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A statistical methodology for
classifying earthquake detections
and for earthquake parameter
estimation in smartphone-based
earthquake early warning systems

Frank Yannick Massoda Tchoussi and Francesco Finazzi*

Department of Economics, University of Bergamo, Bergamo, Italy

Smartphone-based earthquake early warning systems (EEWSs) are emerging as

a complementary solution to classic EEWSs based on expensive scientific-grade

instruments. Smartphone-based systems, however, are characterized by a highly

dynamic network geometry and by noisy measurements. Thus, there is a need to

control the probability of false alarms and the probability of missed detection. This

study proposes a statistical methodology to address this challenge and to jointly

estimate in near real-time earthquake parameters like epicenter and depth. The

methodology is based on a parametric statistical model, on hypothesis testing

and on Monte Carlo simulation. The methodology is tested using data obtained

from the Earthquake Network (EQN), a citizen science initiative that implements a

global smartphone-based EEWS. It is discovered that, when the probability to miss

an earthquake is fixed at 1%, the probability of false alarm is 0.8%, proving that EQN

is a robust smartphone-based EEW system.

KEYWORDS

maximum likelihood (ML), Monte Carlo simulation (MC), hypothesis testing (HT),
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1. Introduction

Wireless sensor networks (WSNs) enable solutions in multiple fields, and they are

adopted in environmental, health, urban, and military applications [1, 2]. A problem

commonly solved within WSNs is the detection and localization in space of relevant events

or targets [3–7].

This study focuses on earthquake early warning systems (EEWSs) [8–10], which are

deployed in seismic areas for the real-time detection of earthquakes, with the ultimate goal

of sending alerts to citizens and stopping critical processes before ground shaking begins.

Classic EEWSs are based on a dense network of scientific-grade instruments, with

construction and operating costs on the order of millions of euros [11]. This largely limited

their implementation, especially in seismic developing countries.

Due to smartphone technology, low-cost EEWSs have been recently implemented at

the global level [12]. Smartphones are used to detect ground shaking using the on-board

accelerometer, and a warning is issued to the population as soon as the earthquake is

detected. This path has been explored by the Earthquake Network (EQN), a citizen science

initiative [13, 14], that, since 2013, implements the first smartphone-based EEWS.

Within the EQN EEWS, nodes of the WSN are the smartphones voluntarily made

available by citizens. This posesmany challenges because personal smartphonesmainly sense

the “anthropic noise” connected with human activities.

The primary challenge faced by the EQN is to control the probability of false alarms

and the probability to miss an earthquake. Alerts may be triggered by events unrelated to

earthquakes and some (possibly strong) earthquakes may be missed, especially if the number
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of monitoring smartphones is small. Both false alarms and missed

detections may undermine people’s trust in the EQN.

In the pivotal study by Finazzi and Fassò [15], a statistical

methodology is developed for identifying in real-time earthquake

occurrence. The study, however, does not take into account

the spatial dimension of the smartphone network, making

the detection algorithm prone to false alarms. Moreover, the

methodology does not allow to estimate important earthquake

parameters such as epicenter and depth. In Finazzi et al. [16],

instead, the EQN detection capabilities are modeled within a

probabilistic framework. It is discovered that the EQN missed

some relatively strong earthquakes that were supposed to be

detected by the smartphone network. These considerations and

findings suggest that there is room to improve EQN’s methods and

algorithms.

This study proposes a statistical methodology for 1) controlling

the probability of false alarms, 2) controlling the probability of

missed detection, 3) classifying a detection between true and false

earthquake, and 4) estimating earthquake epicenter and depth (if

the detection is classified as a true earthquake).

The methodology is based on a statistical parametric model,

statistical hypothesis testing, and Monte Carlo simulation.

Contrary to model-less approaches (see for instance [3]), the

methodology exploits the fact that the spatio-temporal dynamic of

seismic waves is well-known. This information is retained by the

statistical model, and it helps to both classify the EQN detection

and to estimate the earthquake parameters.

Due to the peculiarity of the specific application, real-time

is a constraint. Ideally, classification and earthquake parameter

estimation should not exceed 1 or 2 s of computing time.

The smartphone-based EQN is used to test the statistical

methodology, which is then applied to some true and false

EQN detections.

2. EQN’s detection algorithm

Before formalizing the classification and the earthquake

parameter estimation problems, it is useful to detail the output

of the earthquake detection algorithm currently implemented by

the EQN [15]. For any given area of radius 30 km, the algorithm

compares the number of triggering smartphones in the last 10 s

with the number of active smartphones. A triggering smartphone

is a smartphone that detected an acceleration above a threshold,

while an active smartphone is a smartphone known to monitor

earthquakes. If the ratio between triggering smartphones and active

smartphones exceeds a threshold, an earthquake is claimed to

be detected. The output of the detection algorithm consists of

the detection location and the list of the triggering smartphones

(triggers for short), which are identified by their spatial coordinates

(latitude and longitude) and the triggering time.

3. Problem formalization

An earthquake detection made by an EQN is defined in terms

of kj > 0 triggers, where j is the index of the generic detection.

In general, kj is not a constant, meaning that each detection is

characterized by a different number of triggers. Each trigger is

described by the feature vector as follows:

xi =
(

ti, lati, loni
)

, i = 1, ..., kj,

where ti ∈ R is the triggering time, while
(

lati, loni
)

∈ S2 are the

smartphone coordinates, withS2 being the sphere embedded inR3.

The kj×3matrixX =
(

x
′
1, ..., x

′
kj

)′
is the data point, and the feature

space is X = ∪∞
k=1

Xk, with Xk = R
k ×

(

S2
)k

and k > 0 is the

generic number of triggers.

Let Y = {−1, 1} ∋ y be the label space. For each earthquake

detection, y = 1 if the detection is false while y = −1 if the

detection is related to a true earthquake.

The aim is to learn a hypothesis map h :X → Y such that

y ≈ h (X) for any data point X (i.e., for any future EQN detection).

The map h is highly non-linear since the information content of

X is determined by the spatio-temporal dynamics of the seismic

waves and spatial distribution of the smartphones at the time of the

earthquake.

A statistical parametric model f :X →2 is adopted to

understand if X is generated by a true earthquake. The unknown

model parameter vector is θ ∈ 2 = R
s, with s ≪ kj as the vector

size. The hypothesis map is then h (X) = g
(

f (X)
)

= g (θ). Note

that s is constant, and it does not depend on the dimension of X.

When dealing with EEW systems, it is required to control

two parameters: the probability α of missed detections (true

earthquakes which are not detected by the system) and the

probability β of false detections (detections which are not related

to any occurred earthquake). It is thus reasonable to adopt a 0/1

loss function as follows:

L
((

X, y
)

, g
)

=

{

1 if y 6= ŷ

0 else,

and to learn a g that minimized the Bayes risk

ĝ = argmin
g

E
(

L
((

X, y
)

, g
))

. (1)

As discussed by Jung [17], solving (Equation 1) requires

knowing the joint probability distribution p
(

X, y
)

. Instead, we

rely on the fact that it is relatively easy to simulate EQN

detections under different smartphone geometries and different

earthquake parameters. This induces a variability on X and on

the number of triggers kj. Assuming to have a data set D =
(

X
(1), y(1)

)

, ...,
(

X
(m), y(m)

)

and that D is a representative sample

of p
(

X, y
)

, we define the empirical risk as follows:

L
(

g | D
)

= (1/m)

m
∑

j=1

L
((

X
(j), y(j)

)

, g
)

,

and g is learned from the following minimization problem:

ĝ = argmin
g

L
(

g | D
)

. (2)

Note that solving (Equation 2) is equivalent to solve

ĝ = argmin
g

α
(

g
)

+ β
(

g
)

, (3)
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where it is made explicit that the probabilities of missed and false

detections depend on g.

From an EEW perspective, the solution provided by Equation

(3) is not necessarily the best. In some contexts, a missed detection

has a larger negative impact than a false detection, while in other

contexts, it is the opposite. In this case, one probability is fixed to

the desired level, and the other probability is minimized. Two other

minimization problems for learning g are the following:

ĝ = argmin
g

α
(

g
)

+ β , (4)

ĝ = argmin
g

α + β
(

g
)

. (5)

4. Statistical parametric model and
classification

In this section, we propose a statistical parametric model for

the generic data point X. The observed triggering time for a

smartphone sensing an earthquake is modeled as

ti = t∗i + ǫi, i = 1, ..., kj, (6)

where t∗i is the expected triggering time, while ǫi ∼ N(0, σ 2
ǫ ) is a

random component. More in detail

t∗i =
Di,H

v
+ tO, (7)

with

Di,H =

√

d2E + 4R(R− dE)sin

(

Di,E

2R

)2

, (8)

as the distance between the hypocentre and the smartphone

location, v is the seismic wave speed, and tO ∈ R is the earthquake

origin time.

In Equation (8), Di,E is the distance between the epicenter

(latE, lonE) ∈ S2 and the smartphone location, dE ∈ [0, 500] is

the earthquake depth, and R is the earth radius (6, 371 km). Here,

it is assumed that all smartphones either detect the primary seismic

wave (v = 7.8 km/s) or they all detect the secondary wave (v =

4.5 km/s). This assumption is justified by the fact that earthquake

detection is based on smartphones within a radius of 30 km, which

is a relatively small area.

The role of the random component ǫi is to model the difference

between the expected and the observed triggering time. This

difference is mainly due to the smartphone detection delay and a

seismic wave velocity that may differ from the expected value.

Equations (6–8) fully define the statistical model f and the

model parameter vector is θ = (latE, lonE, dE, tO, σ
2
ǫ ) ∈ 2 =

S2 × [0, 500]× R× R
+ ⊂ R

6.

4.1. Model estimation

Model estimation is based on the maximum likelihoodmethod.

For a generic EQN detection, the log-likelihood function based on

the joint probability distribution of 1ti = ti − t∗i is

l(θ;X) = −
k

2
ln 2π −

k

2
ln σ 2

ǫ −
1

2σ 2
ǫ

k
∑

i=1

1t2i . (9)

The 1ti are assumed to be independent. This assumption

is realistic because smartphones do not share a common clock,

detection delays are independent, and the detection by each

smartphone is influenced by local factors (e.g., where the

smartphone is located, at which floor of the building, and the

accelerometer sensitivity).

Maximum likelihood estimates of latE, lonE, dE, and tO are

given by

argmin
latE ,lonE ,dE ,tO

k
∑

i=1

1t2i . (10)

The solution of Equation (10) cannot be obtained in a

closed form due to the non-linearity of Equation (8) hence,

estimates are obtained via numerical optimization using the BFGS

Quasi-Newton method [18]. As usual, to avoid local minima,

the numerical optimization algorithm is run multiple times

starting from random initial values for latE, lonE, dE, and tO.

The minimization in Equation (10) is possible because for any

“proposed" values of the model parameters, t∗i can be computed

using Equations (7), (8) and then compared with the observed ti.

At convergence, the BFGS quasi-network method also returns

the Hessian matrix. Since maximum likelihood estimates for model

parameters are obtained from aminimization problem, the Hessian

is equivalent to the observed Fisher information matrix. The

variance–covariance matrix of the three parameters is then the

inverse of the Hessian matrix from which standard errors are easily

computed.

Finally, the maximum likelihood estimate of the variance is as

follows:

σ̂ 2
ǫ =

1

k

k
∑

i=1

(1̂ti − µ̂)2, (11)

where 1̂ti = ti − t̂∗i is computed after replacing in Equations (7)

and in Equation (8) the maximum likelihood estimates of latitude,

longitude, and depth, while µ̂ is the mean of the 1̂ti.

4.2. EQN detection classification

Among all elements of θ , the parameter that carries information

about how the EQN detection should be classified is σ 2
ǫ . Indeed, σ̂

2
ǫ

tends to be small when the earthquake is true (and triggering times

follow the seismic wave dynamic) while σ̂ 2
ǫ tends to be large when

the detection is not related to an earthquake event. This implies that

g (θ) reduces to g
(

σ 2
ǫ

)

.

In this study, g is chosen to be a statistical hypothesis test on σ 2
ǫ .

The system of hypothesis is given by

{

H0 : σ
2
ǫ = δ

H1 : σ
2
ǫ > δ.

(12)
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The null hypothesis is rejected when the variance is higher than

expected, namely, when smartphone triggering times do not follow

the propagation law of the primary or secondary seismic wave. As

customary in the statistical hypothesis testing, the probability α is

fixed, and it represents the probability to reject the null hypothesis

when it is actually true (namely, it is the probability to miss a true

earthquake).

The test statistic is as follows:

T = df
σǫ

2

δ
, (13)

which, under the null hypothesis, is distributed as a chi-square with

k − 4 degrees of freedom (df ), where 4 is the number of estimated

parameters in Equation (10). The null hypothesis is rejected if

T̂ > q(1−α),df , where T̂ is obtained replacing σ 2
ǫ with σ̂ 2

ǫ in

Equation (13), while q(1−α),df is the (1−α)-quantile of a chi-square

distribution with df degrees of freedom, usually called the critical

value. In practice, an EQNdetection is a true earthquake unless data

bring enough evidence that the detection is actually false.

Since we do not know which seismic wave is detected by the

smartphones, two models f are estimated: one with v = 7.8 km/s

and another with v = 4.5 km/s in Equation (7). This brings to two

estimated values for σ 2
ǫ and two hypothesis tests are implemented.

The detection is classified as a false earthquake if the null hypothesis

is rejected under both tests; otherwise, the earthquake is classified

as true.

1: Initialisations: the number of times N the
initial values of latE, lonE, dE and tO are
randomized when solving (Equation 10). The
degrees of freedom df.

2: for z = 1, . . . ,N do
3: Sample latE, lonE, dE and tO from uniform

distributions.
4: Solve the minimization problem in Equation

(10).
5: Compute σ̂ 2

ǫ in Equation (11).
6: Let latE,z, lonE,z, dE,z, tO,z and σ̂ 2

ǫ,z be the
estimates for the z-th iteration.

7: Let uz =
∑k

i=1 1t2i when the model parameters
are latE,z, lonE,z, dE,z, tO,z.

8: end for
9: Solve z∗ = argmin

z
uz.

10: Maximum likelihood estimates of model
parameters are latE,z∗, lonE,z∗, dE,z∗, tO,z∗ and σ̂ 2

ǫ,z∗.
11: Compute the quantile q1−α,df of a chi-square

distribution with df degrees of freedom.
12: Set the vector w in Equation (14) and the

vector φ in Equation (15) replacing σ̂ǫ
2 with

σ̂ 2
ǫ,z∗.

13: Compute w
′φ and classify the EQN detection

using the rule in Equation (16).
14: Return the classification ŷ.
15: if ŷ = −1 then
16: Return the estimated earthquake parameters

latE,z∗, lonE,z∗, dE,z∗, tO,z∗.
17: end if

Algorithm 1. EQN detection classification and earthquake parameters

estimation.

It is worth noting that the statistical hypothesis test is equivalent

to a linear map. Indeed, setting

w =

(

1

δ
, 1

)′

, (14)

φ =
(

df σ̂ǫ
2,−q(1−α),df

)′
, (15)

then g = w′φ, and the earthquake detection classification is

based on the following rule:

ŷ =

{

−1 if w′φ < 0

1 else.
(16)

Finally, δ is obtained by solving the problem

δ̂ = argmin
δ

α + β (δ) . (17)

Algorithm 1 summarizes the steps for classifying an EQN

detection and for estimating the earthquake parameters in case the

detection is classified as a true earthquake.

5. Simulation study

The minimization problem in Equation (17) has no closed-

form solution. For this reason, we implement a Monte Carlo

simulation that aims to simulate a data set D and to minimize

Equation (17).

A total of 1,000 true EQN detections and 1,000 false EQN

detections are simulated considering the true locations of 1,000

smartphones of the EQN in Lima (Peru).

The probability of missed detection is fixed to α = 0.01 while

δ is made varying from 0.1 to 1.5 with step 0.1. For each value of δ,

β (δ) is computed by estimating the model f and by implementing

the hypothesis test (Equation 13) overall data points X
(j) in D.

Finally, δ̂ is the value of δ that minimizes β (δ).

5.1. Simulation of true detections

For simulating a true earthquake, the following aspects are

taken into account: the earthquake epicenter and depth, the

arrival time of the seismic wave at the smartphone locations,

the earthquake detectability by the smartphone, and the error

on the triggering time. Finally, we account for the fact that

smartphones may detect events unrelated to the earthquake.

The epicenter locations (lonE and latE) are simulated uniformly

inside the coordinates box [−12.39◦,−11.74◦] for latitude and

[−77.17◦,−76.66◦] for longitude. The box encompasses the EQN

of Lima. On the contrary, the earthquake depth is simulated

uniformly in the range [0, 100] km independently of the

earthquake epicenter.

The arrival time of the seismic wave at each smartphone

location is simulated from Equation (6) assuming tO = 0

and v = 7.8 km/s. Only 70% of smartphones are made

triggering because of the earthquake. For these smartphones,
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FIGURE 1

Simulated true earthquake detection based on the EQN smartphone network of Lima (Peru). The diameter of circles is proportional to the triggering

time.

FIGURE 2

Simulated false earthquake detection based on the EQN smartphone network of Lima (Peru). The diameter of circles is proportional to the triggering

time.

the error on the triggering time is simulated from a zero

mean normal distribution with variance σ 2
ε = 1.67.

Such variance guarantees that the 1st and the 99th

percentiles of the error distribution are around −3 and 3 s,

respectively, which are realistic values for an error on the

triggering time.

Of the remaining 30% of smartphones which do not trigger, 6%

are made triggering at random with a triggering time uniformly
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FIGURE 3

Empirical distributions of σ̂ 2
ǫ under simulated true detections (blue histogram) and under simulated false detections (red histogram).

FIGURE 4

Box plot of the errors on epicenter location (latE , lonE) (left) and box plot of the errors on earthquake depth dE (right) for the 1,000 simulated true

earthquake detections.

generated in the range [0, 12] s. This implies that when the

earthquake is detected by the EQN detection algorithm, the list

of triggering smartphones may include triggers unrelated to the

earthquake dynamic.

Once the list of triggering smartphones is defined and sorted by

triggering time, the EQN detection algorithm is applied to the list.

The algorithm stops when the detection condition is satisfied, and

the sub-list of triggers that concurred with the earthquake detection

is given as the output.

Figure 1 shows an example of a simulated true earthquake. Two

separated regions can be visually identified, one with triggering

smartphones (those that concurred with the detection) and another

with non-triggering smartphones not yet reached by the seismic

waves.
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FIGURE 5

EQN triggers for the earthquake occurred on 4 October 2022 close to Genoa (Italy). The diameter of circles is proportional to the triggering time.

TABLE 1 Detection classification and earthquake parameters estimation for the EQN detection near Genova (Italy) assuming v equal to 7.8 and 4.5 km/s.

v = 7.8 km/s v = 4.5 km/s

Real Estimated Error Estimated Error

Latitude (◦) 44.46 44.43 0.03 44.43 0.02

[44.38, 44.47] [44.40, 44.45]

Longitude (◦) 9.06 9.06 0.00 9.03 0.03

[9.01, 9.11] [9.03, 9.09]

Depth (km) 8.00 0.01 7.99 0.01 7.99

[0.00, 8.36] [0.00, 3.80]

Estimated variance - 0.57 - 1.03 -

Test statistic value - 17.18 - 31.02 -

Critical value - 34.80 - 34.80 -

Classification - True earthquake - True earthquake -

The number of triggering smartphones is n = 21, and 99% confidence intervals is presented in brackets. Real earthquake parameters are taken from the website of the European-Mediterranean

Seismological Centre (https://www.emsc-csem.org).

5.2. Simulation of false detections

To simulate a false detection, we assume that

smartphones trigger at random with a triggering time

that does not follow the law of seismic wave propagation.

Only 30% of the smartphones are made triggering,

and the triggering time is uniformly sampled in the

range [0, 12] s.

Figure 2 shows an example of a simulated false EQN detection.

Contrary to true earthquakes, no specific spatial pattern on the

triggers is observed.

5.3. Simulation results

The minimization of Equation (17) is attained when δ̂ =

0.6 and β is found to be equal to 0.008 (conditionally on

α = 0.01). Figure 3 shows the empirical distributions of σ̂ 2
ǫ

for both true and false simulated EQN detections. Although the

detection classification is based on the hypothesis test (and not

directly on σ̂ 2
ǫ ), the overlapping between distributions suggests that

classification errors are possible.

A by-product of detection classification is the estimate of the

earthquake parameters. Figure 4 shows the box plots of errors
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FIGURE 6

Triggers for the false EQN detection occurred on 25 September 2022, close to Acapulco (Mexico). The diameter of circles is proportional to the

triggering time.

on earthquake epicenter and depth. Both errors have a median

of around 18 km, suggesting that along with the detection

classification (true/false), the model output can be exploited to

provide preliminary estimates of the earthquake parameters.

6. Real data example

The methodology developed in this study is applied to true

and false detections made by the EQN. As a true earthquake, the

event occurred near Genova (Italy) on 4 October 2022 at 21:41:10.5

UTC is considered. Figure 5 depicts the triggering smartphones

(n = 21), while estimation and classification results are reported

in Table 1 for v = 7.8 and v = 4.5 km/s, respectively.

For both seismic wave velocities, we can observe that latitude

and longitude are accurately estimated, while the error in depth

is not negligible. Nonetheless, the true values are within the 99%

confidence intervals evaluated from the standard errors on the

model parameters. In addition, the earthquake is classified as true

under both velocities since both observed test statistics are lower

than the test critical value. This happens because triggers are close

to the epicenter, and primary and secondary seismic waves are

nearly concurrent.

The estimation and classification results were obtained in less

than 1 s using an Intel(R) Core(TM) i7-9750H CPU @2.60GHz,

suggesting that the approach can be adopted for real-time

applications.

Figure 6 shows the n = 108 triggers of a false detection

occurred near Acapulco (Mexico) on 25 September 2022, at

09:55:45 UTC. In this case, the computed test statistics are 1039.7

and 1026.0 for v = 4.5 and 7.8 km/s, respectively, while the critical

value is 141.62. H0 is rejected in both cases and the detection is

claimed as false. In this particular case, the detection was caused

by a strong lightning bolt. The speed of sound, however, is around

0.3 km/s, a value much smaller than the speed of primary and

secondary seismic waves.

7. Discussion

The methodology developed in this study allows to classify

detections made by smartphone-based earthquake early warning

systems between true (related to a real earthquake) and false. This is

done analyzing the information content of the smartphone triggers

that contributed to the detection.

With respect to classic classification problems, the data

point describing the triggers has a varying dimension

which depends on the smartphone network geometry.

The proposed solution is based on two steps. First, a

statistical parametric model is used to convert the data

point into a parameter vector with a fixed (and small)

dimension. Second, a hypothesis test is implemented

for classification.

While we do not claim our choices of f and g to be optimal,

both steps are based on well-established statistical methods. With

respect to the specific choice of g, it is worth discussing that a

simpler alternative is the linear map g∗ = δ′φ, with δ = (δ, 1)′

and φ =
(

1,−σ̂ 2
ǫ

)′
. In this case, the classification is based on
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the more intuitive comparison σ̂ 2
ǫ ⋚ δ. This simpler solution,

however, does not take into account neither the actual number of

triggers for the specific detection (10 or 1,000 makes a difference

in the uncertainty of σ̂ 2
ǫ ) nor the fact that the distribution of σ 2

ǫ

is known under the null hypothesis (that the detection is related

to a true earthquake). Using hypothesis testing, we are thus able to

retain a part of the information which is lost when X is synthesized

with θ .

8. Conclusion

Classification and earthquake parameter estimation are

performed in near real time, making the statistical methodology

suitable to be implemented in operational systems. On the

contrary, the methodology does not fully exploit the information

available on the EQN system. Specifically, the modeling is

only on the triggering smartphones, while the active non-

triggering smartphones are ignored. Knowing, at the EQN

detection time, which smartphones have not (yet) triggered

may better constraint epicenter and depth, thus improving

their estimates.

In addition, for an EEWS like EQN that works globally, it would

be important to study if the data set D generated by the Monte

Carlo simulation is a representative sample of p
(

X, y
)

. If not, the

observed α and β probabilities might deviate from the expected

ones.

Finally, a limit of the approach proposed by this

study is that the statistical methodology is applied

downstream of EQN detections. Ideally, the detection, the

classification, and the earthquake parameter estimation

problems should be jointly addressed in a unified

approach. In this regard, the vast literature on wireless

sensor networks may help propose a solution under the

real-time constraint.

These open problems, along with the estimation of the

earthquake magnitude, will be the focus of future works.
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