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A Gaussian process (GP) covariance function is proposed as a matching tool for

causal inference within a full Bayesian framework under relatively weaker causal

assumptions. We demonstrate that matching can be accomplished by utilizing GP

prior covariance function to define matching distance. The matching properties

of GPMatch is presented analytically under the setting of categorical covariates.

Under the conditions of either (1) GP mean function is correctly specified; or (2)

the GP covariance function is correctly specified, we suggest GPMatch possesses

doubly robust properties asymptotically. Simulation studies were carried out

without assuming any a priori knowledge of the functional forms of neither the

outcome nor the treatment assignment. The results demonstrate that GPMatch

enjoys well-calibrated frequentist properties and outperforms many widely used

methods including Bayesian Additive Regression Trees. The case study compares

the e�ectiveness of early aggressive use of biological medication in treating

children with newly diagnosed Juvenile Idiopathic Arthritis, using data extracted

from electronic medical records. Discussions and future directions are presented.

KEYWORDS

causal inference, matching, doubly robust (DR) estimator, marginal structural model,
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1. Introduction

Data from nonrandomized experiments, such as registries and electronic records, are
becoming indispensable sources for answering causal inference questions in health, social,
political, economics, and many other disciplines. Under the assumptions of no unmeasured
confounders, ignorable treatment assignment, and distinct model parameters governing the
science and treatment assignment mechanisms, Rubin [1] suggested Bayesian approach to
the estimation of causal treatment effect can be accomplished by directly modeling the
outcomes, treating it as a missing potential outcome problem. Direct modeling is able
to utilize the many Bayesian regression modeling techniques to address complex data
types and data structures, such as examples in Hirano et al. [2], Zajonc [3], Imbens and
Rubin [4], and Baccini et al. [5]. Recent work further suggested that outcome regression-
based estimation should be asymptotically more efficient than any inverse probability
weighting-based estimation [6].

Parameter-rich Bayesian modeling techniques are particularly appealing as they do
not presume a known functional form, and thus may help mitigate potential model
misspecification issues. Hill [7] suggested Bayesian additive regression tree (BART) can
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be used for causal inference, and showed it producedmore accurate
estimates of average treatment effects compared to propensity score
matching, inverse propensity weighted estimators, and regression
adjustment in the nonlinear setting, and it performed as well
under the linear setting. Others have used Gaussian Process in
conjunction with Dirichlet Process priors, e.g., Roy et al. [8] and Xu
et al. [9]. Roy et al. [10] devised enriched Dirichlet Process priors
tackling missing covariate issues. However, naive use of regression
techniques could lead to substantial bias in estimating causal effect
as demonstrated in Hahn et al. [11].

The search for ways of incorporating propensity of treatment
selection into the Bayesian causal inference has been long-
standing. Including propensity score (PS) as a covariate in
the outcome model may be a natural way. However, joint
modeling of outcome and treatment selection models leads
to a “feedback” issue. A two-staged approach was suggested
by McCandless et al. [12], Zigler et al. [13], and others.
Whether the uncertainty of the first step propensity score
modeling should be taken into account when obtaining the
final result in the second step remain a point of discussion
[14–17]. Saarela et al. [18] proposed an approximate Bayesian
approach incorporating inverse probability treatment assignment
probabilities as importance-sampling weights in Monte Carlo
integration. It offers a Bayesian version of the augmented inverse
probability treatment weighting (AIPTW). Hahn et al. [19]
suggested incorporating estimated treatment propensity into the
regression to explicitly induce covariate dependent prior in the
regression model. These methods all require a separate step of
treatment propensity modeling, which may suffer if the propensity
model is misspecified.

Matching is one of the most sought-after methods used for the
design and analyzes of observational studies for answering causal
questions. Matching experimental units on their pre-treatment
assignment characteristics helps to remove the bias by ensuring
the similarity or balance between the experimental units of the two
treatment groups. Matching methods impute the missing potential
outcome with the value from the nearest match or the weighted
average of the values within the nearby neighborhood defined by
(a chosen value) caliper. Matching on multiple covariates could
be challenging when the dimensions of the covariates are large.
For this reason, matching is often performed using the estimated
propensity score (PS) or by the Mahalanobis distance (MD). The
idea is, under the no unmeasured confounder setting, matching
induces a balance between the treated and untreated groups.
Therefore, it serves to transform a nonrandomized study into
a pseudo-randomized study. There are many different matching
techniques, a comprehensive review is provided in Stuart [20]. A
recent study by King and Nielsen [21] compared PS matching with
MD matching and suggests that PS matching can result in a more
biased and less accurate estimate of averaged causal treatment as
the precision ofmatching improves, whileMDmatching is showing
improved accuracy. Common tomatchingmethods, the data points
without a match are discarded. Such a practice may lead to a sample
no longer representative of the target population. A user-specified
caliper is often required, but different calipers could lead to very
different results. Furthermore, matching on a miss-specified PS
could lead to invalid causal inference results.

A combination of matching and regression is a better approach
than using either of them alone [22]. Ho et al. [15] advocated
matching as nonparametric preprocessing for reducing dependence
on parametric modeling assumptions. Gutman and Rubin [23]
examined different strategies of combining the preprocessed
matching with a regression modeling of the outcome through
extensive simulation studies. They demonstrated that some
commonly used causal inference methods have poor operating
characteristics, and consider ways to correct for variance estimate
for causal treatment effect obtained from regression modeling after
preprocessed matching. To our knowledge, no existing method can
accomplish matching and regression modeling in a single step.

Gaussian process (GP) prior has been widely used to describe
biological, social, financial, and physical phenomena, due to its
ability to model highly complex dynamic systems and its many
desirable mathematical properties. Recent literature, e.g., Choi and
Woo [24] and Choi and Schervish [25], has established posterior
consistency for Bayesian partially linear GP regression models.
Bayesian modeling with GP prior can be viewed as a marginal
structural model where the treatment effect is modeled as a linear
function of background variables. It predicts the missing response
by a weighted sum of observed data, with larger weights assigned
to those in closer proximity but smaller to those further away,
much like a matching procedure. This motivated us to consider
using GP prior covariance function as a matching tool for Bayesian
causal inference.

The idea of utilizing GP prior in a Bayesian approach to causal
inference is not new. Examples can be found in Roy et al. [8]
for addressing heterogeneous treatment effect, in Xu et al. [9]
for handling dynamic treatment assignment, and in Roy et al.
[10] for tackling missing data. While these studies demonstrated
GP prior could be used to achieve flexible modeling and tackle
complex settings, no one has considered GP prior a matching tool.
This study adds to the literature in several ways. First, we offer
a principled approach to Bayesian causal inference utilizing GP
prior covariance function as a matching tool, which accomplishes
matching and flexible outcome modeling in a single step. Second,
we provide relaxed causal assumptions than the widely adopted
assumptions from the landmark paper by Rosenbaum and Rubin
[26]. By admitting additional random noise in outcome measures,
these new assumptions fit more naturally within the Bayesian
framework. Under these weaker causal assumptions, the GPMatch
method offers a doubly robust approach in the sense that the
averaged causal treatment effect is correctly estimated when either
one of the conditions is met: (1) when the mean function correctly
specifies the prognostic function of outcome; or (2) the covariance
function matrix correctly specifies the treatment propensity.

The rest of the presentation is organized as follows. Section
2 describes methods, where we present problem setup, causal
assumptions, and the model specifications. The utility of the GP
covariance function as a matching tool is presented in Section
3, followed by discussions of its double robustness property.
Simulation studies are presented in Section 4. Simulations are
designed to represent the real-world setting where the true
functional form is unknown, including the well-known simulation
design suggested by Kang and Schafer [27]. We compared the
GPMatch approach with some commonly used causal inference
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methods, i.e., linear regression with PS adjustment, inverse
probability treatment weighting, and BART, without assuming
any knowledge of the true data-generating models. The results
demonstrate that the GPMatch enjoys well-calibrated frequentist
properties, and outperforms many widely used methods under
the dual misspecification setting. Section 5 presents a case study,
examining the comparative effectiveness of an early introduction of
biological medication in treating children with recently diagnosed
juvenile idiopathic arthritis (JIA). Section 6 presents the summary,
discussions, and future directions.

2. Method

2.1. Notations, problem setup, and
parameters of interests

For the ith sample unit, we observe Di = (Xi,Ai,Yi), i =, 1..., n,
a random sample of a given study population. Denote the
causal factor or “treatment” by Ai. For simplicity of exposition,
here we consider Ai = 1/0. Let Yi denote the observed
outcomes, Xi the p-dimensional observed vector of background
variable, which contains determinants of treatment assignment
Pr(Ai = 1) = π(xi) and the determinants of potential outcomes
Y
(a)
i = f (a)(xi), a ∈ A. Given the background variables Xi, such as

patient age, gender, genetic makeup, disease status, environmental
exposures, and past treatment histories, the potential outcomes
for a given patient are determined by the underlying science
mechanisms f (a)(xi), and the treatment are assigned followingAi ∼

Ber(π(xi)).
Under the given treatment assignment, the observed outcome

may be measured with error, i.e., a noisy version of the
corresponding potential outcomes,

Yi = Y
(0)
i (1− Ai)+ Y

(1)
i Ai + ǫi, (1)

where E(ǫi) = 0. In other words, the observed outcome for the ith

individual is a realization of the joint actions between the science
mechanisms and the treatment assignment. Any two sample units
that share the same background features Xi = Xj = x, regardless
of their treatment assignment, are expected to experience the same
potential outcomes E(Yi|x) = E(Yj|x) = f (a)(x).

Our goal is to estimate the averaged treatment effect for a given
study population

ATE = E(τ (x)), (2)

where τ (x) = f (1)(x)− f (0)(x).

2.2. The causal assumptions

To ensure identifiability of the causal treatment effect, we
impose the following causal assumptions, which may be considered
as a somewhat relaxed version of commonly adopted causal
assumptions as suggested in Rosenbaum and Rubin [26]:

CA1. Stable Unit Treatment Value Expectation Assumption
(SUTVEA).

(i) We consider the observed outcome may be a noisy
version of the potential outcome where the expectation
of the observed outcome is jointly determined by
the underlying science mechanisms and the treatment
assignment E(Yi) = f

(0)
i (1− Ai)+ f

(1)
i Ai, for Ai = 0, 1.

(ii) For the underlying science mechanism that generates
potential outcomes, there exists a constant K > 0 such
that |f (a)| ≤ K, for a = 0, 1.

CA2. Ignorable Treatment Assignment Assumption, or no
unmeasured confounders assumption requires the treatment
assignment is independent from the underlying science
mechanism given the observed covariates, Ai⊥f (a)|Xi for a =

0, 1 .

CA3. Positivity Assumption. For every sample unit, there is
a nonzero probability of being assigned to either one of the
treatment arms, i.e., 0 < Pr(Ai|Xi) < 1.

The SUTVEA assumption represents a somewhat weaker
assumption than SUTVA. It acknowledges the existence of residual
random error in the outcome measure. The observed outcomes
may differ from the corresponding true potential outcomes due
to some measurement errors or account for random noise related
to the treatment received. For example, outcomes could differ by
recorders, the timing of the treatment, the pre-surgery preparation
procedure, or the concomitant medication. In addition, we
consider the potential outcomes from different experimental units
may be correlated, where the correlations are determined by the
covariates. Under the no unmeasured confounders assumption,
we may model the correlation between two potential outcomes.
Since only one of all potential outcomes could be observed,
the causal inference presents a highly structured missing data
setup where the correlations between (Y(1)

i ,Y(0)
i ) are not directly

identifiable. Admitting residual random errors and allowing for
explicit modeling of the covariance structure, the new assumptions
may facilitate better statistics inference.

2.3. Model specifications

The marginal structural model (MSM) is a widely adopted
modeling approach to causal inference, which serves as a natural
framework for Bayesian causal inference. The MSM specifies

Y
(1)
i = Y

(0)
i + Aiτ

∗.

Without prior knowledge about the true functional form, we
propose GPMatch as a partially linear Gaussian process regression
fitting to the observed outcomes,

Yi = ηi(xi)+ Aiτ (xi)+ ǫi, (3)

where

ηi(xi) ∼ GP(µf (xi),K),
ǫi ∼ N(0, σ 2

0 ),
ǫi ⊥ ηi.
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Here, we may let µf = ((1,Xi)β)n×1, where β is a (1 +

p) dimension parameter vector of regression coefficients for the
mean function. This is to allow for implementation of any existing
knowledge about the prognostic determinants of the outcome.
Also, let τ (x) =

(

(1,Xi)α
)

n×1 to allow for potential heterogeneous
treatment effect, where α is a (1 + p) dimension parameter vector
of regression coefficients for the treatment effect. For both µf and
τ , xi may include higher order terms, interactions, dummy and
coarsening variations of the background variables.

Let Yn = (Y1, ...,Yn)′, the model (Equation 3) can be re-
expressed in a multivariate representation

Yn|A,X,V , γ ∼ MVN(Zγ ,6), (4)

where Z = (1,Xi,Ai,Ai × Xi)n×(2+2p), γ = (β,α)′, 6 = (σij)n×n,
with σij = K(vi, vj) + σ 2

0 δij. The δij is the Kronecker function,
δij = 1 if i = j, and 0 otherwise.

The Gaussian process can be considered as a distribution over
function. The covariance function K , where kij = Cov(ηi, ηj), plays
a critical role in GP regression. It can be used to reflect the prior
belief about the functional form, determining its shape and degree
of smoothness. Often, the exact matching structure is not available,
a natural choice for the GP prior covariance function K is the
squared-exponential (SE) function, where

K(vi, vj) = σ 2
f exp

(

−

p
∑

k=1

|vki − vkj|
2

φk

)

, (5)

for i, j = 1, ..., n. The (φ1,φ2, ...,φp) are the length scale parameters
for each of the covariate variables.

There are several considerations in choosing the SE covariance
function. The GP regression with SE covariance can be considered
a Bayesian linear regression model with infinite basis functions,
which is able to fit a smoothed response surface. Because of the
GP’s ability to choose the length-scale and covariance parameters
using the training data, unlike other flexible models such as splines
or the supporting vector machine (SVM), GP regression does not
require cross-validation [28]. Moreover, the SE covariance function
provides a distance metric that is similar to Mahalanobis distance,
which has been frequently used as a matching tool.

The model specification is completed by a specification of the
rest of the priors.

γ ∼ MVN
(

0, σ 2
f
ωσ 2

lm
(ZZ′)−1

)

,

σ 2
0 ∼ IG(a0, b0),

σ 2
f
∼ IG(af , bf ),

φk ∼ IG(aφ , bφ).

We set ω = 106, aφ = bφ = 1, a0 = af = 2, b0 = bf =

σ 2
lm

/2, σ 2
lm

is the estimated variance from a simple linear regression
model of Y on A and X for computational efficiency.

The posterior of the parameters can be obtained by
implementing a Gibbs sampling algorithm: first sample the
covariate function parameters from its posterior distribution
[6|Data,α,β]; then sample the regression coefficient parameter
associated with the mean function from its conditional posterior
distribution [α,β|Data,6], which is a multivariate normal
distribution. The individual level treatment effect can be estimated

by τ̂ (xi) = (1,Xi)α̂ and the averaged treatment effect is estimated
by ˆATE =

∑n
i=1

τ̂ (xi)
n . Further details are provided in the

Supplementary material.

3. Estimating averaged treatment
e�ect

3.1. GP covariance as a matching tool
(GPMatch)

To demonstrate the utility of the GP covariance function as a
matching tool, let us first consider a simple setting with a categorical
X variable that has l = 1, ..., L levels. Fitting the data with a simple
nonparametric GP model,

Yn ∼ MVN(µ1n + τAn,6 = K + σ0
2In), (6)

where, K = (kij)n×n, with kij = 1 for Xi = Xj = l, indicating the
pair is completely matched, and kij = 0 if Xi 6= Xj, i.e., the pair is
unmatched. Thus, the covariance function of the GPMatch model
(Equation 6) is a block diagonal matrix where the lth block matrix
takes the form

6l = σ 2 [(1− ρ)Inl + ρJnl
]

,

with σ 2 = 1+σ 2
0 , ρ = 1/σ 2 and Jnl denotes the matrix of ones. The

parameter estimates of the regression parameters can be derived by

(

µ̂

τ̂

)

=

[(

1′n
A′
n

)

6−1
(

1n An

)

]−1 (

1′n
A′
n

)

6−1Yn.

It follows that the estimated average treatment effect is,

τ̂ =
1′n6

−11nA
′
n6

−1Yn − A′
n6

−11n1
′
n6

−1Yn

1′n6
−11nA

′
n6

−1An − A′
n6

−11n1
′
n6

−1An

, (7)

Applying theWoodbury, Sherman &Morrison formula, we see
6−1 is a block diagonal matrix of

6l
−1 =

1

σ 2(1− ρ)(1− ρ + nlρ)

[

(1+ (n− 1)ρ)Inl − ρJnl
]

.

Let Ȳl(a) denote the sample mean of outcome and nl(a) number
of observations for the untreated (a = 0) and treatment group (a =

1) within the lth subclass. The treatment effect can be expressed as
a weighted sum of two quantities

τ̂ = λτ̂R + (1− λ)τ̂C ,

where λ = ρD1
ρD1+(1−ρ)D2 , τ̂R = C1

D1 is the averaged treatment
effect based on an average of the within-strata contrasts and τ̂C =
C2
D2 is the effect coming from the contrast between the weighted
average of treated and untreated samples. The subscripts of R and
C correspond to the organization of the data table with strata as the
row and treatment as the column.

C1 =
∑

qlnl ×
∑

qlnl(1)nl(0)
(

Ȳl(1) − Ȳl(0)
)

,
C2 =

∑

qlnl(0) ×
∑

qlnl(1)Ȳl(1) −
∑

qlnl(1) ×
∑

qlnl(0)Ȳl(0),
D1 =

∑

qlnl ×
∑

qlnl(1)nl(0),
D2 =

∑

qlnl(1) ×
∑

qlnl(0),
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TABLE 1 Data table for Example 3.

A = 0 A = 1

X = 0 n0(0) n0(1)

X = 1 n1(0) n1(1)

ql = (1 − ρ + ρnl)
−1, nl = nl(0) + nl(1) and the summations are

over l = 1, ..., L. To gain better insight into this estimator, it should
help to consider a few examples.

Example 1. Matched twin experiment. Consider a matched
twin experiment, where for each treated unit there is a untreated
twin. Here, we have a 2n × 2n block diagonal matrix 62n =

In ⊗ J2 + σ0I2n. Thus, σ = 1 + σ 2
0 , ρ = 1

1+σ 2
0
, nl = 2, nl(0) =

nl(1) = 1. Substitute them into the treatment effect formula derived
above, we have the same 1:1 matching estimator of treatment effect
τ̂ = Ȳl(1) − Ȳl(0).

Example 2. Cluster randomized experiment. Consider a
cluster randomized experiment, where the true propensity of
treatment assignment is known. Suppose the strata are equal-sized,
6 is a block diagonal matrix of IL ⊗ Jn + σ0In, where L is the
total number of strata, the total sample size is N = Ln. It is
straight forward to derive σ = 1 + σ 2

0 , ρ = 1
1+σ 2

0
, nl = n,

for l = 1, ..., L. Then the treatment effect is a weighted sum of

τ̂C = Ȳ1 − Ȳ0, and τ̂R =
∑

nl(0)nl(1)(Ȳl(1)−Ȳl(0))
∑

nl(0)nl(1)
. Where the weight

λ =
N
∑

nl(0)nl(1)
n1n0σ

2
0+N

∑

nl(0)nl(1)
is a function of sample sizes and σ 2

0 . We can

see when σ 2
0 → 0 or nl → ∞, then λ → 1, τ̂ → τ̂R. That is when

the outcomes are measured without error, the treatment effect is a
weighted average of Ȳl(1) − Ȳl(0), i.e., the group mean difference for
each stratum. As σ 2

0 increase, λ decrease, then the estimate of τ puts
more weights on τ̂C . In other words, the GP estimate of treatment
is a shrinkage estimator, where it shrinks the strata-level treatment
effect more toward the overall sample mean difference when the
outcome variance is larger.

Example 3. A simple observational study. Consider a binary
covariate X = 0, 1, where the treatment is assigned differential
based on X, Pr(Ai = 1|Xi = x) = π(x). The frequency table of
the observed data is shown in the Table 1.

The treatment effect can be derived based on Equation (7).
When σ 2

0 → 0, then λ → 1, τ̂ → τ̂R, we have

C1 = (q0n0 + q1n1)×
(

q0n0(1)n0(0)(Ȳ0(1) − Ȳ0(0))
+ q1n1(1)n1(0)(Ȳ1(1) − Ȳ1(0))

)

,
D1 = (q0n0 + q1n1)×

(

q0n0(1)n0(0) + q1n1(1)n1(0)
)

We can derive

τ̂ =
C1

D1

=
n0π0(1− π0)

n0π0(1− π0)+ n1π1(1− π1)
τ̂ (X = 0)

+
n1π1(1− π1)

n0π0(1− π0)+ n1π1(1− π1)
τ̂ (X = 1)

In general, for multiple levels of X, the treatment effect is a
weighted average of the treatment effect τl = E(Y(1)−Y(0)|X = l),

τ̂ =
∑

wlτ̂l

where the weightwi is determined by the variance of Pr(A = 1|X =

l) = nlπl(1 − πl), with πl = 0.5 receiving maximum possible
weight. On the other hand, for the subgroup where πl is very small
or very large, they contribute very little to the overall averaged
treatment effect. When there are non-ignorable noises σ 2

0 > 0,
again the treatment effect is a shrinkage estimate of the weighted
average of the heterogeneous treatment effects, shrinking toward
the overall contrast between the treated and untreated groups.

The above demonstration was presented by considering a
categorical X, with K being a block diagonal matrix of 0 and
1 s. For general types of X, the squared exponential covariance
function offers a way to specify a distance matching, which closely
resembles Mahalanobis distance matching. For a pair of “matched”
individuals, i.e., sample units with the same set of confounding
variables vi = vj, the model specifies Corr(Y(0)

i ,Y(0)
j ) = 1.

In other words, the “matched” individuals are expected to be
exchangeable. As the data points move further apart in the covariate
space, their correlation becomes smaller. When the distance is
far apart sufficiently, the model specifies Corr(Y(0)

i ,Y(0)
j ) ≈ 0 or

“unmatched.” Distinct length scale parameters are used to allow
for some confounders to play more important roles than others in
matching. By manipulating the values of vi and the corresponding
length scale parameter, one could formulate the SE covariance
matrix to reflect the known 0/1 or various degrees of matching
structure. However, the matching structure is usually unknown and
was left to be estimated in themodel informed by the observed data.
Unlike the propensity score or other distance matching method,
using the GP covariance function as the matching tool provides a
flexible and data-driving way of defining “similarity” between any
pairs of data points, and thus offer more weights to the “similar”
data points in a finer gradient.

3.2. Doubly robust property

Causal inference estimators with the doubly robust (DR)
property are particularly attractive given their ability to address
the dual data-generating processes underlying the causal inference
problem. Multiple versions of DR causal estimators (e.g.,
Scharfstein et al. [29], Bang and Robins [30], and Chernozhukov
et al. [31]) have been proposed. They all can be considered
as a contrast between two weighted terms of treatment groups,
and their DR properties are established under the conditions
of the correct specification of either the outcome regression
model or the propensity score. Such an argument is not
straightforward within the Bayesian framework, although there
have been new developments emerging that linked empirical
likelihood with estimating equations for parameter estimations,
as well as constructing Bayesian methods for models formulated
through moment restrictions (e.g., Schennach [32], Chib et al. [33],
Florens and Simoni [34], and Luo et al. [35]).

We conjecture that the GPMatch possesses the DR properties
asymptotically in the following sense. Let the true average
treatment effect (ATE) be τ ∗, the GPMatch estimator is an unbiased
estimate of the ATE when either one of the conditions is true: (i)
the GP mean function Z′

iγ is correctly specified; or (ii) the GP
covariance function is correctly specified, in the sense that, from
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the weight-space point of view of GP regression, the weighted sum
of treatment assignment consistently estimates the true treatment
propensity πi = Pr(A = 1|Xi).

Under the condition (i), the partial linear component of
the Y

(a)
i = Z′

iγ + f (x) is correctly specified, we may apply the
results of Theorem 1 of Choi and Woo [24], which suggests that
the posteriors of the GPMatch parameters can be consistently
estimated. It follows that the averaged treatment effect can be
consistently estimated.

The second condition assumes a known GP prior. We consider
a simple misspecification of the form E(Yi) = fi(x) + Aiτ . From
the weight-space point of view, given τ , the predicted value of the
potential outcome from the GPMatch model can be asymptotically
approximated by

Ŷi
(a)

=
∑n

j=1 wij(Yj − Ajτ )+ aτ = Ỹi + (a− Ãi)τ , (8)

where Ỹi =
∑n

j=1 wijYj and Ãi =
∑n

j=1 wijAj, for i =

1, ..., n. The weight wij =
κij

∑

j κij
where κij = k(vj)′6−1, with

k(vj) =
(

k(vj, vi)
)

n×1. Thus, the Ỹi and Ãi could be considered
as the Nadaraya-Watson estimator of the observed outcomes and
treatment assignment for each of the i-th unit in the sample.
The estimate of treatment effect could be obtained by solving

∂
∑n

i=1

(

Yi−Ŷi
(Ai)

)2

∂τ
= 0. We can see that, given a known GP

covariance function, the GPMatch treatment effect τ̂ is an M-
estimator satisfies

∑

9i(τ̂ ) = 0, where

9i(τ ) =
(

Yi − Ỹi − τ (Ai − Ãi)
)

(Ai − Ãi), (9)

Let the true propensity be πi = Pr(A = 1|Xi), given the
SUTVEA, we have Yi = AiY

(1)
i + (1 − Ai)Y

(0)
i + ǫi. Given the

true treatment effect τ ∗, we can write Y(a)
i = E(Yi) + (a − πi)τ ∗.

Thus, when Ãi = πi asymptotically, we have9i(τ ) = [E(Yi)− Ỹi+

(Ai − πi)(τ − τ ∗)+ ǫi](Ai − πi). It follows the estimating function
is conditionally unbiased, i.e., E(9i(τ ∗)) = 0, for i = 1, ...n.

Remark 1. First, the Equation (9) is the empirical correlation of
the residuals from the outcome model and the residuals from
the propensity of treatment assignment. Thus, GPMatch attempts
to induce independence between the treatment selection process
and the outcome modeling, just as the G-estimation equation
does (see Robins et al. [36] and Vansteelandt and Joffe [37]).
Unlike the moment-based G-estimator, which requires the fitting
of two separate models for the outcome and propensity score, the
GPMatch approach estimates covariance parameters at the same
time as it estimates the treatment and mean function parameters.
All within a full Bayesian likelihood framework.

Second, some data points may have a treatment propensity
close to 0 or 1. Those data usually are a cause of concern in causal
inference. In the naive regression type of model such as BART,
it may cause unstable estimation without added regularization.
In the inverse probability treatment weighting type of method, a
few data points may put undue influence over the estimation of
treatment effect. In matching methods, these data points often are
discarded. Such practice could lead to the sample no longer being
representative of the target population. Like the G-estimation, we
can see from the Equation (9), these data points contribute very

little or no information to the GPMatch estimation of the treatment
effect. Thus GPMatch shares the same added robustness as the
G-estimation.

Third, the GPMatch model with a parametric mean function
can be used in predicting the potential outcomes for any new unit,
by Ŷi = Z′

i γ̂ + 6i6
−1(Yn − Zγ̂ ), where 6i denotes the i-th row

of 6. Given the model setup, two regression surfaces are predicted,
where the distance between the two regression surfaces represents
the treatment effect. By including the treatment by covariate
interactions, the model could offer estimates of conditional
averaged treatment effects for pre-specified patient characteristics.

Finally, in real-world applications, we may never know the true
functional form of neither the mean nor the covariance function.
The only exception is the designed experimental study, where
propensity scores are known. When the true propensity score
is known, it can be directly used for specifying GP prior. With
high dimensional X, we may wish to reduce dimensions first. One
approach is to estimate summary scores, such as the estimated
propensity score. Another approach is to engage variable selection
procedures. As in the propensity-score-based methods, we wish
to design the covariance function to ensure covariate balance
between the treatment groups. Given the fitted MGPMatch model,
covariate balance can be diagnosed by comparing weighted samples
of [X|A = 0,MGPMatch] and [X|A = 1,MGPMatch] (see an example
in Huang et al. [38]).

4. Simulation studies

To empirically evaluate the performances of GPMatch in a
real-world setting where neither the matching structure nor the
functional form of the outcome model are known, we conducted
four sets of simulation studies to evaluate the performances of the
GPMatch approach to causal inference. The first set evaluated the
frequentist performance of GPMatch. The second set compared
the performance of GPMatch against MD match, the third set
considered a setting with a large number of correleted background
variables where only a few are relevant to the data generating
mechanisms and the last set utilized the widely used Kang
and Schafer design, comparing the performance of GPMatch
against some commonly used propensity methods as well as the
nonparametric Bayesian additive regression tree (BART) method.

In all simulation studies, the GPMatch approach used a squared
exponential covariate function, including only the treatment
indicator in the mean and all observed covariates into the
covariance function, unless otherwise noted. The results were
compared with the following widely used causal inferencemethods:
sub-classification by PS quantile (QNT-PS); augmented inverse
probability of treatment weighting (AIPTW), a linear model
with PS adjustment (LM-PS), a linear model with spline fit
PS adjustment [LM-sp(PS)] and BART. Cubic B-splines with
knots based on quantiles of PS were used for LM-sp(PS). We
also considered the direct linear regression model (LM) as a
comparison. The ATE estimates were obtained by averaging over
5000 posterior MCMC draws, after 5,000 burn-in. For each
scenario, three sample sizes were considered, N = 100, 200, and
400. The standard error and the 95% symmetric interval estimate
of ATE for each replicate were calculated from the 5,000 MCMC
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chain. For comparing performances of different methods, all results
were summarized over N = 100 replicates by the root mean square
error RMSE =

√

∑

(τ̂i − τ )2/N, median absolute error MAE =

median | τ̂i − τ |, coverage rate Rc = (the number of intervals
that include τ )/N of the 95% symmetric posterior interval, the
averaged standard error estimate SEave =

∑

σ̂i/N, where σ̂i is
the square root of the estimated standard deviation of τ̂i, and the
standard error of ATE was calculated from 100 replicates SEemp =
√

∑

(τ̂i − ¯̂τi)2/(N − 1).

4.1. Well-calibrated frequentist
performances

Let the single covariate x ∼ N(0, 1). The potential outcome was
generated by y(a) = ex + (1 + U) × a + U0 for a = 0, 1, where
the true treatment effect was 1+Ui for the i-th individual unit. The
(U,U0) are unobserved covariates. The treatment was selected for
each individual following logit(P(A = 1|X)) = −0.2 + (1.8X)1/3.
The observed outcome was generated by y|x, a ∼ N(y(a), σ 2

0 ). Two
parameter settings were considered. First, we set {Ui = 0,U0i ∼

N(0, 0.25), σ 2
0 = 0.75}, i.e., all individual units had the same

uniform treatment effect of 1, and outcomes were observed with
measurement error. Second, we set {Ui ∼ N(0, 0.152),U0i ∼

N(0, 1), σ 2
0 = 0}, i.e., the treatment effect varied from individual

unit to unit, but the averaged treatment effect remained at 1.
The simulation results were summarized in the histogram of

the posterior mean over the 100 replicates across three sample
sizes in Figure 1. Table 2 presented the results of GPMatch and the
Oracle standard. The Oracle estimate was obtained by fitting the
true outcome-generating model for benchmark. For both Figure 1
and Table 2, the upper panel presented results from the uniform
treatment parameter setting, and the lower panel presented the
results from the homogeneous treatment setting. Under both
settings, GPMatch presented well-calibrated frequentist properties
with nominal coverage rate, and only slightly larger RMSE. The
averaged bias, RMSE, and MAE quickly improve as sample size
increases, and its performance is almost as well as the Oracle with a
sample size of 400.

We also applied some commonly adopted causal inference
methods as well as the BART to the simulated data. Their
performances are presented as the %bias, the ratio of RMSE and
MAE in reference to the oracle results in Figure 2. The results
show that the impact of measurement error varies by the method,
whether the propensity score is correctly estimated, as well as the
sample sizes. At sample size 100, even with correctly specified PS,
the %bias ranges from 5 to 10% for PS-based methods, and the
MAE and RMSE are at least 1.5 times the oracle estimates. Their
performances improve with increased sample size if the propensity
score is correctly specified. However, when the propensity score
is miss-specified, the performance could get even worse with an
increased sample size. Of all PS-based methods, flexible modeling
LM-sp(PS) using spline fit of PS appears to perform the best.
The two Bayesian flexible modeling techniques, BART and GP
had the best performances w.r.t. MAE and RMSE, with BART
performing nearly as well as GP when the sample size is N =
400. However, the %bias results from BART presented surprisingly

larger %bias forN = 200 thanN = 100. These results suggest that not
explicitly acknowledging measurement error, the existing methods
may suffer from bias.

4.2. Compared to Mahalanobis distance
matching

To compare the performances between the MD matching and
GPMatch, we considered a simulation study with two independent
covariates x1, x2 from the uniform distributionU(−2, 2), treatment
was assigned by letting Ai ∼ Ber(πi), where

logitπi = −x1 − x2.

The potential outcomes were generated by

y
(a)
i = 3+ 5a+ x31i,

Yi|Xi,Ai ∼ N(y(Ai)
i , 1).

The true treatment effect is 5. Three different sample sizes were
considered N = 100, 200, and 400. For each setting, 100 replicates
were performed and the results were summarized.

We estimated ATE by applyingMahalanobis distance matching
and GPMatch. The MD matching considered caliper varied from
0.125 to 1 with step size 0.025, including both X1 and X2 in the
matching using the function Match in R package Matching by
Sekhon [39]. The averaged bias and its 95%-tile and 5%-tile were
presented as vertical lines corresponding to different calipers in
Figure 3. To be directly comparable to the matching approach, the
GPMatch estimated the ATE by including the treatment effect only
in modeling the mean function, both X1 and X2 were considered
in the covariance function modeling. The posterior results were
generated with 5,000 MCMC samples after 5,000 burn-in. Its
averaged bias (short dashed horizontal line) and 5 and 95%-tiles
of the ATE estimate (long dashed horizontal lines) are presented
in Figure 3 for each of the sample sizes. Also presented in the
figure are the bias, median absolute error (MAE), root mean square
error (RMSE), and rate of coverage rate (Rc) summarized over
100 replicates of GPMatch. The bias from the matching method
increases with the caliper; the width of the interval estimate varies
by sample size and caliper. It reduces with increased caliper for a
sample size of 100, but increases with increased caliper for a sample
size of 400. In contrast, GPMatch produced a much more accurate
and efficient estimate of ATE for all sample sizes, with an unbiased
ATE estimate and nominal coverage rate. The 5 and 95%-tiles of
ATE estimates are always smaller than those from the matching
methods for all settings considered, suggesting better efficiency
of GPMatch.

4.3. High dimension covariates

The background covariates could be of high dimension. While
the GP prior could include high dimensional X, the computational
burden can be too demanding. To address the issue, we considered
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FIGURE 1

Distribution of the GPMatch estimate of ATE, by di�erent sample sizes under the single covariate simulation study setting.
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TABLE 2 Results of ATE estimates under the single covariate simulation study setting.

Method Sample size RMSE MAE Bias Rc SEavg SEemp

Ui = 0,U0i ∼ N(0, 0.25), σ 2
0 = 0.75

Oracle 100 0.243 0.165 –0.066 0.930 0.216 0.235

200 0.149 0.109 0.027 0.940 0.150 0.147

400 0.123 0.087 –0.007 0.930 0.107 0.123

GPMatch 100 0.260 0.160 –0.038 0.93 0.242 0.258

200 0.161 0.116 0.033 0.97 0.167 0.159

400 0.122 0.085 –0.005 0.96 0.118 0.123

Ui ∼ N(0, 0.152),U0i ∼ N(0, 1), σ 2
0 = 0

Oracle 100 0.220 0.134 –0.011 0.92 0.213 0.221

200 0.159 0.098 0.001 0.94 0.151 0.159

400 0.107 0.077 –0.003 0.95 0.107 0.108

GPMatch 100 0.237 0.152 0.013 0.97 0.244 0.238

200 0.175 0.114 0.007 0.94 0.169 0.175

400 0.117 0.084 0.001 0.96 0.117 0.118

RMSE, root mean square error; MAE, median absolute error; Bias, Estimate-True; Rc, Rate of coverage by the 95% interval estimate; SEavg , average of standard error estimate from all replicate;

SEemp , standard error of ATE estimates from all replicate; Oracle, Using the true outcome generating model; GPMatch, Bayesian marginal structural model with Gaussian process prior, only the

treatment effect is included in the mean function; covariance function includes X.

two-dimensional reduction strategies. First, we use the estimated
propensity score in constructing the GP covariance function, where
the PS is obtained by a logistic regression on all covariates.
Second, we engaged a standard stepwise selection procedure for
the logistic regression modeling of treatment selection prior to the
GP modeling, where only selected variables are included in the GP
covariance function. Here, we simply used the default setting of the
variable selection procedure implemented in the standard R step
function. At last, for comparison, we generated the propensity score
using the true logistic model.

Modified from the simulation setting presented in Section 4.2,
we considered 25 dependent covariates X1, ...,X25 generated from a
multivariate normal distribution with mean 0, variance 1, and the
correlation Corr(Xi,Xj) = 0.5|i−j|. The treatment Ai was generated
from a Bernoulli distribution with probability πi, where

logit(πi) = −x1i − x2i.

The potential outcomes were generated by

y
(a)
i = 3+ 5a+ x31i + 2x3i,

Yi|Xi,Ai ∼ N(y(Ai)
i , 1).

The true treatment effect is 5. We considered three different
sample sizes: N = 100, 200, and 400. For each setting, 100 replicates
were performed and the results were summarized. For comparison,
we applied the Mahalanobis distance matching method using all
X1 − X25 and using only the true covariate set (X1,X2). The MD
match considered caliper varied from 0.125 to 1 with step size
0.025. Same as Section 4.2, the Match function from the R package
Matching is used.

The comparisons of MAE and RMSE of these methods are
shown in Figure 4. Without variable selection, both MD match

and GPMatch presented large biases for the sample size of 100.
The performance quickly improves as the sample size increases for
GPMatch, but not so for the MD match. The variable selection
procedure clearly enhanced the performance for GP, with results
indistinguishable from those using the true PS when N = 400.
GPMatch results are identical between the model with a true
covariate set and the model with true PS.

4.4. Performance under dual
misspecification

Following the well-known simulation design suggested by
Kang and Schafer [27], covariates z1, z2, z3, z4 were independently
generated from the standard normal distribution N(0, 1).
Treatment was assigned by Ai ∼ Ber(πi), where

logitπi = −zi1 + 0.5zi2 − 0.25zi3 − 0.1zi4.

The potential outcomes were generated for a = 0, 1 by

y
(a)
i = 210+ 5a+ 27.4zi1 + 13.7zi2 + 13.7zi3 + 13.7zi4,

Yi|Ai,Xi ∼ N(y(Ai), 1).

The true treatment effect is 5. To assess the performances of
the methods under the dual misspecifications, the transformed
covariates x1 = exp(z1/2), x2 = z2/(1 + exp(z1)) + 10, x3 =
( z1z3

25 + 0.6
)3
, and x4 = (z2 + z4 + 20)2 were used in the model

instead of zi.
Two GPMatch models were considered: GPMatch1 modeled

the treatment effect only and GPMatch2modeled all four covariates
X1 − X4 in the mean function model. Both included X1 − X4 with
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FIGURE 2

Comparisons of percentage bias, root mean square error (RMSE), and median absolute error (MAE) of the ATE Estimates by Di�erent Methods Across

Di�erent Sample Sizes under the Simulation Setting 1a (upper panel): Ui = 0,U0i ∼ N(0, 0.25), σ 2
0 = 0.75 and Setting 1b (lower panel):

Ui ∼ N(0, 0.152),U0i ∼ N(0, 1), σ 2
0 = 0. 1Propensity score estimated using logistic regression on logitA ∼ X. 2Propensity score estimated using logistic

regression on logitA ∼ X1/3. GPMatch, Bayesian structural model with Gaussian process prior; QNT_PS, Propensity score sub-classification by

quintiles; AIPTW, augmented inversed probability of treatment weighting; LM, linear regression modeling Y ∼ X; LM_PS, linear regression modeling

with propensity score adjustment; LM_sp(PS), linear regression modeling with spline fit propensity score adjustment. BART, Bayesian additive

regression tree. *The ratios of RMSE of N = 200 and N = 400 for AIPTW1 are 24.23 and 11.68 which are truncated.

four distinct length scale parameters. The PS was estimated using
two approaches including the logistic regression model on X1 − X4

and the covariate balancing propensity score method (CBPS, [40])
applied to X1 − X4. The results corresponding to both versions of
PS were presented. Summaries over all replicates were presented in
Table 3, and the RMSE and the MAE were plotted in Figure 5, for
all methods considered. As a comparison, the Oracle uses the true
outcome generating model of Y ∼ Z1 − Z4 was also presented.
Both GPMatch1 and GPMatch2 clearly outperform all the other
causal inference methods in terms of bias, RMSE, MAE, Rc, and the

SEave is closely matched to SEemp. The ATE and the corresponding
SE estimates improve quickly as the sample size increases for
GPMatch. In contrast, the QNT_PS, AIPT, LM_PS, and LM_sp(PS)
methods show little improvement over increased sample size,
nor does the simple LM. Improvements in the performance of
GPMatch over existing methods are clearly evident, with more
than 5 times accuracy in RMSE and MAE compared to all the
other methods except for BART. Even compared to the BART
results, the improvement in MAE is nearly twice for GPMatch2
and about 1.5 times for GPMatch1. Similar results are evident in
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FIGURE 3

Simulation study results of comparing GPMatch with Mahalanobis distance matching methods. The circles are the averaged biases of estimates of

ATE using Mahalanobis matching with corresponding calipers. The corresponding vertical lines indicate the ranges between the 5th and 95th

percentiles of the biases. The horizontal lines are the averaged ATE (short dashed line), and the 5th percentile and 95th percentile (long dashed line)

of the biases of the estimates from GPMatch.

RMSE and averaged bias. The lower-than-nominal coverage rate
is mainly driven by the remaining bias, which quickly reduces
as the sample size increases. Additional results are presented in
Supplementary Figure S1.

5. A case study

JIA is a chronic inflammatory disease, the most common
autoimmune disease affecting the musculoskeletal organ system,
and a major cause of childhood disability. The disease is
relatively rare, with an estimated incidence rate of 12 per
100,000 child-year [41]. There are many treatment options.
Currently, the two common approaches are the non-biologic
disease-modifying anti-rheumatic drugs (DMARDs) and the
biological DMARDs. Limited clinical evidence suggests that early
aggressive use of biologic DMARDs may be more effective
[42]. Utilizing data collected from a completed prospectively
followed-up inception cohort research study [43], a retrospective
chart review collected medication prescription records for study
participants captured in the electronic health record system.
This comparative study is aimed at understanding whether
therapy using an early aggressive combination of non-biologic
and biologic DMARDs is more effective than the more commonly
adopted non-biologic DMARDs monotherapy in treating children

with recently (less than 6 months) diagnosed polyarticular
course of JIA. The study is approved by the investigator’s
institutional IRB.

The primary outcome is the Juvenile Arthritis Disease
Activity Score (JADAS) after 6 months of treatment, a disease
severity score calculated as the sum of four core clinical
measures: physician’s global assessment of disease activity (0–10),
patient’s self-assessment of overall wellbeing (0–10), erythrocyte
sedimentation rate (ESR, standardized to 0–10), and number
of active joint counts (AJC, truncated to 0–10). It ranges from
0 to 40, with 0 indicating no disease activity. Out of the 75
patients receiving either non-biological or the early combination
of biological and non-biological DMARDs at baseline, 52 patients
were treated by the non-biologic DMARDs and 23 were treated
by the early aggressive combination DMARDs. The patients
with longer disease duration, positive rheumatoid factor (RF)
presence, higher pain visual analog scale (VAS) and lower baseline
functional ability as measured by the childhood health assessment
questionnaire (CHAQ), higher lost range of motion (LROM) and
JADAS score are more likely to receive the biologic DMARDs
prescription. The propensity score was derived using the CBPS
method applied to the 11 pre-determined important baseline
confounders. The derived PS was able to achieve the desired
covariate balance within the 0.2 absolute standardized mean
difference (Figure 6).
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FIGURE 4

Comparison of MAE and RMSE of Mahalanobis and GPMatch methods.

We considered two GPMatch modeling approaches. The first
included the full list of covariates. The second only included
variables selected from the step-wise logistic regression modeling
of treatment assignment. The following five variables: baseline
JADAS, CHAQ, time since diagnosis, positive test of rheumatoid
factor, and private insurance are selected. These five covariates,
along with the binary treatment indicator, time of the 6-month
follow-up since baseline were used in the partially linear mean
function part of the GPMatch. For comparisons, PS methods also
considered two corresponding sets of covariates in the outcome
modeling when applicable. The results are presented in Table 4 with
the left panel presenting results using selected covariates, and the
right panel presenting the results including the full set of covariates.
With including selected variables, GPMatch obtained the average
treatment effect of –2.98 with standard error of 1.99, and the 95%
credible interval of (–6.91, 0.83). The results differs by < 0.5 point
comparing the point estimates of two GPMatch models. The results
are also similar for other PS-based methods, with BART showing
more sensitivity to choices of covariates. Figure 7 presents the
trace plot and histogram of the posterior distribution of the ATE
estimate. The results suggest that the early aggressive combination
of non-biologic and biologic DMARDs as the first line of treatment

is more effective, leading to a nearly 3-point reduction in JADAS
6 months after treatment, compared to the non-biologic DMARDs
treatment in children with a newly diagnosed disease. The results
of ATE estimates by GPMatch, naive two-group comparison, and
other existing causal inference methods are presented in Table 4.
The LM, LM_PS, LM_sp(PS), and AIPTW include the same five
covariates in the model along with the treatment indicator. BART
used the treatment indicator and those covariates. While all results
suggested the effectiveness of early aggressive use of biological
DMARD, the naive, PS sub-classification by quintiles, and AIPTW
suggested a much smaller ATE effect. The BART and PS adjusted
linear regression produced results that were closer to the GPMatch
results suggesting a 2 or 3 points reduction in the JADAS score
if treated by the early aggressive combination DMARDs therapy.
None of the results were statistically significant at the 2-sided
0.05 level.

We also applied the covariate matching method to the same
dataset based on the same five baseline covariates. Table 5 presents
the results from using different calipers. As expected, as calipers
narrow, the number of observations being discarded increases.
Since only 10 patients had RF positive when the calipers ≤ 0.5,
we cannot matching on RF positive anymore. Similarly, because
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TABLE 3 Results of ATE estimates using di�erent methods under the Kang and Shafer dual misspecification setting.

Method Sample size RMSE MAE Bias Rc SEavg SEemp

Oracle 100 0.224 0.150 0.011 0.95 0.225 0.225

200 0.171 0.125 –0.015 0.94 0.163 0.171

400 0.102 0.063 –0.015 0.96 0.112 0.102

GPMatch1 100 2.400 1.606 –1.254 0.92 2.158 2.057

200 1.663 1.309 –1.051 0.86 1.213 1.295

400 0.897 0.587 –0.564 0.86 0.673 0.701

GPMatch2 100 1.977 1.358 –0.940 0.91 1.672 1.748

200 1.375 1.083 –0.809 0.82 0.980 1.117

400 0.761 0.484 –0.432 0.87 0.567 0.629

QNT_PSa 100 7.574 6.483 –6.234 0.970 7.641 4.324

200 7.408 6.559 –6.615 0.860 5.199 3.353

400 7.142 6.907 –6.797 0.500 3.576 2.203

QNT_PSb 100 8.589 7.360 –7.177 0.970 7.541 4.744

200 8.713 8.121 –7.964 0.720 5.214 3.550

400 8.909 7.980 -8.399 0.300 3.607 2.987

LM 100 6.442 5.183 –5.556 0.65 3.571 3.277

200 6.906 6.226 –6.375 0.28 2.547 2.668

400 7.005 6.649 –6.702 0.04 1.796 2.048

AIPTWa 100 5.927 4.402 –4.330 0.72 3.736 4.067

200 19.226 5.262 –7.270 0.59 4.874 17.888

400 29.405 5.603 –9.676 0.36 6.115 27.908

AIPTWb 100 5.410 4.243 -3.659 0.77 3.780 4.005

200 5.780 5.075 –4.950 0.52 2.712 2.999

400 6.204 5.482 –5.652 0.24 2.105 2.569

LM_PSa 100 5.103 3.832 –4.091 0.74 3.420 3.066

200 5.392 4.648 –4.793 0.53 2.452 2.483

400 5.091 5.128 –4.787 0.19 1.706 1.741

LM_PSb 100 5.451 4.156 –4.528 0.72 3.427 3.051

200 5.891 4.981 –5.278 0.46 2.466 2.631

400 5.585 5.452 –5.272 0.13 1.726 1.852

LM_sp(PS)a 100 4.809 3.161 –3.598 0.79 3.165 3.207

200 4.982 4.152 –4.266 0.52 2.250 2.587

400 4.470 4.038 –4.127 0.23 1.559 1.727

LM_sp(PS)b 100 4.984 3.619 –3.806 0.77 3.095 3.233

200 5.237 4.374 –4.507 0.51 2.248 2.681

400 4.856 4.484 –4.494 0.18 1.585 1.851

BART 100 3.148 2.504 –2.491 0.79 2.163 1.935

200 2.176 1.870 –1.726 0.74 1.308 1.332

400 1.283 0.942 –0.997 0.71 0.757 0.812

aPropensity score estimated using logistic regression on X1 − X4 .
bPropensity score estimated using CBPS on X1 − X4 .

RMSE, root mean square error; MAE, median absolute error; Bias, Estimate-True; Rc, Rate of coverage by the 95% interval estimate; SEavg , average of standard error estimate from all replicate;

SEemp , standard error of ATE estimates from all replicate.

GPMatch1-2: Bayesian structural model with Gaussian process prior. GPMatch1 including only treatment effect, and GPMatch2 including both the treatment effect and X1 − X4 in the mean

function; both including X1 − X4 in the covariance function.

QNT_PS, Propensity score sub-classification by quintiles; AIPTW, augmented inversed probability of treatment weighting; LM, linear regression modeling Y ∼ X1 − X4 ; LM_PS, linear

regression modeling with propensity score adjustment; LM_sp(PS), linear regression modeling with spline fit propensity score adjustment; BART, Bayesian additive regression tree.
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FIGURE 5

The RMSE and MAE of ATE Estimates using Di�erent Methods under the Kang and Shafer Simulation Study Setting. GPMatch1-2: Bayesian structural

model with Gaussian Process prior. GPMatch1 including only the treatment e�ect, and GPMatch2 including both the treatment e�ect and X1 − X4 in

the mean function; and X1 − X4 are included in the covariance function. QNT_PS, Propensity score sub-classification by quintiles; AIPTW, augmented

inverse probability of treatment weighting; LM, linear regression modeling Y ∼ X1 − X4; LM_PS, linear regression modeling with propensity score

adjustment; LM_sp(PS), linear regression modeling with spline fit propensity score adjustment.

FIGURE 6

Balance check results for the cases study.
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TABLE 4 Results of case study ATE estimates with none-matching methods.

Selected covariates Full set of covariates

Method Estimate SD LL UL Estimate SD LL UL

Naïve –0.338 1.973 –4.205 3.529 - - - -

QNT_PS –0.265 0.792 –1.817 1.286 - - - -

AIPTW –0.589 2.809 –6.094 4.916 –0.324 2.959 –6.124 5.476

LM –2.761 2.044 –6.767 1.245 –3.127 2.010 –7.067 0.812

LM_PS –2.800 2.043 –6.805 1.204 –3.119 2.013 –7.064 0.826

LM_sp(PS) –1.930 2.261 –6.362 2.501 –2.072 2.234 –6.450 2.305

BART –1.838 1.618 –4.903 1.434 –0.942 1.406 –3.845 1.636

GPMatch –2.983 1.987 –6.913 0.827 –2.599 2.165 –6.878 1.626

SD, standard deviation; LL, lower limit; UL, upper limit; Naïve, Student-T two group comparisons; QNT_PS, Propensity score sub-classification by quintiles; AIPTW, augmented inversed

probability of treatment weighting; LM, linear regression modeling Y ∼ X; LM_PS, linear regression modeling with propensity score adjustment; LM_sp(PS), linear regression modeling with

spline fit propensity score adjustment; BART, Bayesian additive regression tree; GPMatch, Bayesian structural model with Gaussian process prior.

FIGURE 7

Case study trace plot and histogram.

of distributions of private insurance in the treated and untreated
groups, we cannot match on the insurance when the caliper was
set to 1 or smaller. Thus, for calipers ≤ 1, all subjects with private
insurance were being excluded. When calipers were ≤ 0.5, all
subjects with positive RF were excluded, and 50% of observations
were discarded. When the calipers were set at 0.2, 67 out of 75
observations were discarded, rendering the results obtained from 8
observations only! The estimate of ATE was sensitive to the choices
of calipers, which ranged from –2.0 to –4.28, making it difficult to
interpret the study results.

6. Conclusions and discussions

Bayesian approaches to causal inference commonly consider it
as a missing data problem. However, as suggested in Ding and Li

[44], the causal inference presents additional challenges that are
unique in itself other than the missing data alone. Approaches
not carefully address these unique challenges are vulnerable to
model misspecifications and could lead to seriously biased results.
When not considering the treatment-by-indication confounding,
naive Bayesian regression approaches could suffer from “regularity
induced bias” [11]. Because no more than one potential outcome
could be observed for a given individual unit, the correlation
of (Y(1)

i ,Y(0)
i ) is not directly identifiable, leading to “inferential

quandary” [45]. Extensive simulations [23, 27, 46] suggested poor
operational characteristics observed in many widely adopted causal
inference methods.

The proposed GPMatch method offers a full Bayesian causal
inference approach that can effectively address the unique
challenges inherent in causal inference. First, utilizing GP prior
covariance function to model the covariance of observed data,
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TABLE 5 Results of case study ATE estimates with matching method in case study.

Caliper 2 1 0.8 0.5 0.4 0.2

ATE –2.165 –2.582 –2.763 –3.826 –4.280 –2.000

SE 1.784 1.420 1.377 1.067 0.623 0.307

# of obs dropped 10 24 29 48 55 67

Before match After match

Standardized mean di�erence between two treatment groups

JADAS0 0.697 0.160 0.057 0.118 0.134 0.004 –0.086

Time diagnosed 0.080 –0.101 –0.121 –0.117 –0.036 –0.031 0.094

CHAQ 0.390 0.288 0.221 0.156 0.212 0.086 0.000

RF positive 0.760 0.000 0.000 0.000 NA* NA* NA*

Insurance 0.182 0.000 NA** NA** NA** NA** NA**

*When the caliper is ≤ 0.5, all of the observations with positive RF are excluded. **When the caliper ≤ 1, all of the observations with private insurance are excluded.

GPMatch could estimate the missing potential outcomes much
like the matching method. Yet, it avoids the pitfalls of many
matching methods. No data is discarded, and no arbitrary caliper
is required. Instead, the model allows the data to speak by itself
via estimating length scale and variance parameters. The SE
covariance function of GP prior offers an alternative distance
metric, which closely resembles Mahalanobis distance. It matches
data points by the degree of matching proportional to the SE
distance, without requiring the specification of a caliper. For
this reason, the GPMatch could utilize data information better
than the matching procedure. Different length scale parameters
are considered for different covariates used in defining the SE
covariance function. This allows the data to select the most
important covariates to be matched on, and acknowledge some
variable is more important than others. While the idea of using
GP prior to Bayesian causal inference is not new. Utilizing
the GP covariance function as a matching device is a unique
contribution of this study. The matching utility of the GP
covariance function is presented analytically. We presented a
heuristic argument suggesting GPMatch possesses doubly robust
properties asymptotically. We show that GPMatch estimates the
treatment effect by inducing independence between two residuals:
the residual from the treatment propensity estimate and the
residual from the outcome estimate, much like the G-estimation
method. Unlike the two-staged G-estimation, the estimations of
the parameters in the covariance function and the mean function
for the GPMatch are performed simultaneously. Therefore, the
GPMatch regression approach can integrate the benefits of the
regression model and matching method and offers a natural way
for Bayesian causal inference to address challenges unique to the
causal inference problems. The robust and efficient proprieties of
GPMatch are well supported by the simulation results designed to
reflect the most realistic settings, i.e., no knowledge of matching or
functional form of outcome model is available.

The validity of the causal inference by the GPMatch approach
rests on three causal assumptions. In particular, we propose
SUTVEA as a weak causal assumption than SUTVA. SUTVEA
suggests that the potential outcomes and their difference are
random variables. It can be considered as a version of the
stochastic consistency advocated by Cole and Frangakis [47] and

VanderWeele [48]. The SUTVEA is proposed to reflect a more
realistic setting that the outcome could be measured with error,
and the treatment received by different individuals may vary, even
though the treatment prescribed is identical. Despite the fact that
such treatment variations were raised [1], no approach to our
knowledge has explicitly acknowledged it as such. Rather, most
of the methods consider the treatment from the real world as
having the exactly same meaning as those from the randomized
and strictly controlled experiments. Acknowledging the existence
of random error in outcome measures, the GPMatch method is
more capable of defending against potential model misspecification
in a challenging real-world setting. Like others, the no unmeasured
confounder is also required. Because no one has more than one
potential outcome observed in the real world, the assumptions
remain untestable. However, our SUTVEA implies the correlations
among the potential outcomes have an inherent structure, which
could be modeled when all confounders are observed. Therefore,
potential outcomes from different individuals could be correlated.
The correlation is null only when conditional on confounders.
This new causal assumption allows for a direct and explicit way of
describing the underlying data-generating mechanisms, which may
help relieve the “inferential quandary.” By explicitly modeling the
mean and covariance functions, the GPMatch can be considered an
extension of the widely adopted marginal structural mean model.

The heterogeneous treatment effect (HTE) is ubiquitous.
Here, we focused on presenting GPMatch for estimating the
average treatment effect. We showed that the GPMatch presented
a shrinkage estimate of ATE, where the shrinkage factor is
determined by the variance unaccounted by the model and/or
unadjusted covariates. When the observed outcome is a perfect
representation of a potential outcome, i.e., when Yi = Yi(1)Ai +

Yi(0)(1 − Ai), the GPMatch estimates ATE as a weighted average
of HTEs, where the weight is determined by the propensity of
treatment. The HTE strata with an equal chance of receiving
either of the treatments receives the maximum possible weight,
while the strata with a very small or large probability of receiving
one of the treatments will be given near zero weight. This is
different from the common approach of ATE, which assigns equal
weight to every HTE strata. Rather, it is closely related to the
concept of average treatment effect in the overlap (ATO, [49]). As
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such, it avoids the lack of overlapping issue, which has plagued
many flexible modeling approaches to causal inference. The
GPMatch can be readily used for estimating conditional averaged
treatment effect (CATE) by including interactions of the pre-
specified treatment modifying factors with treatment interaction.
When uncertain with the treatment effect modifiers, Sivaganesan
et al. [50] suggested a Bayesian decision theory-based approach
for identifying subgroup treatment effects in a randomized trial
setting. With GPMatch, the same idea could be applied to identify
subgroup treatment by analyzing real-world data. Future studies
may consider evaluating GPMatch performances for estimating
heterogeneous treatment effects.

The full Bayesian modeling approach is particularly useful in
comparative effectiveness research. It offers a coherent and flexible
framework for incorporating prior knowledge and synthesizing
information from different sources. As a full Bayesian causal
inference model, the GPMatch offers a very flexible and general
approach to address more complex data types and structures
natural to many causal inference problem settings. It can be
directly extended to consider multilevel or cluster data structure
and to accommodate complex types of treatment such as multiple-
level treatments, and continuous or composite types of treatment.
The model could be extended to time-varying treatment settings
without much difficulty by following the g-formula framework, e.g.,
Huang et al. [38, 51].

For the simplicity of exposition, we have considered a
relatively simple setting considering binary treatment and a
Gaussian outcome. The GPMatch can easily accommodate multi-
level treatment, continuous and general types of treatment. The
GP regression has been extended to general types of outcomes
including binary and count data [52]. Future studies may
further investigate its performance under the general types of
treatment, outcome, and data structures. Our simulation focused
on comparing with the commonly used causal inference method.
Future studies may consider comparisons of our method with other
advanced Bayesian methods such as those proposed by Roy et al.
[10] and Saarela et al. [18], as well as other advanced non-Bayesian
approaches such as TMLE [53]. At last, while our discussion has
been focused on the estimation averaged treatment effect (ATE) of
the sample, the approach is directly applicable to the estimation of
population-averaged treatment effect, averaged treatment effect in
treated and in control.

The GP regression is a very flexible modeling technique, but
it is computationally expensive. The time cost associated with GP
regression increases at n3 rate, thus it can be challenging with
large N and/or large P. The Bayesian Gibbs Sampling algorithm
we have used makes it even more demanding in computational
resources. Some literature has offered solutions by applying GP
to large N, such as Banerjee et al. [54]. Alternatively, one may
consider using Bayesian Kernel regression as an approximation.
Further studies are needed to improve the computational efficiency
and to consider variable selection. We presented two dimension
reduction strategies: (a) using estimate propensity score; and
(b) engaging a variable selection procedure. The simulation
studies have shown variable selection strategies can be promising.
Alternatively, one may consider strategies specifying priors for
length scale parameters. It is well known the length scale parameter
is hard to estimate. Researchers derived different kinds of priors

for GP, for example, the objective prior in Berger et al. [55],
Kazianka and Pilz [56], and Ren et al. [57]. Gelfand et al. [58]
suggested using a uniform prior for the inverse of the scale
parameter in spatial analysis, but we found that using a prior
with a preference to a smooth surface was more suitable for our
purpose. Researchers could also blend their knowledge in the
prior to obtain a more efficient estimate. Here we considered the
squared exponential covariance function but different covariance
functions such as Matérn could also be considered. Simple block
compound symmetry with one correlation coefficient parameter
could be used as an alternative covariance matrix. Such blocked
covariance setup could be useful, particularly for a large sample
size and where the data has a reasonable clustering structure,
such as in the case of a multi-site study. Future study should
explore this direction. Last, implementation of the GPMatch for
causal inference may not be accessible to most practitioners.
for this reason we provided an easy-to-use publicly available
on-line application that allows for user supplied data. Complete
step-by-step user’s guide and more technical details of this
and extended work can be found in our published technical
report [51].
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