually determined graphically, and Xn(2)

and Xn(n−1) are the second and (n−1)th order statistics of X
′

ijs,

respectively. Then θ̂n (τ ) is obtained, η̂n,τ
(

t̂η,τ
)

, and t̂η,τ . The

optimization method that is used to minimize Qn,τ (η̂n,τ , t) is

a combination of golden section search and successive parabolic

interpolation implemented by the function “optimize” in the R

package as suggested by Li et al. [7].

2.2.3. Standard errors and confidence intervals
There are studies on asymptotic theory for quantile regression

in the literature, however, it has been difficult to come up with

practical inference techniques [16]. Moreover, one of the main

disadvantages of the SAEM algorithm is that the estimated standard

errors are not automatically calculated. Hence, several methods

have been proposed to handle this problem. For instance, the rank

score test [9] and the block bootstrap method [24, 25]. The use of

the bootstrap method with quantile regression is very common.

The block bootstrap method to construct the confidence

intervals for model parameters is adopted in this article. When the

mistakes in a model or the data are correlated, the block bootstrap

is used. A simple case or residual resampling will not work in this

situation since the correlation in the data cannot be replicated.

By resampling within data blocks, the block bootstrap attempts to

replicate the correlation. The block bootstrap has primarily been

employed with time-series data, but it can also be utilized with data

that are correlated in space or between groups [26]. The number

of bootstrap replications is chosen according to the suggestion of

Andrews and Buchinsky [27].

3. Simulation study

The aim of this simulation study was 2-fold. First, to assess

the performance of the proposed techniques and to compare its

performance with the method of Li et al. [7], when the errors follow

a symmetric distribution. Second, to test the performance of the

proposed techniques when the errors follow a skewed distribution.

We consider the following linear mixed change point model:

yij = γ0τ +
(

β1,τ I
{

xij ≤ tτ
}

+ β2,τ I
{

xij ≥ tτ
}) (

xij − tτ
)

+ sTijγτ + zTijUi + ετ ,ij, (14)

for j = 1, 2, 3, 4, i = 1, . . . . . . ., n.

The goal was to estimate the fixed effects parameters βτ and γτ ,

and the location of the change point for a grid of percentiles p =

{0.25, 0.50, 0.75}.

3.1. Simulation setting

We use time points (m) = 4. Different sample sizes (n) have

been chosen, however, for the sake of parsimony and because the

results are similar, we report the results of n = 40 and 100. The

variable xij is simulated from the normal distribution with a mean

of 5 and a standard deviation of 2. The design matrix sij, which is

associated with fixed effects γτ consists of three columns. The first

column represents a binary variable that describes the treatment

group to which the subjects belong. The second column represents

a uniform (0,1) variable. The third column represents a normal

variable with a mean of 3 and a standard deviation of 1. The matrix

zij, that is associated with the random effects, is a subset of the

matrix sij with three columns that are the intercepts and column

numbers 2 and 3 in the matrix sij.

The fixed effects parameters were chosen as γ0 = 5.5, γ1 = 4,

γ2 = 2, and γ3 = 3. The location of the change point is fixed at

4.8, β1,τ = 4, and β2,τ = -5. The error terms ετ ,ij are generated

independently from two different distributions as follows:

1. An ALD (0, σ , p), where p stands for the respective

percentile to be estimated and σ = 1. This represents a

symmetric distribution.

2. A lognormal normal distribution with a mean of 0 and a

variance σ 2 = 1. This represents a skewed distribution.

The random effects Ui is a 3× 1 vector that is generated from a

multivariate–asymmetric Laplace distribution with a mean of 0 and

a variance–covariance matrix 6. The matrix 6 is chosen to follow
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AR(1) structure with ρ = 0.5 and σ = 0.8. This structure gives a

better acceptance rate for the Metropolis–Hasting algorithm.

We use l = 20 (number of simulations), W = 500 (number

of Monte Carlo iterations), and c = 0.2. Note that the choice of

c depends on the dataset and the underlying model. We generate

1,000 data samples for each scenario.

3.2. Simulation results

The convergence of the SAEM estimates is evaluated using the

visual inspection via trace plot. Moreover, through monitoring the

difference (relative difference) between two successive evaluations

of the log-likelihood l (ω|Y) given by
∥

∥l (ωs|Y) − l
(

ωs+1
∣

∣Y
)
∥

∥ or
∥

∥

∥

l(ωs+1|Y)
l(ωs|Y)

− 1
∥

∥

∥
, respectively.

Figures 1, 2 display samples from the trace plots of the estimates

for n = 40 and n = 100, respectively. The trace plot indicates

whether the estimates converge to the stationary distribution

or not. The convergence is slow if the sequence has a long-

term trend [28]. Figure 3 displays the visual monitoring of the

relative difference between two successive evaluations of the log-

likelihoods. Assume that the first 100 iterations (which is 20% of

W), as burn-in period, it is clear that all the estimates converge.

For all scenarios, the absolute relative bias (ARB) for each

parameter over the 1,000 replicates is obtained as ARB =
∣

∣

∣

estimated value−true value
true value

∣

∣

∣
, and the standard error for each estimator

is obtained as ˆSE
(

θ̂

)

=

√

1
K

∑1,000
k = 1

(θ̂k − θ̂∗)2, where θ̂k is the

Kth estimate of θ using the Kth sample and θ̂∗ is the average of the

multiple estimates, that is, θ̂∗ =
∑k

k = 1 θ̂k
k

.

Tables 1, 2 show the results of the simulations. We

compare the performance of the proposed algorithm with

the algorithm proposed by Li et al. [7]. We can conclude

the following:

1. The proposed estimators are asymptotically unbiased for

symmetric and skewed distributions. This is because the

relative absolute bias of all estimates using the proposed

algorithm is relatively small, as all values of ARB are <0.2%

of the value of the parameters, for both an ALD and the

lognormal distributions. The result is valid for sample sizes n

= 40 and 100.

2. It is clear that the ARB associated with most of the

parameter estimates, for the proposed algorithm, is less than

those of the algorithm proposed by Li et al. [7], when

the errors follow an ALD or the lognormal distribution

and sample sizes n = 40 and 100. This means that the

proposed method is better than the algorithm proposed by

Li et al. [7].

3. The proposed method is more efficient than the algorithm

proposed by Li et al. [7].The standard errors of most of

the estimators for the proposed algorithm are less than their

counterparts of the algorithm proposed by Li et al. [7].

4. All the AIC values for the proposed technique are less than

that for the model estimated by Li et al. [7].This means that the

proposed algorithm outperforms the algorithm proposed by

Li et al. [7].

5. According to the median absolute deviation values, the

same conclusion can be derived as the MAD values

for the proposed algorithm are less than that of the

Li et al. [7] algorithm.

FIGURE 1

Sample of the trace plot for the SAEM estimates (n = 40), ετ ,ij ∼ ALD.
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FIGURE 2

Sample of the trace plot for the SAEM estimates (n = 100), ετ ,ij ∼ ALD.

FIGURE 3

Sample of visual monitoring of the di�erence (relative di�erence) between two successive evaluations of the log-likelihood, ετ ,ij ∼ ALD.

4. Application: COVID-19

The first diagnosed case with COVID-19 symptoms is dated

back to December 2019 in Wuhan city, China. COVID-19 affected

the entire world, socially, economically, and even politically.

There were more than 3 million deaths by the end of April

2021 as reported by the WHO. The factors that affect the

spread of the disease, and the number of deaths, were the focus

of many studies.

Studies have shown that environmental factors, in general,

may affect the fast spread of COVID-19. Moreover, studies

tried to investigate the impact of economic factors on virus

transmission. A study on some Chinese cities during the

period 19 January and 29 February of the year 2020 revealed

that higher developed cities have high transmission rates. This

may be due to the high economic activity that needs high

social interactions [29].

The effect of demographic factors on the spread of COVID-19

was studied. Khan et al. [30] demonstrate that certain demographic

attributes, such as the age distribution, the poverty ratio, the

female smoker percentage, the obesity level, and the average

annual temperature of the country, are significantly associated with

COVID-19 death rate distribution.

In this article, we focus on global economic factors and health

factors affecting the monthly death rate per million of COVID-

19 to describe the spread and fatality of COVID-19 disease. We

investigate whether there is a threshold effect (change point) in the

relationship between the HDI and newmonthly deaths per million.

From Figure 4, we can conclude that the new deaths per million

are skewed to the right. Thus, we need to focus on the factors

that affect the lower and/or upper tails of the distribution of new

deaths. However, most of the proposed statistical methodologies

for describing longitudinal data with change points rely upon

distributional assumptions that are not held in this case.
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TABLE 1 Simulation results, the standard errors, and the relative bias for di�erent models at n = 40, and 100, ετ ,ij ∼ ALD.

n = 40, c = 0.2 n = 100, c = 0.2

Proposed method Li et al. [7] Method Li et al. [7]

Distribution Parameter Relative
bias%

S.E Relative
bias%

S.E Relative
bias%

S.E Relative
bias%

S.E

τ = 0.25 γ 0 0.077 0.043 0.142 0.052 0.084 0.053 0.115 0.115

γ 1 0.053 0.027 0.041 0.026 0.032 0.039 0.036 0.036

γ 2 0.181 0.035 0.274 0.043 0.130 0.044 0.058 0.058

γ 3 0.024 0.011 0.086 0.012 0.003 0.010 0.000 0.000

B1 0.008 0.008 0.005 0.010 0.012 0.012 0.022 0.022

B2 0.040 0.009 0.045 0.009 0.016 0.012 0.030 0.030

Change point 0.093 0.022 0.089 0.025 0.015 0.029 0.026 0.026

σ 0.322 0.019 0.375 0.024

AIC 11,603.900 11,604.880 29,134.340 29,136.100

Median absolute deviation 1.43 3.19 2.55 3.76

τ = 0.5 γ 0 0.121 0.165 0.142 0.188 0.078 0.043 0.122 0.052

γ 1 0.299 0.117 0.041 0.146 0.028 0.027 0.058 0.026

γ 2 0.389 0.125 0.274 0.177 0.065 0.035 0.032 0.043

γ 3 0.120 0.045 0.086 0.056 0.021 0.011 0.025 0.012

B1 0.058 0.029 0.005 0.039 0.025 0.008 0.031 0.010

B2 0.003 0.048 0.045 0.054 0.021 0.009 0.023 0.009

Change point 0.006 0.088 0.089 0.110 0.006 0.022 0.015 0.025

σ 0.140 0.075 0.124 0.019

AIC 11,619.340 11,620.040 29,065.320 29,066.240

Median absolute deviation 1.57 2.08 1.44 2.22

τ = 0.75 γ 0 0.008 0.152 0.045 0.167 0.103 0.070 0.104 0.083

γ 1 0.016 0.151 0.139 0.176 0.043 0.039 0.030 0.041

γ 2 0.039 0.101 0.395 0.113 0.037 0.043 0.117 0.051

γ 3 0.005 0.033 0.007 0.039 0.113 0.014 0.134 0.015

B1 0.033 0.035 0.037 0.040 0.019 0.014 0.010 0.019

B2 0.064 0.039 0.105 0.048 0.007 0.013 0.013 0.014

Change point 0.011 0.085 0.017 0.097 0.000 0.032 0.000 0.000

σ 0.354 0.074 0.398 0.026

AIC 11,663.790 11,664.600 29,164.130 29,166.860

Median absolute deviation 2.28 2.33 2.46 3.97

4.1. Data

The used data about the COVID-19 new deaths were obtained

from the Our World In Data, an online (https://ourworldindata.

org/coronavirus) publication. This cite has become one of the

world’s leading websites during the pandemic in 2020. The study

focuses on the monthly data during the period starting from

1 April 2020 to 30 April 2021. The dependent variable is the

new monthly deaths per million while the independent variables

are as follows:

1- ICU: the monthly number of patients with COVID-19 in

intensive care units (ICUs) on a given day per million.

2- The number of tests: the monthly tests conducted per new

confirmed case of COVID-19.

3- Diabetes prevalence: Diabetes prevalence (% of the

population aged 20–79) in 2017.

4- Hospital beds: The number of hospital beds per 1,000 people,

most recent year available since 2010.

5- Median age: The median age of the population; UN

projection for 2020.
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TABLE 2 Simulation results, the standard errors, and the relative bias for di�erent models at n = 40, and 100, ετ ,ij ∼ Lognormal.

n = 40, c = 0.2 n = 100, c = 0.2

Proposed method Li et al. method Proposed method Li et al. method

Distribution Parameter Relative
bias%

S.E Relative
bias%

S.E Relative
bias%

S.E Relative
bias%

S.E

τ = 0.25 γ 0 0.092 0.141 0.106 0.187 0.017 0.055 0.101 0.082

γ 1 0.167 0.083 0.198 0.103 0.102 0.058 0.089 0.064

γ 2 0.127 0.054 0.241 0.079 0.042 0.036 0.015 0.054

γ 3 0.043 0.028 0.041 0.035 0.098 0.009 0.151 0.012

B1 0.004 0.025 0.051 0.035 0.0007 0.011 0.035 0.022

B2 0.002 0.013 0.023 0.017 0.0001 0.009 0.006 0.018

Change-point 0.0748 0.057 0.0741 0.076 0.0362 0.030 0.036 0.042

σ 0.363 0.043 0.0811 0.025

AIC 11,647.47 11,650.32 29,150.83 29,150.87

Median absolute deviation 1.77 2.99 1.14 3.01

τ = 0.5 γ 0 0.204 0.131 0.267 0.137 0.029 0.060 0.033 0.070

γ 1 0.017 0.074 0.025 0.063 0.107 0.047 0.090 0.055

γ 2 0.078 0.071 0.126 0.103 0.009 0.025 0.157 0.039

γ 3 0.008 0.025 0.022 0.029 0.004 0.011 0.014 0.015

B1 0.001 0.022 0.0006 0.032 0.003 0.013 0.003 0.016

B2 0.012 0.010 0.025 0.015 0.005 0.008 0.004 0.011

Change-point 0.077 0.056 0.072 0.063 0.038 0.027 0.036 0.034

σ 0.1054 0.043 0.249 0.022

AIC 11,663.5 11,665.6 29,124.52 29,125.03

Median absolute deviation 1.07 2.206 0.93 2.63

τ = 0.75 γ 0 0.044 0.177 0.051 0.198 0.049 0.066 0.046 0.096

γ 1 0.039 0.107 0.045 0.107 0.153 0.052 0.174 0.062

γ 2 0.186 0.058 0.164 0.081 0.002 0.053 0.094 0.075

γ 3 0.061 0.02 0.072 0.033 0.143 0.014 0.121 0.021

B1 0.008 0.029 0.014 0.030 0.011 0.014 0.004 0.018

B2 0.007 0.018 0.014 0.242 0.005 0.011 0.002 0.016

Change-point 0.024 0.068 0.026 0.115 0.036 0.035 0.042 0.048

σ 0.011 0.050 0.103 0.030

AIC 11,653.44 11,654.07 29,130.44 29,139.75

Median absolute deviation 2.18 2.509 2.275 2.95

6- Stringency index (SI): The government response stringency

index; it is a composite measure based on nine response

indicators, including school closures, workplace closures, and

travel bans, rescaled to a value from 0 to 100 (100 is the

strictest response).

7- HDI: A composite index measuring average achievement

in three basic dimensions of human development; a

long and healthy life, knowledge, and a decent standard

of living values for 2019. It ranges from 0 to 1 in

which 1 indicates higher development countries in the

three aspects.

The 30 countries incorporated in the study are as follows:

Austria Bangladesh Brazil Bulgaria Canada

China Colombia Denmark Djibouti Dominican

Egypt Ethiopia Ghana Greece Hungary

India Iraq Ireland Italy Jordan

Kenya Morocco Portugal Russia Spain

Sweden Tunisia Turkey UK USA

These countries are chosen to represent different areas of the

world according to the availability of the data. It is well mentioned
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FIGURE 4

Histogram of the monthly new deaths per million.

TABLE 3 Descriptive statistics of COVID-19 data.

Minimum Maximum Mean Std.
deviation

New monthly

deaths per

million

0 704 72 107

ICU 1 5,882 1,018 1,217

Number of

tests

83 33,120 1,906 3,009

Diabetes

prevalence

3 17 7 3

Hospital beds 0 8 3 2

Median age 20 48 35 9

SI 25 99 66 15

HDI 0.485 0.955 0.793 0.128

that there are some countries suffering frommissing data, especially

in the variables monthly number of patients with COVID-19 in

intensive care units (ICUs), and monthly tests conducted per newly

confirmed cases of COVID-19. These values are imputed using the

regression method. The variables that will be associated with the

random effects are stringency index (SI), diabetes prevalence, and

median age in addition to the intercept.

Table 3 presents the descriptive statistics of the variables in the

study. Figure 5 presents the profile plot of the death rate for all

countries over time, from it we can conclude that death distribution

for all countries is skewed.

4.2. Data analysis and results

The aim of the data was to study the global economic and health

factors that affect the monthly death rate due to COVID-19 from

1 April 2020 to 30 April 2021. As reported by the WHO, there

are more than 3 million deaths due to COVID-19 by the end of

April 2021. Many studies tried to understand the factors behind the

spread of the disease and the factors that affect the number of deaths

throughout the world. This enables us to minimize the losses faced

due to COVID-19. Different factors are considered, in this article,

including a composite index measuring average achievement in

three basic dimensions of human development: a long and healthy

life, knowledge, and a decent standard of living (HDI). The HDI

ranges from 0 to 1, where 1 indicates higher human development

in three dimensions.

Figure 6 shows a scatter plot of the relationship between the

HDI and the new deaths per million. From Figure 6, we can

see that there is a suspicion of having a threshold effect on

the relationship between the HDI and the new monthly deaths

per million. This is obvious, especially for mean regression,

25th percentile regression, and 80th percentile regression. Hence,

the location of the change point may be at HDI between 0.7

and 0.8. This leads us to estimate the mixed effects quantile

regression with a change point at 0.5th quantile and at 0.8th

quantile.

The proposed method was implemented at the quantiles τ

= 0.5 and τ = 0.8 to test whether the HDI had any threshold

effect on the monthly new deaths per million. The following

model is fitted:

MDR = γo,τ +
(

β1,τ I
{

xij ≤ tτ
}

+ β2,τ I
{

xij ≥ tτ
}) (

xij − tτ
)

+ sTijγτ + zTijUi + ετ ,ij, j = 1, 2, 3, .., 13i = 1, . . . , 30, (15)

Where xij is the HDI, sTij is a vector containing the observation

of the following variables: ICU, number of tests, diabetes

prevalence, hospital beds, median age, and stringency index (SI).

The zTij is a vector containing ones to represent the intercept,

stringency index (SI), diabetes prevalence, and median age. The

estimates of the fixed effect of the model and the location of the

change point at τ = 0.5, using the proposed algorithm and the
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FIGURE 5

Spaghetti plot of new monthly deaths per million.

FIGURE 6

Scatter plot between HDI and monthly new deaths; the lines represent the fitted quantile regressions at 25th percentiles, 80th percentiles, and the

fitted mean regression.

algorithm of Li et. al. [7] are summarized in Table 4. Moreover,

the 95% confidence interval is obtained using the block bootstrap

method with the number of replications equal to 1,000. From

Table 4, depending on the confidence intervals, it is clear that

there is a threshold effect in the relationship between the HDI and

the new monthly deaths per million at HDI = 0.79 and 0.816,

respectively. The effect of the HDI on the 0.5th quantile of new

monthly deaths per million due to COVID-19 is 459.41 where

this effect declines to 128.68 after the threshold is reached. Both

effects are significant at a 95% confidence level. But for the 0.8th

quantile we found that, prior to the threshold value, the effect

of the HDI on the 0.8th quantile of new monthly deaths per

million due to COVID-19 is 1414.293. This effect declines and

has a negative value (-122.95) after the location of the threshold.

This means that increasing the HDI affects the 0.5th quantile of

new monthly deaths per million due to COVID-19 positively,

before and after the threshold value. However, it affects the 0.8th

quantile of new monthly deaths per million due to COVID-

19 before the positive threshold value and after the negative

threshold value.

Furthermore, we can see that there is a positive effect of

the monthly number of patients with COVID-19 in intensive

care units (ICUs) for both 0.5th and 0.8th quantiles of new

monthly deaths per million. This effect is greater in the case

of the 0.8th quantile. There is a negative effect of each of

the number of tests, and the median age of the population

on both 0.5th and 0.8th quantiles of new monthly deaths per

million. However, their effect is greater in the case of the

0.8th quantile. Each of the stringency index, hospital beds,

and diabetes prevalence has no significant effect on both 0.5th

and 0.8th quantiles of new monthly deaths per million due

to COVID-19.
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TABLE 4 Estimation of the mixed e�ects quantile change point regression model for COVID-19 data.

Coe�cient tau = 0.5 tau = 0.8

Estimate 95% CI Estimate 95% CI

Intercept γ 0 −346.03 −358.571 −284.866 −842.653 −855.085 −828.045

ICU γ 1 0.0302 0.026 0.031 0.105 0.100904 0.113117

Number of tests γ 2 −0.0062 −0.0066 −0.004 −0.007 −0.00767 −0.00511

SI γ 3 0.2042 −0.138 0.261 0.462 −0.10951 0.567555

Diabetes Prevalence γ 4 −0.0943 −1.795 0.868 −1.842 −2.24477 1.615969

Hospital beds γ 5 −0.3533 −4.566 0.453 0.811 −4.10941 3.664168

Median age γ 6 −1.2929 −2.035 −0.848 −5.640 −6.26093 −4.95497

HDI B1 459.41 438.673 468.887 1,414.293 1,408.687 1,419.164

B2 128.68 128.622 128.677 −122.954 −128.65 −116.955

Change point 0.79 0.783 0.842 0.816 0.813 0.817

TABLE 5 AIC and median absolute deviation values of the two models for

COVID-19 data.

Proposed
method

Li et al. [7]
method

AIC 24,679.40 24,690.74

tau= 0.5

tau= 0.8

11,109.59 11,121.28

Median absolute

deviation

tau= 0.5 28.5 31.8

tau= 0.8 40.4 42.9

Table 5 presents the AIC values for the proposed model and

the Li et al. [7] model at τ = 0.5 and 0.8. The results show

that the proposed model performs better than the model of

Li et al. [7].

5. Conclusion

In this article, we propose the mixed effects quantile regression

with a change point model for longitudinal data by relaxing

the independence assumption. The mixed effects are used to

capture the dependence structure of the longitudinal data. We

use the stochastic approximation EM algorithm to estimate

the parameters using the link between an asymptotic Laplace

distribution and the quantile regression. In addition, the location

of the change point is estimated using optimization methods.

Simulation studies are conducted to evaluate the proposed

techniques. The simulation results show that the proposed

techniques are better than those of Li et al. [7] in terms

of the relative biases and the standard errors for symmetric

and skewed distributions.

The proposed techniques are applied to a real dataset about

COVID-19. We found that there is a threshold effect in the

relationship between the HDI and the 0.5th and 0.8th quantiles

of new monthly deaths per million. Moreover, the results show a

positive effect on the monthly number of patients with COVID-

19 in intensive care units (ICUs) for both 0.5th and 0.8th quantiles

of new monthly deaths per million. There is a negative effect

of each of the number of COVID-19 tests and the median age

of the population on both 0.5th and 0.8th quantiles of new

monthly deaths per million. The stringency index, hospital beds,

and diabetes prevalence have no significant effect on both 0.5th and

0.8th quantiles of new monthly deaths per million.

The proposed techniques are for complete longitudinal data

and one change point. A new venue for future research is to extend

the proposed techniques for longitudinal data with missing values.

Another future research point is to modify the proposed methods

to accommodate multiple change points. These points are under

consideration by the researchers.
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