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In this study, we formulated a mathematical model of COVID-19 with the e�ects of

partially and fully vaccinated individuals. Here, the purpose of this study is to solve the

model using some numerical methods. It is complex to solve four equations of the

SEIR model, so we introduce the Euler and the fourth-order Runge–Kutta method to

solve themodel. These twomethods are e�cient and practically well suited for solving

initial value problems. Therefore, we formulated a simple nonlinear SEIR model with

the incorporation of partially and fully vaccinated parameters. Then, we try to solve

our model by transforming our equations into the Euler and Runge–Kutta methods.

Here, we not only study the comparison of these two methods, also found out the

di�erences in solutions between the two methods. Furthermore, to make our model

more realistic, we considered the capital of Kerala, Trivandrum city for the simulation.

We used MATLAB software for simulation purpose. At last, we discuss the numerical

comparison between these two methods with real world data.

KEYWORDS

COVID-19, mathematical model, Euler method, Runge Kutta method, Trivandrum, numerical

simulation

1. Introduction

Coronaviruses are a large family of viruses that can infect both animals and humans with

humans being seriously affected. Several coronaviruses have been linked to respiratory infections

in humans, ranging from the common cold to more serious illnesses including the Middle

East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). Coronavirus

disease 2019 (COVID-19) is caused by the most recent forms of coronavirus. For the past 2

years, people all over the world have been affected by COVID-19, which is the fifth pandemic

after the 1918 Spanish flu (H1N1) pandemic, followed by the 1957 Asian flu (H2N2), the 1968

Hong Kong flu (H3N2), and the 2009 Swine flu pandemic (H1N1) pandemics [1]. COVID-

19 is an infectious disease caused by various strains of coronavirus. It is the seventh member

of the coronavirus family. This pandemic has seen a surge of patients with acute respiratory

distress syndrome (ARDS) in intensive care units across the globe [2]. We study the outbreak

in the capital of Kerala, Trivandrum city, which is also called Thiruvananthapuram. Till 30

December, 2021, this city has recorded 5,07,748 COVID-19-positive cases, out of which 4,99,009

cases have recovered and 6,257 have deceased. This pandemic not only affects the population

but also affects the economics around the world [3]. So, by using the mathematical model,

we can find the transmission of disease into the population. This provides us with a better

understanding of how to deal with the current circumstance. It plays a powerful component

in studying the dynamics of the spread of infectious diseases such as Ebola virus disease [4].
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Disease in the ecosystem has become a popular research topic, and

communicable disease has become a vital aspect of human population

monitoring [5]. It makes us understand the dynamics of the disease

and provides prediction about the spread of the disease. Haneen et al.

[6] have constructed a simple and effective numerical algorithm that

provides approximate solutions to complicated problems, especially

the modeling of real-world phenomena [6]. Many authors use

the utilized fractional differential problem, which is a modern

mathematical formation model [7, 8]. According to Kolokolnikov

and Iron [9], the SEIRmodel is a simple dynamicmodel that describes

the spread of the disease between populations [9]. Similarly, some of

the researchers used the same SEIR approach in Xu et al. [10] and

Peng et al. [11]. Some SEIR approaches have been done in Hurit et al.

[12] and Alsakaji et al. [13]. Here, the author formulated and solved

the model using the Euler method, the Runge–Kutta method, and

Heun’s method. Therefore, these mathematical models give valuable

information, ideas, and control measures to the public as well as the

government.

In this study, we are going to formulate a nonlinear ordinary

differential equation. Here, we are going to solve the proposed model

by using numerical methods. Therefore, we approach the Euler and

Runge–Kutta methods. In these two methods, the values of y are

calculated by short steps ahead of equal interval h of the independent

variable x [14].

Now, the general form of the Euler method can be written as

follows:

yn+1 = yn + hf (xn, yn), where n varies from 0,1,2,... (1)

In the case of the fourth order Runge–Kutta method, we have,

yn+1 = yn +
1

6
(K1 + 2K2 + 2K3 + K4), where n varies from 0,1,2,...

(2)

where

K1 = hf (tn, yn),

K2 = hf (tn +
1

2
h, yn +

1

2
K1),

K3 = hf (tn +
1

2
h, yn +

1

2
K2),

K4 = hf (tn + h, yn + K3).

Here, in our proposed study, we formulated a COVID-19

model by incorporating the effects of partially vaccinated and fully

vaccinated individuals at Trivandrum city. We tried to solve our

model with various numerical techniques by using the Euler and

Runge–Kutta methods. We have transformed our whole system into

the Euler and fourth order Runge–Kutta equations by using general

iterative formulas, and the solution is obtained by using MATLAB

software.

Our study is organized as follows. The next section presents the

formulation of the COVID-19 model, followed by the transformation

of our SEIR model into the Euler and fourth order Runge–Kutta

equations. Section 3 deals with the applications and solutions of both

proposed methods, and Section 4 is devoted to results and discussion.

In that, simulation results and absolute differences between both

methods are presented. Furthermore, comparison and curve fitting

are done with real-world data. The study ends with a brief conclusion

in Section 5.

2. Methodology

2.1. Formulation of the SEIR model

We consider the human population, which we split into

four subpopulations, namely, Susceptible individuals S(t), Exposed

individuals E(t), Infected individuals I(t), and Recovered individuals

R(t). To build our system, the following assumptions have beenmade:

Individuals are recruited in the region at a fixed rate A and join

the susceptible compartment. The susceptible population become

exposed to the infection when an infected individual comes in contact

at the rate α. Furthermore, we assume that the exposed population

become infected at a constant rate δ > 0. Here, we have incorporated

TABLE 1 Description of parameters.

Parameter Description

S Susceptible individuals.

E Exposed individuals.

I Infected individuals.

R Recovered individuals.

A Recruitment rate.

α Rate of interaction between susceptible and infected individuals.

µ Natural death rate.

Vp Partially vaccinated population.

Vf Fully vaccinated population.

δ Exposed population becomes infected population at a constant rate

δ > 0.

µ1 Disease related death.

γ Rate of medication to recovery.

TABLE 2 Initial values of variables.

Parameter Values Data source

N 1,679,754 https://www.census2011.co.in

S 1,661,989 S= N-E-I-R

E 16,797 Assumed

I 481 www.covid19.bharat.org

R 487 www.covid19.bharat.org

TABLE 3 Values of parameters.

Parameter Values Data source

A 33,595 Assumed

α 0.00001 Assumed

µ 0.143 Assumed

Vp 0.2522 https://www.cowin.gov.in

Vf 0.1517 https://www.cowin.gov.in

δ 1.01 Assumed

µ1 0.1595 www.covid19.bharat.org

γ 0.9 Assumed
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partially vaccinated population Vp and fully vaccinated population

Vf into the model to make it more realistic. Therefore, those who

are partially vaccinated may get exposed, and the fully vaccinated

individuals directly move to the recovery compartment. Other than

vaccinated individuals, the remaining infected individuals recovered

due to treatment at the rate γ . By using these assumptions, a model is

framed, which is described as follows:

dS

dt
= A− αSI − µS− VpS− Vf S,

dE

dt
= αSI − µE− δE+ VpS,

dI

dt
= δE− µI − µ1I − γ I,

dR

dt
= Vf S+ γ I − µR.

(3)

Here, N = S(t) + E(t) + I(t) + R(t) is the total population.

Tables 1–3 gives the description of the parameters, initial values of

the variables and values of the parameter respectively.

2.2. Transformation of Euler equations for
our SEIR model

For our model, the dependent variables are S,E, I, and R.

So, from the general iterative formula for the Euler method,

S(T), E(t), I(t), and R(t) can be modified as follows:

Sn+1 = Sn + 1t(A− αSnIn − µSn − VpSn − Vf Sn),

En+1 = En + 1t(αSnIn − µEn − δEn + VpSn),

In+1 = In + 1t(δEn − µIn − µ1In − γ In),

Rn+1 = Rn + 1t(Vf Sn + γ In − µRn).

(4)

From these iterative formulas, we have calculated the values for

55 days from 1 January 2022 to 24 February 2022 at Trivandrum

city. But before this, we should fix the initial values for variables and

parameters, which is discussed in the next section.

2.3. Transformation of Runge–Kutta
equations for our SEIR model

From the general iterative formula for the fourth order Runge–

Kutta method, S(T), E(t), I(t), and R(t) can be modified as follows:

KS
1 = f (tn, Sn, In)

= A− αSnIn − µSn − VpSn − Vf Sn.

KS
2 = f (tn +

1t

2
, Sn +

1t

2
KS
1 , In +

1t

2
KI
1)

= A− α(Sn + KS
1

1t

2
)(In + KI

1

1t

2
)− µ(Sn + KS

1

1t

2
)

− Vp(Sn + KS
1

1t

2
)− Vf (Sn + KS

1

1t

2
).

KS
3 = f (tn +

1t

2
, Sn +

1t

2
KS
2 , In +

1t

2
KI
2)

= A− α(Sn + KS
2

1t

2
)(In + KI

2

1t

2
)− µ(Sn + KS

2

1t

2
)

− Vp(Sn + KS
2

1t

2
)− Vf (Sn + KS

2

1t

2
).

KS
4 = f (tn + 1t, Sn + 1t KS

3 , In + 1t KI
3)

= A− α(Sn + KS
31t)(In + KI

31t)− µ(Sn + KS
31t)

− Vp(Sn + KS
31t)− Vf (Sn + KS

31t).

KE
1 = f (tn, Sn,En, In)

= αSnIn − µEn − δEn + VpSn.

KE
2 = f (tn +

1t

2
, Sn +

1t

2
KS
1 ,En +

1t

2
KE
1 , In +

1t

2
KI
1)

= α(Sn + KS
1

1t

2
)(In + KI

1

1t

2
)− µ(En + KE

1

1t

2
)

− δ(En + KE
1

1t

2
)+ Vp(Sn + KS

1

1t

2
).

KE
3 = f (tn +

1t

2
, Sn +

1t

2
KS
2 ,En +

1t

2
KE
2 , In +

1t

2
KI
2)

= α(Sn + KS
2

1t

2
)(In + KI

2

1t

2
)− µ(En + KE

2

1t

2
)

− δ(En + KE
2

1t

2
)+ Vp(Sn + KS

2

1t

2
).

KE
4 = f (tn + 1t, Sn + 1t KS

3 ,En + 1t KE
3 , In + 1t KI

3)

= α(Sn + KS
31t)(In + KI

31t)− µ(En + KE
3 1t)

− δ(En + KE
3 1t)+ Vp(Sn + KS

31t).

KI
1 = f (tn,En, In)

= δEn − µIn − µ1In − γ In.

KI
2 = f (tn +

1t

2
,En +

1t

2
KE
1 , In +

1t

2
KI
1)

= δ(En + KE
1

1t

2
)− µ(In + KI

1

1t

2
)− µ1(In + KI

1

1t

2
)

− γ (In + KI
1

1t

2
).

KI
3 = f (tn +

1t

2
,En +

1t

2
KE
2 , In +

1t

2
KI
2)

= δ(En + KE
2

1t

2
)− µ(In + KI

2

1t

2
)− µ1(In + KI

2

1t

2
)

− γ (In + KI
2

1t

2
).

KI
4 = f (tn + 1t,En + 1t KE

3 , In + 1t KI
3)

= δ(En + KE
3 1t)− µ(In + KI

31t)− µ1(In + KI
31t)

− γ (In + KI
31t).

KR
1 = f (tn, Sn, In,Rn)

= Vf Sn + γ In − µRn.

KR
2 = f (tn +

1t

2
, Sn +

1t

2
KS
1 , In +

1t

2
KI
1,Rn +

1t

2
KR
1 )

= Vf (Sn + KS
1

1t

2
)+ γ (In + KI

1

1t

2
)− µ(Rn + KR

1

1t

2
).

KR
3 = f (tn +

1t

2
, Sn +

1t

2
KS
2 , In +

1t

2
KI
2,Rn +

1t

2
KR
2 )

= Vf (Sn + KS
2

1t

2
)+ γ (In + KI

2

1t

2
)− µ(Rn + KR

2

1t

2
).

KR
4 = f (tn + 1t, Sn + 1t KS

3 , In + 1t KI
3,Rn + 1t KR

3 )

= Vf (Sn + KS
31t)+ γ (In + KI

31t)− µ(Rn + KR
3 1t).

From the aforementioned derived equations, we obtain
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Sn+1 = Sn +
1t

6
(KS

1 + 2KS
2 + 2KS

3 + KS
4 ), (5)

En+1 = En +
1t

6
(KE

1 + 2KE
2 + 2KE

3 + KE
4 ), (6)

In+1 = In +
1t

6
(KI

1 + 2KI
2 + 2KI

3 + KI
4), (7)

Rn+1 = Rn +
1t

6
(KR

1 + 2KR
2 + 2KR

3 + KR
4 ). (8)

Similarly, from these iterative formulas, we have calculated the

values for 55 days from 1 January 2022 to 24 February 2022 at

Trivandrum city. But before this, we should fix the initial values for

variables and parameters, which is discussed in the next section.

2.4. General algorithm for the Euler and
Runge–Kutta methods

Here, we have formulated a simple algorithm for both methods.

They are as follows:

STEP: 1 Here, we define all the parameters for the system

(Equation 3). In our case, we take real-world data for Vp, Vf ,

and µ1.

STEP: 2 Next, define system (Equation 3) with the respective

parameter values.

STEP: 3Here, we fix the initial conditions and step size.

STEP: 4Use the for loop and define the Equations (4)–(8) within

the loop. As this loop repeats the process, we fix the loop for 55

days. So, this generates our results for 55 days.

STEP: 5 By following these four steps, we obtain the solution for

both the Euler and Runge–Kutta methods.

3. Applications

We considered the COVID-19 outbreak, particularly in the

capital of Kerala, Trivandrum city. We have solved our model by

using the fourth order Runge–Kutta and the Euler method. We

have collected vaccination-related data from Ministry of Health and

Family Welfare1. These data have been taken for 55 days from 1

January 2022 to 24 February 2022. Our system is formulated logically

with the help of eight parameters. It is difficult to find all parameter

values. So, we have used assumed data for some parameters, and on

the other hand, we have taken real-world values from COVID-19

BHARAT2.

1 Ministry of Health and Family Welfare (2021). Available online at: https://

www.cowin.gov.in (accessed April 08, 2021).

2 COVID-19 BHARAT (2021). Available online at: https://www.covid19.bharat.

org (accessed April 08, 2021).

3.1. Solution obtained by using the Euler
method

For each day, we calculate S,E, I, and R using the Euler iterative

formula (Equation 4). We take the initial value as S0 = 1, 661, 989,

E0 = 16, 797, I0 = 481, and R0 = 487 with step size as 0.1. Using our

model, the following values for S1,E1, I1, and R1 can be calculated.

S1 = S0 + 1t(A− αS0I0 − µS0 − VpS0 − Vf S0)

= 1661989+ 0.1(33595− 0.00001(1661989)(481)

− 0.143(1661989)− 0.2522(1661989)− 0.1517(1661989))

= 1573654.

E1 = E0 + 1t(αS0I0 − µE0 − δE0 + VpS0)

= 16797+ 0.1(0.00001(1661989)(481)− 0.143(16797)

− 1.01(16797)+ 0.2522(1661989))

= 57575.

I1 = I0 + 1t(δE0 − µI0 − µ1I0 − γ I0)

= 481+ 0.1(1.01(16797)− 0.143(481)− 0.1595(481)− 0.9(481))

= 2119.

R1 = R0 + 1t(Vf S0 + γ I0 − µR0)

= 487+ 0.1(0.1517(1661989)+ 0.9(481)− 0.143(487))

= 25735.

(9)

Here, by using MATLAB, we have generated the values for 55

days from 1 January 2022 to 24 February 2022 which is described in

Supplementary Table 4.

3.2. Solution obtained by using the fourth
order Runge–Kutta method

For each day, we calculate S,E, I, and R using the fourth order

Runge–Kutta iterative formulas (5), (6), (7), and (8). We take the

initial value as S0 = 1661989, E0 = 16797, I0 = 481, and R0 =

487 with step size as 0.1. Using our model, the following values for

S1,E1, I1, and R1 can be calculated.

KS
1 = A− αS0I0 − µS0 − VpS0 − Vf S0

= 33595− 0.00001(1661989)(481)− 0.143(1661989)

− 0.2522(1661989)− 0.1517(1661989)

= −883340.

KE
1 = αS0I0 − µE0 − δE0 + VpS0

= 0.00001(1661989)(481)− 0.143(16797)− 1.01(1661989)

+ 0.2522(1661989)

= 407780.

KI
1 = δE0 − µI0 − µ1I0 − γ I0

= 1.01(16797)− 0.143(481)− 0.1595(481)− 0.9(481)

= 16386.

KR
1 = Vf S0 + γ I0 − µR0

= 0.1517(1661989)+ 0.9(481)− 0.143(487)

= 252486.
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KS
2 = A− α(S0 + KS

1

1t

2
)(I0 + KI

1

1t

2
)− µ(S0 + KS

1

1t

2
)

− Vp(S0 + KS
1

1t

2
)− Vf (S0 + KS

1

1t

2
)

= 33595− 0.00001(1661989+ (−883340)0.05)(481+ 16386(0.05))

− 0.143(1661989+ (−883340)0.05)− 0.2522(1661989

+ (−883340)0.05)− 0.1517(1661989+ (−883340)0.05)

= −872228.

KE
2 = α(S0 + KS

1

1t

2
)(I0 + KI

1

1t

2
)− µ(E0 + KE

1

1t

2
)

− δ(E0 + KE
1

1t

2
)+ Vp(S0 + KS

1

1t

2
)

= 0.00001(1661989+ (−883340)0.05)(481+ 16386(0.05))

− 0.143(16797+ 407780(0.05))−

1.01(16797+ 20389)+ 0.2522(1661989+ (−883340)0.05)

= 386176.

KI
2 = δ(E0 + KE

1

1t

2
)− µ(I0 + KI

1

1t

2
)− µ1(I0 + KI

1

1t

2
)

− γ (I0 + KI
1

1t

2
)

= 1.01(16797+ (407780)0.05)− 0.143(481+ (16386)0.05)

− 0.1595(481+ (16386)0.05)−

0.9(481+ (16386)0.05)

= 35994.

KR
2 = Vf (S0 + KS

1

1t

2
)+ γ (I0 + KI

1

1t

2
)− µ(R0 + KR

1

1t

2
)

= 0.1517(1661989+ (−883340)0.05)+ 0.9(481

+ (16386)0.05)− 0.143(487+ (252486)0.05)

= 244718.

KS
3 = A− α(S0 + KS

2

1t

2
)(I0 + KI

2

1t

2
)− µ(S0 + KS

2

1t

2
)

− Vp(S0 + KS
2

1t

2
)− Vf (S0 + KS

2

1t

2
)

= 33595− 0.00001(1661989+ (−872228)0.05)(481

+ (35994)0.05)− 0.143(1661989+

(−872228)0.05)− 0.2522(1661989+ (−872228)0.05)

− 0.1517(1661989+ (−872228)0.05)

= −888406.

KE
3 = α(S0 + KS

2

1t

2
)(I0 + KI

2

1t

2
)− µ(E0 + KE

2

1t

2
)

− δ(E0 + KE
2

1t

2
)+ Vp(S0 + KS

2

1t

2
)

= 0.00001(1661989+ (−872228)0.05)(481+ (35994)0.05)

− 0.143(16797+ (386176)0.05)−

1.01(16797+ (386176)0.05)+ 0.2522(1661989+ (−872228)0.05)

= 403435.

KI
3 = δ(E0 + KE

2

1t

2
)− µ(I0 + KI

2

1t

2
)− µ1(I0 + KI

2

1t

2
)

− γ (I0 + KI
2

1t

2
)

= 1.01(16797+ (386176)0.05)− 0.143(481+ (35994)0.05)

− 0.1595(481+ (35994)0.05)− 0.9(481+ (35994)0.05)

= 33724.

KR
3 = Vf (S0 + KS

2

1t

2
)+ γ (I0 + KI

2

1t

2
)− µ(R0 + KR

2

1t

2
)

= 0.1517(1661989+ (−872228)0.05)+ 0.9(481+ (35994)0.05)

− 0.143(487+ (244718)0.05)

= 245741.

KS
4 = A− α(S0 + KS

31t)(I0 + KI
31t)− µ(S0 + KS

31t)

− Vp(S0 + KS
31t)− Vf (S0 + KS

31t)

= 33595− 0.00001(1661989+ (−888406)0.1)(481+ (33724)0.1)

− 0.143(1661989+ (−888406)0.1)− 0.2522(1661989

+ (−888406)0.1)− 0.1517(1661989

+ (−888406)0.1)

= −887380.

KE
4 = α(S0 + KS

31t)(I0 + KI
31t)− µ(E0 + KE

3 1t)− δ(E0 + KE
3 1t)

+ Vp(S0 + KS
31t)

= 0.00001(1661989+ (−888406)0.1)(481+ (33724)0.1)

− 0.143(16797+ (403435)0.1)−

1.01(16797+ (403435)0.1)+ 0.2522(1661989+ (−888406)0.1)

= 391485.

KI
4 = δ(E0 + KE

3 1t)− µ(I0 + KI
31t)− µ1(I0 + KI

31t)

− γ (I0 + KI
31t)

= 1.01(16797+ (403435)0.1)− 0.143(481+ (33724)0.1)

− 0.1595(481+ (33724)0.1)− 0.9(481+ (33724)0.1)

= 53078.

KR
4 = Vf (S0 + KS

31t)+ γ (I0 + KI
31t)− µ(R0 + KR

3 1t)

= 0.1517(1661989+ (−888406)0.1)+ 0.9(481+ (33724)0.1)

− 0.143(487+ (245741)0.1)

= 238530.

S1 = S0 +
1t

6
(KS

1 + 2KS
2 + 2KS

3 + KS
4 )

= 1661989+
0.1

6
(−883340+ 2(−872228)+ 2(−888406)

+−887380)

= 1573789.2

E1 = E0 +
1t

6
(KE

1 + 2KE
2 + 2KE

3 + KE
4 )

= 16797+
0.1

6
(407780+ 2(386176)+ 2(403435)+ 391485)

= 56438.4

I1 = I0 +
1t

6
(KI

1 + 2KI
2 + 2KI

3 + KI
4)

= 481+
0.1

6
(16386+ 2(35994)+ 2(33724)+ 53078)

= 3962.6

R1 = R0 +
1t

6
(KR

1 + 2KR
2 + 2KR

3 + KR
4 )

= 487+
0.1

6
(252486+ 2(244718)+ 2(245741)+ 238530)

= 25019.2

(10)
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FIGURE 1

(A) Solution of SEIR model by using Euler method. (B) Solution of SEIR model by using Runge Kutta method.

Similarly, by using MATLAB, we have generated the values for 55

days from 1 January 2022 to 24 February 2022, which is described in

Supplementary Table 4.

4. Results and discussion

4.1. Simulation result of the Euler and
Runge–Kutta methods

Figure 1A demonstrates the solution to the SEIR COVID-19

outbreak with the effects of partially and fully vaccinated individuals

by using the Eulermethod. Here, the exposed and infected population

raises and then approaches close to zero. Clearly, from the graph and

data, we can predict that during the 21st day, the rate of infection was

going to peak position and then slowly approaches close to zero with

respect to time, whereas the susceptible population drastically comes

down and then move toward the equilibrium values. In the case of

a recovered population, the rate of recovery increases gradually and

moves toward the equilibrium values.

Figure 1B shows the simulation result of the SEIR COVID-19

outbreak with the effects of partially and fully vaccinated individuals

by using the fourth order Runge–Kutta method. Here, the exposed

and infected population raises and then approaches near zero.

Clearly, from the graph and data, we can predict that during the

20th day, the rate of infection was going to peak position and then

slowly approaches close to zero with respect to time, whereas the

susceptible population decreases drastically at first and then slowly

move toward stability. In the case of a recovered population, the rate

of recovery increases gradually and moves toward the equilibrium

values. Furthermore, from both Figures 1A, B, we can say that

Figure 1B is more accurate than Figure 1A. This is because the Euler

method has first order accuracy and the Runge–Kutta method has

fourth order accuracy [15]. So, Figure 1B gives a more accurate result.

So, overall from this, we can say that the incorporation of the Vp

and Vf parameters into the model has worked well and successfully

decreases the spread of COVID-19 in Trivandrum city.

FIGURE 2

The absolute value di�erence of SEIR model solution between two

methods.

4.2. Absolute value di�erence of SEIR model
solution between the two methods

Figure 2 demonstrates the absolute value difference of the SEIR

model between the Euler and the fourth order Runge–Kutta methods.

From this, we comment that the absolute value has a sudden raise in

the beginning stage. This is due to the increase in the value of the SEIR

model solution, which increases the absolute value difference up to

the peak and then decreases over time. The difference between both

solutions is large in the time interval [3, 16]. Supplementary Table 5

shows the absolute value difference of the solution for the considered

55 days.

From Supplementary Table 5, the largest absolute value difference

of the solutions of S(t),E(t), I(t), and R(t) are 70,931, 45,597, 27,276,

and 13,548, respectively, at the time t = 10, 9, 12, and 18. From these

data, we conclude that the absolute value difference between the two

methods is large.
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FIGURE 3

(A) Comparison between Euler and fourth order Runge Kutta method in the case of susceptible population. (B) Comparison between Euler and fourth

order Runge Kutta method in the case of exposed population.

FIGURE 4

(A) Comparison between Euler and fourth order Runge Kutta method in the case of infected. (B) Comparison between Euler and fourth order Runge

Kutta method in the case recovered population.

4.3. Comparison between the Euler and
fourth order Runge–Kutta methods

In this subsection, we have introduced the comparison between

the Euler and fourth order Runge–Kutta methods. Here, Figures 3A,

B, 4A, B demonstrate the comparison between these two methods for

the cases of susceptible, exposed, infected, and recovered populations,

respectively. The generated values between the twomethods show the

same behavior with a slight variation and produce similar results.

Here, in Figure 3B, initially, the number of exposed individuals

increases steeply and then decreases over a period of time. The

increase in the exposed population is due to the incorporation of

the fact that all partially vaccinated individuals are assumed to be

getting exposed to the infection. In addition, in Figure 4A, initially,

the number of infected individuals increases steeply over a period of

time and decreases eventually. The decrease in infection is due to the

increase in recovered individuals. Since those who recovered from

the infection are been transferred to the recovered compartment.

Furthermore, we assumed the fact that fully vaccinated individuals

directly move to the recovered class. Similarly, in Figure 4B, the

number of recovered individuals increases slowly and attains a peak

on the 35th day. Since the incubation period is 5–14 days, this is one

of the reasons for the slowness in the recovered population.

4.4. Comparing the model with actual data

Using the generated data and actual data from

Supplementary Tables 6, 7, we have plotted a graph that compares

the model data with the actual data for the infected and recovered

populations. Figures 5A, 6A demonstrate that the real data do not

coincide or fit well with the generated results of the model. From

these displayed figures, we observe that the generated values and

the actual values do not match or coincide well. This may be due

to the unexpected rise of the infected population in the real world,

particularly Trivandrum. Here, the actual data curve remains at

the bottom and looks like a straight line. So, to get a clear picture

of actual data, we have plotted it separately in Figures 5B, 6B. This

shows the daily variation of infected and recovered individuals over

a period of 55 days in Trivandrum city.

4.5. Curve fitting with actual data

By doing some modifications in the parameter values, we

were able to fit the model with our real-world data, which are

demonstrated in Figures 7A, B. It shows the comparison of curve-

fitted data from 55 days with the real-world data for the infected and
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FIGURE 5

(A) Comparing the model with actual data- infected. (B) Actual data for the number of people infected.

FIGURE 6

(A) Comparing the model with actual data- recovered. (B) Actual data for the number of people recovered.

FIGURE 7

(A) Curve fitting with actual data for infected population. (B) Curve fitting with actual data for recovered population.

recovered populations. Furthermore, Supplementary Table 8 shows

the comparison of data of the fitted model to the real-life data for

both the infected and recovered populations. Hence, from this, we

were able to match the generated values with real-world data.

5. Conclusion

The solution to the SEIR model with the effects of partially

and fully vaccinated individuals are discussed in this study. Here,

we solve our model by using the Euler and fourth order Runge–

Kutta methods for the capital of Kerala, Trivandrum city. Using

MATLAB, we have generated the values and graphs for 55 days

from 1 January 2022 to 24 February 2022. The simulation result

shows that both methods have the same behavior and produce

similar results for all the population groups. Furthermore, we

found that the fourth order Runge–Kutta method is more accurate

than the Euler method. The absolute value difference between

these two methods is obtained. This shows that the differences
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of the solution between these two methods are large at the time

interval [3, 16]. Then, we have compared the infected and recovered

data of the two methods with actual data, which is described in

Figures 5A, 6A. We observed that the graph does not match with

the actual data due to a huge rise in the infected and recovered

populations and also overestimation of parameters such as γ and

δ. Meanwhile fully vaccinated population plays a vital role in our

model. It triggers the recovery rate. Eventually some studies and

new articles [17] show that COVID-19 vaccine remains effective in

preventing severe disease, but its effectiveness can wane over time.

According to Dr.Rommel Tickoo, boosters are being recommended

because data are showing that the protection of vaccine declines

over time, particularly those who were vaccinated long before.

Furthermore, he added that it is concern about new COVID-19

variant, such as Omicron. He suggests that getting a booster dose

can decrease the risk of infection and severe illness from virus. In

India, it has been 15 months of completion in vaccination drive.

Still, 37% of eligible individuals are not been fully vaccinated yet,

whereas in Trivandrum, 32% have been not fully vaccinated. So,

this is also one of the reasons of mismatch of generated values

with actual data in Figures 5A, 6A. Hence, in future, by doing

parameter estimation, we can modify our model and can evaluate

the flaws.
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