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Bayesian modeling of the
temporal evolution of seismicity
using the ETAS.inlabru package

Mark Naylor1*, Francesco Serafini1,2, Finn Lindgren2 and

Ian G. Main1

1School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom, 2School of Mathematics,

University of Edinburgh, Edinburgh, United Kingdom

The epidemic type aftershock sequence (ETAS) model is widely used to model

seismic sequences and underpins operational earthquake forecasting (OEF).

However, it remains challenging to assess the reliability of inverted ETAS

parameters for numerous reasons. For example, the most common algorithms

just return point estimates with little quantification of uncertainty. At the same

time, Bayesian Markov chain Monte Carlo implementations remain slow to run

and do not scale well, and few have been extended to include spatial structure.

This makes it di�cult to explore the e�ects of stochastic uncertainty. Here, we

present a new approach to ETAS modeling using an alternative Bayesian method,

the integrated nested Laplace approximation (INLA). We have implemented this

model in a new R-Package called ETAS.inlabru, which is built on the R

packages R-INLA and inlabru . Our study has included extending these packages,

which provided tools for modeling log-Gaussian Cox processes, to include the

self-exciting Hawkes process that ETAS is a special case of. While we just present

the temporal component here, the model scales to a spatio-temporal model and

may include a variety of spatial covariates. This is a fast method that returns joint

posteriors on the ETAS background and triggering parameters. Using a series of

synthetic case studies, we explore the robustness of ETAS inversions using this

method of inversion. We also included runnable notebooks to reproduce the

figures in this article as part of the package’s GitHub repository. We demonstrate

that reliable estimates of the model parameters require that the catalog data

contain periods of relative quiescence, as well as triggered sequences. We explore

the robustness of the method under stochastic uncertainty in the training data

and show that the method is robust to a wide range of starting conditions.

We show how the inclusion of historic earthquakes prior to the modeled time

window a�ects the quality of the inversion. Finally, we show that rate-dependent

incompleteness of earthquake catalogs after large earthquakes have a significant

and detrimental e�ect on the ETAS posteriors. We believe that the speed of

the inlabru inversion, which includes a rigorous estimation of uncertainty, will

enable a deeper exploration of how to use ETAS robustly for seismicity modeling

and operational earthquake forecasting.
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1. Introduction

The epidemic type aftershock sequence (ETAS) model [1–

3] is one of the cornerstones of seismicity modeling. It models

evolving seismic sequences in terms of background seismicity and

seismicity triggered by previous events. As such, it is a self-exciting

point process model, which is commonly termed a Hawkes process

[4] in the statistical literature. ETAS achieves this by combining

several empirical relationships for seismicity. The ETAS model

enables us to generate synthetic earthquake sequences and to

invert earthquake space-time-magnitude data for the underlying

ETAS parameters that characterize both the background and

triggering rates. However, the likelihood space for some parameters

is notoriously flat, and many factors can affect the robustness of the

results.

There are many different implementations of the ETAS model.

The most common approach for determining ETAS parameters is

the maximum-likelihood method which returns a point estimate

on the ETAS parameters using an optimization algorithm (e.g.,

[5]). In some cases, uncertainty is quoted using the Hessian

matrix. Bayesian alternatives are available; for example, the

“bayesianETAS” R-package [6] uses the Markov chain Monte

Carlo (MCMC) method to return full posteriors. However, MCMC

methods are notoriously slow as building the Markov chain is

an inherently linear algorithm requiring many successive runs of

a forward model based on the previous results. A major benefit

of Bayesian methods is that they better describe uncertainty. We

have developed a new Bayesian ETAS package using the integrated

nested Laplace approximation (INLA) instead of MCMC; this

is implemented in the R-Package ETAS.inlabru and will be

made available through the Comprehensive R Archive Network

(CRAN). The results presented, in this article, are reproducible

using this package and a series of Rmd notebooks. Unlike the

MCMC implementations, our method does not rely on a latent

variable to classify whether events are background or triggered.

The integrated nested Laplace approximation (INLA [7]) and

inlabru [8] offer a fast approach for Bayesianmodeling of spatial,

temporal, and spatio-temporal point process data and have had

over 10 years of development. The INLA method is a well-known

alternative to MCMC methods to perform Bayesian inference. It

has been successfully applied in a variety of fields, such as seismic

hazard [9, 10], air pollution [11], disease mapping [12–15], genetics

[16], public health [17], and ecology [18, 19], as well as more

examples can be found in Bakka et al. [20], Blangiardo et al. [21],

and Gómez-Rubio [22].

To date, the main limitation of the application of inlabru to

seismicity was that it only addressed log-Gaussian Cox Processes

[23], which do not include self-exciting clustering. Serafini et

al. [24] addressed this specific limitation by showing how the

methodology used for log-Gaussian Cox processes could be

extended to model self-exciting Hawkes processes [4, 25], using R-

INLA and inlabru , when the function form of the triggering

function can be integrated. The novelty of our approach resides

in the likelihood approximation. We decompose the log-likelihood

into the sum of many small components, where each is linearly

approximated with respect to the posterior mode using a truncated

Taylor expansion. This means that the log-likelihood is exact

at the posterior mode and the accuracy of the approximation

decreases as wemove away from that point. Furthermore, the linear

approximation and the optimization routine to determine the

posterior mode are internally performed by the inlabru package.

In this study, the specific application to the ETAS model

was presented. The temporal model provides posteriors on the

background rate and all ETAS parameters.

ETAS.inlabru provides the functions to be approximated

while the user provides the data and specifies the priors. The

advantages of our approach are both in terms of computational

time and its scalability to include relevant covariates [9] such as

maps of faults, strain rates, in addition to earthquake catalog data to

introduce alternative structures to the parameters (e.g., considering

one of them as temporally, or spatially, varying).

Here, we present a broad analysis of how the

inlabru inversion performs on synthetic earthquake catalogs

where we know all of the controlling parameters. We explore the

performance of the inversion as a function of the training catalog

length, the impact of large events that happen to occur in the

sequence, the consequence of short-term incompleteness after

large events as well as various inlabrumodel choices. These

results are generic and not specific to our implementation of the

ETAS model—rather our fast Bayesian model allows us to make

a more rapid assessment of potential biases derived from the

likelihood function itself. We want the reader to come away with

an understanding of when the ETAS model is likely to describe

a sequence well, be able to identify sources of potential bias,

understand how synthetic modeling allows us to explore potential

data quality issues, and decide whether fitting an ETAS model is an

appropriate way to proceed.

2. Method

In this section, we introduce our inlabru implementation of

the temporal ETAS model and refer the reader to Serafini et al. [24]

for a complete description of the mathematical formulation.

2.1. The temporal ETAS model

The temporal ETAS model is a marked Hawkes process model,

where the marking variable is the magnitude of the events. The

ETAS model is composed of three parts: a background rate term,

a triggered events rate representing the rate of events induced by

past seismicity, and a magnitude distribution independent from

space and time. Given the independence between the magnitude

distribution and the time distribution of the events, the ETAS

conditional intensity is usually the product between a Hawkes

process model describing only the location and a magnitude

distribution π(m).

More formally, the ETAS conditional intensity function

evaluated at a generic time point t ∈ (T1,T2),T1,T2 ≥ 0,T1 <

T2 having observed the events Ht = {(th,mh) : th < t,mh >

M0, ∀h = 1, ...,N(t−)}, where M0 is the minimum magnitude in

the catalog which needs to be completely sampled, and N(t) is the

counting process associated with the Hawkes process representing
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the number of events recorded up to time t (included), is given by

the following:

λETAS(t,m|Ht) = λHawkes(t|Ht)π(m), (1)

where λHawkes is the conditional intensity of a temporal Hawkes

process describing the occurrence times only. In our ETAS

implementation, this is given by the following:

λHawkes(t|Ht) = µ +
∑

(th ,mh)∈Ht

Keα(mh−M0)

(

t − th

c
+ 1

)−p

, (2)

The parameters of the model are µ,K,α, c ≥ 0 and p >

1. Different parametrizations of the ETAS model exist; we focus

on this one because it has proven to be the most suitable

parametrization for our method.

In seismology, the magnitude distribution, π(m) is

commonly assumed to be independent of space and time

for simplicity of analysis. In this study, we take this to be

the Gutenberg–Richter distribution with a b-value of 1. In

this section, we focus on the Hawkes part of the model,

assuming the parameters of the magnitude distribution

are determined independently. From now on, for ease of

notation, where not specified differently, we refer to λHawkes as

simply λ.

2.2. Hawkes process log-likelihood
approximation for inlabru

The Hawkes process is implemented in inlabru by

decomposing its log-likelihood function (Equation 3) into multiple

parts, the sum of which returns the exact log-likelihood at the

point we expand it about. We linearly approximate the single

components with respect to the posterior mode and apply

the integrated nested Laplace approximation (INLA) method

to perform inference on the parameters of the model. Both

the linearization and the optimization, to find the posterior

mode, are performed internally by inlabru . Our package,

ETAS.inlabru, provides inlabruwith the ETAS-specific

functions representing the log-likelihood component to be

approximated. We outline the decomposition below.

Having observed a catalog of events H = {(ti,mi) : ti ∈
[T1,T2],mi ∈ (M0,∞)}, the Hawkes process log-likelihood is given
by the following:

L(θ |H) = −3(T1,T2)+
∑

(ti ,mi)∈H
log λ(ti|Hti ), (3)

where θ is a vector of the model parameters, Hti = {(th,mh) ∈
H : th < ti} is the history of events up to time ti, and

3(T1,T2)

=
∫ T2

T1

λ(t|Ht)dt = (T2 − T1)µ

+
∑

(ti ,mi)∈H

∫ T2

T1

Keα(mi−M0)

(

t − ti

c
+ 1

)−p

I(t > ti)dt

= (T2 − T1)µ

+
∑

(ti ,mi)∈H
Keα(mi−M0)

∫ T2

max(T1 ,ti)

(

t − ti

c
+ 1

)−p

dt

= (T2 − T1)µ

+
∑

(ti ,mi)∈H
Keα(mi−M0)

c

p− 1

(

(

max(ti,T1)− ti

c
+ 1

)1−p

−
(

T2 − ti

c
+ 1

)1−p
)

= 30(T1,T2)+
∑

(ti ,mi)∈H
3i(T1,T2).

(4)

The above integral can be considered the sum of two parts,

the number of background events 30(T1,T2) and the remaining

summation, which is referred to as the sum of the number

of triggered events by each event ti, namely 3i(T1,T2). We

approximate the integral by linearizing the functions 30(T1,T2)

and 3i(T1,T2). This means that the resulting approximate integral

is the sum of |H| + 1 linear functions of the parameters.

However, we concluded that this approximation alone is

not sufficiently accurate. To increase the accuracy of the

approximation, for each integral 3i(T1,T2), we further consider

a partition of the integration interval [max(T1, ti),T2] in Bi bins,

t
(bi)
0 , ...., t

(bi)
Bi

such that t
(bi)
0 = max(T1, ti), t

(bi)
Bi

= T2 and t
(bi)
j < t

(bi)
k

if j < k. By doing this, the integral becomes:

3(T1,T2) = 30(T1,T2)+
∑

(ti ,mi)∈H

Bi−1
∑

j=0

3i(t
(bi)
j , t

(bi)
j+1). (5)

In this way, the integral is decomposed in
∑

i Bi + 1 > |H| + 1

terms providing a more accurate approximation. We discuss the

options for temporal binning in Section 2.3.

Substituting Equations (5) into (3), the Hawkes process log-

likelihood can be written as follows:

L(θ |H) = −30(T1,T2)−
∑

(ti ,mi)∈H

Bi−1
∑

j=0

3i(t
(bi)
j , t

(bi)
j+1)

+
∑

(ti ,mi)∈H
log λ(ti|Hti ). (6)

In our approximation, we linearise the logarithm of each

element within summations with respect to the posterior mode θ
∗.
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Other choices led to a non-convergent model [24]. In this case, the

approximate log-likelihood becomes:

L(θ |H) = − exp{log30(T1,T2)}

−
∑

(ti ,mi)∈H

Bi−1
∑

j=0

exp{log3i(t
(bi)
j , t

(bi)
j+1)}

+
∑

(ti ,mi)∈H
log λ(ti|Hti ), (7)

where for a generic function f (θ) with argument θ ∈ 2 ⊂ R
m, the

linearized version with respect to a point θ∗ is given by a truncated

Taylor expansion:

f (θ) = f (θ∗)+
m
∑

k=1

(θk − θ∗k )
∂

∂θk
f (θ)

∣

∣

∣

∣

∣

θ=θ
∗
. (8)

The other key component is the functions for each of the three

incremental components in Equation (6) that needs to be linearized

in this way. These are provided in ETAS.inlabru and will be

discussed in Section 2.4.

2.3. Temporal binning

For each event, time binning is used in Equation (5) to

improve the accuracy of the integration of the term describing

the sum of the number of triggered events. The binning strategy

is fundamental because the number of bins determines, up to a

certain limit, the accuracy of this component of the approximation.

Consideringmore bins enhances the accuracy of the approximation

but increases the computational time because it increases the

number of quantities to be approximated. Also, we cannot reduce

the approximation error to zero, and the numerical value of the

integral in each bin goes to zero increasing the number of bins,

which can be problematic in terms of numerical stability. We found

that the ETAS model considered here, having approximately 10

bins for each observed point is usually enough, and that is best

considering higher resolution bins close to the triggering event. In

fact, the function

gt(t, ti,mi) = Keα(mi−M0)

(

t − ti

c
+ 1

)−p

I(t > ti) (9)

varies the most for the value of t close to ti and becomes almost

constant moving away from ti. This means that we need shorter

bins close to ti, to capture the variation, and wider bins far from ti
where the rate changes more slowly.

We choose a binning strategy defined by three parameters

1, δ > 0, and nmax ∈ N
+. The bins relative to the observed point ti

are given by the following:

ti, ti+1, ti+1(1+δ), ti+1(1+δ)2, ...., ti+1(1+δ)ni ,T2, (10)

where, ni ≤ nmax is the maximum n ∈ {0, 1, 2, 3, ...} such that

ti + 1(1 + δ)n < T2. The parameter 1 regulates the length of the

first bin, δ regulates the length ratio between consecutive bins, and

the value nmax regulates the maximum number of bins.

This strategy presents two advantages. The first is that we have

shorter bins close to the point ti and wider bins as we move away

from that point. The second is that the first (or second, or third, or

any) bin has the same length for all points. This is useful because

the integral in a bin is a function of the bin length and not of the

absolute position of the bin. This means that we need to calculate

the value of the integral in the first (second, third, or any) bin

once time and reuse the same result for all events. This significantly

reduces the computational burden.

2.4. Functions to be linearized

This section and the next one illustrate what we need to provide

to inlabru to approximate Hawkes process model. This one

focuses on the functions to be provided, while the next one on how

they are combined to obtain the desired approximation. Regarding

the functions to be provided, we remark that those are already

present in the ETAS.inlabru package, thus, the user does not

have to provide anything apart from the data, the area of interest,

and the prior parameters. However, these sections are useful to

understand what happens under the curtains and if one wants to

extend this approach to more complicated ETAS implementations.

To build an ETAS model, we need to provide functions for

each of the components of the likelihood function (Equation 6).

The linearization and the finding of the mode θ
∗ are managed

automatically by the inlabru package. We only have to provide

the functions to be linearized. Specifically, we need to provide the

logarithm of the functions needed to approximate the integral and

the logarithm of the conditional intensity. More formally, for our

approximation of the ETAS model (i.e., for each term in Equation

6), ETAS.inlabru provides the functions:

log30(T1,T2) = log(T2 − T1)+ log(µ) (11)

log3i(t
(bi)
j , t

(bi)
j+1) = log(K)+ α(mi −M0)+ log

(

c

p− 1

)

+ log









t
(bi)
j − ti

c
+ 1





1−p

−





t
(bi)
j+1 − ti

c
+ 1





1−p



and

log λ(t|Ht) = log



µ +
∑

(th ,mh)∈Ht

Keα(mh−M0)

(

t − th

c
+ 1

)−p


 .

(12)

For full details, refer to Serafini et al. [24].
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TABLE 1 Hawkes process log-likelihood components approximation.

Name Objective Approximation Surrogate log λP Number of data points Counts and exposures

Part I 30(X ) exp log30(X ) log30(X ) 1 ci = 0, ei = 1

Part II
∑n

h=1

∑Bh
i=1 3h(bi,h)

∑n
h=1

∑Bh
i=1 exp log3h(bi,h) log3h(bi,h)

∑

h Bh ci = 0, ei = 1

Part III
∑n

h=1 log λ(xh)
∑n

h=1 exp log λ(xh) log λ(x) n ci = 1, ei = 0

2.5. Implementation details: The poisson
count model trick

This subsection is helpful for those wanting to understand the

source code; it describes a computational trick that might appear

unusual at first. It can be skipped without a loss of understanding

of mathematics.

Our implementation in inlabruworks by combining three

INLA Poisson models on different datasets. The use of the

INLA Poisson model, here, is related to computational efficiency

purposes; it does not have any specific statistical meaning.

Specifically, we leverage the internal log-likelihood used for Poisson

models in R-INLA (and inlabru ) to obtain the approximate

Hawkes process log-likelihood as part of a computational trick.

More formally, INLA has the special feature of allowing the user

to work with Poisson counts models with exposures equal to zero

(which should be improper). A generic Poisson model for counts

ci, i = 1, ..., n observed at locations ti, i = 1, ..., n with exposure

E1, ...,En with log-intensity log λP(t) = f (t, θ), in inlabru has

log-likelihood given by the following:

LP(θ) ∝ −
n
∑

i=1

exp{f (ti, θ , θ∗)} ∗ Ei +
n
∑

i=1

f (ti, θ , θ
∗) ∗ ci. (13)

Each Hawkes process log-likelihood component (Equation 6)

is approximated using one surrogate Poisson model with log-

likelihood given by Equation (13) and an appropriate choice of

counts and exposures data. Table 1 reports the approximation

for each log-likelihood component with details on the surrogate

Poisson model used to represent it. For example, the first part

(integrated background rate) is represented by a Poisson model

with log-intensity log30(X ), this will be automatically linearized

by inlabru . Given that, the integrated background rate is just

a scalar and not a summation, and therefore we only need one

observation to represent it, assuming counts equal 0 and exposures

equal 1. Table 1 shows that to represent a Hawkes process model

having observed n events, we need 1+
∑

h(Bh)+ n events with Bh
number of bins in the approximation of the expected number of

induced events by observation h.

Furthermore, Table 1 lists the components needed to

approximate the ETAS log-likelihood, which will be internally

considered surrogate Poisson log-intensities by inlabru . More

specifically, we only need to create the datasets with counts ci,

exposures ei, and the information on the events xi representing

the different log-likelihood components; and, to provide the

functions log30(X ), log3h(bi,h), and log λ(t). The linearization is

automatically performed by inlabru , as well as the retrieving of

the parameters’ posterior distribution.

More detail on how to build the functions in the

ETAS.inlabru package can be found at https://github.

com/Serra314/Hawkes_process_tutorials/tree/main/how_to_

build_Hawkes.

2.6. Prior specification

We have to set the priors for the parameters. The INLA

method is designed for latent Gaussian models, which means that

all the unobservable parameters have to be Gaussian. This seems

in contrast with the positivity constraint of the ETAS parameters

µ,K,α, c, p, but we have a solution.

Our idea is to use an internal scale where the parameters have

a Gaussian distribution and to transform them before using them

in log-likelihood components calculations. We refer to the internal

scale as INLA scale and to the parameters in the INLA scale as θ .

In practice, all parameters have a standard Gaussian prior in the

INLA scale, and they are transformed to be distributed according to

a target distribution in the ETAS scale. Specifically, assuming that θ

has a standard Gaussian distribution with cumulative distribution

function (CDF) 8(θ), and calling F−1
Y the inverse of the CDF of

the target distribution for the parameter, we can switch between the

Gaussian and the target distributions using the following:

η(θ) = F−1
Y (8(θ)), (14)

where η(θ) has a distribution with CDF FY (·).
The ETAS.inlabru R-package uses the following default

priors in the ETAS scale,

µb ∼ Gamma(shape = 0.5, rate = 0.5)

Kb ∼ LogNormal(mean(log(K)) = −1, sd(log(K)) = 0.5)

αb ∼ Unif(αmin = 0,αmax = 10) (15)

cb ∼ Unif(cmin = 0, cmax = 1)

pb ∼ Unif(pmin = 1, pmax = 2)

however, they can be changed to different distributions that better

describe the available prior information.

The package inlabru provides a function to easily

implement such transformation. The function is called

bru_forward_transformation and takes in input the

quantile function of the target distribution and its parameters.

Below, we report three examples of transformations such that the

parameters in the ETAS scale have a Gamma, Uniform, or Log-

Gaussian distribution. We show the empirical density obtained
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by transforming the same sample of values from a standard

Gaussian distribution.

The prior for µ is the one that will most commonly need to be

modified as it changes with the size of the domain being modeled.

We choose Gamma(shape = aµ, rate = bµ) prior for µ. The mean

of the distribution is given by aµ/bµ = 1 event/day; the variance

is aµ/b2µ = 2, and the skewness 2/
√

α = 2.5. One strategy for

setting these parameters is to estimate an upper limit on the rate by

dividing the duration of the catalog total number of events; this is

likely an overestimate as it combines the triggered and background

events. One might choose to pick a mean rate that is half of this,

which defines the ratio of aµ and bµ. There is then some trade-off

in the variance and skewness parameters.

Samples drawn from the priors used in this article are shown

in Figures 1A–E, including lines showing the initial and true values

that will be used through the majority of the results. The sensitivity

to the choice of initial values is the first part of the results section.

Please note how broad these priors, are as this is helpful to see how

much more informative the posteriors we generate are from these

initial distributions.

The ETAS parameters themselves are not easy to interpret

given that it is their combination in the Omori decay and

triggering functions that we are most interested in. We draw

1000 samples from the prior to generate samples of the

Omori decay, the triggering function for an M4 event and the

triggering function of an M6.7 event (Figures 1F–H). We see

that these priors produce a wide range of behavior, including

unrealistically large productivity compared to real earthquake

process. This information is useful for comparison with the

triggering functions derived from sampling posteriors later in

the article.

2.7. Fitting the model

The function Temporal.ETAS.fit(list.input)

performs the ETAS inversion. The list.input object is a

structured list containing the raw catalog, the catalog formatted

for inlabru , definition of the model domain, an initial set of

trail parameters on the ETAS scale, the link functions used to

transform from the internal scale to the ETAS scale, parameters

to set each of the priors, parameters to generate the time binning,

and a series of runtime parameters that control the behavior of

inlabru . There is a complete description of the parameters in

Table 2, which cross-references to the section of the article that

describes their role.

In the Section 3, we vary the catalog, start times, and the

initial set of trial parameters. To achieve this, we create a default

list.input object and then modify these inputs by hand—the

notebooks provided demonstrate how to do this.

Once we call Temporal.ETAS.fit(list.input), the

iterative fitting of the model parameters is handled automatically

FIGURE 1

(A–E) Show samples from the priors on the ETAS scale that we use throughout this article. They are intentionally broad. The red line shows the initial

value used for the majority of the analyses in this article, and the green line shows the true value. (F–H) Show samples of the triggering functions

derived from these priors. The permit a very wide range of triggering behaviors, including unrealistically large numbers of events; these should be

used for comparison with the triggering functions derived from the fitted posterior distributions later in the article.
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TABLE 2 Description of the model definition contained in list input.

Parameter and type Default value Further information

Data Catalog of event times and magnitudes

catalog [t,M(, ...)] The input catalog as it is provided with at least a set of times and magnitudes

catalogue.bru list([ts, magnitude, idx.p]) The input catalog in the format needed for inlabru. For each event we have a [time, magnitude, id]

Domain definition Time domain varied in Sections 3.3, 3.4

time.int The provided start and end date in string format

T12 double [T1, T2] The start and end date as number of days from the provided starting date

lat.int double [–90,90] Min and max latitude bounds for filtering the catalog

lon.int double [–180,180] Min and max longitude bounds for filtering the catalog

M0 double 2.5 Minimummagnitude for the model domain

Initial trial paras Varied in Section 3.1

mu.init double 0.3 Initial guess for the background rate, µ

K.init double 0.1 Initial guess for the, K

alpha.init double 1 Initial guess for, α

c.init double 0.2 Initial guess for, c

p.init double 1.1 Initial guess for, p

Link functions A list of functions used to transform the parameters from the internal scale to the ETAS scale

Priors See Section 2.6 for definition

a_mu double 0.5 Gamma distribution shape parameter

b_mu double 0.5 Gamma distribution rate parameter

a_K double -1 log-Normal distribution mean

b_K double 0.5 log-Normal distribution standard deviation

a_alpha double 0 Min of a uniform distribution

b_alpha double 10 Max of a uniform distribution

a_c double 0 Min of a uniform distribution

b_c double 1 Max of a uniform distribution

a_p double 1 Min of a uniform distribution

b_p double 2 Max of a uniform distribution

Time binning paras See Section 2.3

Nmax int 8 Value of the parameter nmax in Equation (10)

coef.t double 1.0 Value of the parameter δ in Equation (10)

delta.t double 0.1 Value of the parameter 1 in Equation (10)

bru.opt.list See bru documentation

bru.verbose int 3 Type of visual output from inlabru

bru_max_iter int 100 Maximum number of inlabru iterations

num.threads int 5 Number of cores used in each inlabru iteration

inla.mode string “experimental” Type of approximation used by INLA

bru.inital: th.mu, th.K,

, th.alpha, th.c, th.p

list[double[5]] Initial trial parameters on the internal scale. These are calulated using the inverse of the copula

transformation functions in ETAS.inlabru

Runtime paras

max_iter int 100 Maximum number of iterations for the inlabru algorithm. The number of iterations will be less than

this number if the algorithm have converged

max_step NULL This parameters refers to how far the parameter value can jump from one iteration to another. The

greater the value the greater the potential jump. Setting a value different from NULL prevents the

inlabru algorithm to check for convergence and the algorithm will run exactly the number of

iterations specified inmax_iter.

This information will be passed to ETAS.inlabru to start the inversion. Each analysis in the results section is initialized by adjusting this list.
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by inlabru until they converge or max_iter iterations have

occurred. For a comprehensive discussion of the underlying

mathematical framework, we refer the reader to Serafini et al. [24].

The iterative process is illustrated in Figure 2 and outlines each

of the steps below.

2.7.1. Step 1: Initialize/update trial ETAS
parameter set

We start with a set of trial ETAS parameters θ0 =
(µ0,K0,α0, p0, c0) which will be used as the linearization point for

the linear approximation. These initial values should lie within

their respective priors. They could be sampled from the priors,

but it is possible that a very unrealistic parameter combination

might be chosen. These parameters will be updated in each loop

of the inlabru algorithm. In general, extreme parametrizations

(e.g., parameters smaller than 10−5 or > 20) should be avoided.

Usually, setting all the parameters to 1 (expect p which could be

set to 1.1) is a safe choice. Another approach could be to use the

maximum-likelihood estimate.

2.7.2. Step 2. Integrated nested laplace
approximation

ETAS.inlabru contains the ETAS functions that will be

internally linearized (refer to Section 2.4) about an arbitrary point

and then integrated. The nested integration is performed by R-

INLA, but this is managed by inlabru , so we never need to call

it directly. The R-INLA output returns a comprehensive output,

including the joint posteriors (for an overview of R-INLA output,

refer to Krainski et al. [26]).

2.7.3. Step 3. Extract the ETAS posteriors and their
modes

From the R-INLA output, we extract the modes of the

approximated posteriors θ
∗
1 . In early iterations, this point is usually

far away from the true mode posterior; this depends on the point

θ0 used as starting point. The approximate posterior mode tends to

true one as the iterations run.

2.7.4. Step 4. Line search to update modal
parameters

At this point, we have the initial set of trial ETAS parameters θ0

that were used as the linearization point, and the posterior modes

derived from R-INLA θ
∗
1 . The value of the linearization point is

updated to θ
∗ = αθ0+(1−α)θ∗1 , where the scaling α is determined

by the line search method.1

2.7.5. Step 5. Evaluation of convergence
Convergence is evaluated by comparing θ

∗ and θ0. By default,

convergence is established when there is a difference between

each parameter pair is less than a 1% of the parameter standard

deviation. The value 1% can bemodified by the user. If convergence

1 https://inlabru-org.github.io/inlabru/articles/method.html

has not been achieved and the maximum number of iterations has

not occurred, we set θ0 = θ
∗ and return to step 1 using the new

linearization point as the set of trial parameters.

2.8. Generation of synthetic catalogs

The final component of this article is the production of

synthetic catalogs to be analzsed. The synthetics are constructed

leveraging the branching structure of the ETAS model. Specifically,

for temporal models, background events are selected randomly

in the provided time window with a rate equal to µ. Then,

the offsprings of each background event are sampled from an

inhomogeneous Poisson process with intensity given by the

triggering function. This process is repeated until no offsprings are

generated in the time frame chosen for the simulation.

Using ETAS.inlabru, we generate catalogs with a duration

of 1,000 days with a background rate of µ = 0.1 events per day

and ETAS triggering parameters of c = 0.11, p = 1.08, α = 2.29,

and K = 0.089. We take a b-value of 1 for the Gutenberg–Richter

magnitude distribution. The lower magnitude thresholdM0 = 2.5,

which is motivated by catalogs such as those in the Apennines of

Italy or for Ridgecrest in California.

We also use two different scenarios, a seeded version of these

catalogs where we impose an extra M6.7 event on day 500,

and an unseeded catalog where the events are purely generated

by the ETAS model. This leads to catalogs which are relatively

active in the former case and relatively quiet in the latter case.

Using these scenarios, we can generate different stochastic samples

of events to produce a range of catalogs consistent with these

parameterizations.

The associated R Markdown notebook in the GitHub

repository2 allows the reader to see howwe have implemented these

catalogs for the range of models investigated in the results.

3. Results

We present the performance of the ETAS.inlabru inversion

across a range of synthetic case studies motivated by various

challenges of analyzing real earthquake catalogs. We are interested

in the accuracy and precision of the inversion compared with

the original ETAS parameterization, understanding sources of

systematic bias derived from differences in the catalogs being

modeled, and the computational efficiency of the method.

All of the analyses start with one or more catalogs of 1,000 days

in length, generated using a constant background rate of µ = 0.1

events/day above a constant magnitude threshold of M0 = 2.5,

and true ETAS parameters are listed on the top row of Table 3. We

choose to use this minimummagnitude motivated by common real

values in regions, such as California and the Apennines, Italy.

A consequence of choosing the 1,000-day window is that

there will not be a fixed number of events when comparing

different samples as some samples contain large events while

others are relatively quiet. We make this choice because we believe

that it represents the closest analogy to the data challenge faced

2 https://github.com/edinburgh-seismicity-hub/ETAS.inlabru/settings
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FIGURE 2

Schematic diagram showing the inlabruworkflow which iteratively updates a set of trial ETAS parameters.

by practitioners. However, we will be explicit in exploring the

implications of this choice.

Within the sequences, there are three different timescales or

frequencies that inter-relate. The duration of the synthetic catalogs,

the background rate and the rate at which aftershocks decay (e.g.,

Touati et al. [27]). A short catalog would be one which only

samples several background events or perhaps a single mainshock-

aftershock sequence, or less. A long catalog would contain periods

dominated by small background events and also separate periods

containing relatively isolated mainshock aftershock sequences.

Clearly, there is scope for a whole range of behavior in between.

Given that the accuracy of the ETAS inversion is conditional on

the catalog, we should therefore expect factors such as the catalog

duration, rate of background events and the presence of large events

to influence the ability of the algorithms to find accurate solutions.

3.1. Impact of varying the initial trial ETAS
parameter set, θ0

Where algorithms require an initial set of trial starting

parameters, it is important to test whether the results are robust

irrespective of the choice of starting conditions. We explore the

influence of the initial conditions by generating two catalog (refer

to Figure 3) using the ETAS model with the true parameters given

on the top row of Table 3. They are both 1,000-days long, and the

second catalog has an M6.7 event seeded on day 500 to produce

a more active sequence (Figure 3B). We then invert each catalog

using the different sets of trial ETAS parameters also given in

Table 3; the third set of initial parameters includes the true solution.

The first catalog is relatively quiet and has only 217 events

(Figure 3A). All four sets initial trial parameters find the same

TABLE 3 The true ETAS parameters and the four sets of di�erent initial

conditions used in analyzing the catalogs in Figure 3 to produce the ETAS

posteriors in Figure 4.

Parameter set µ K α c p

True parameters 0.1 0.089 2.29 0.11 1.08

Trial parameter set 1 0.05 0.01 1.0 0.05 1.01

Trial parameter set 2 5.0 1.0 5.0 0.3 1.5

Trial parameter set 3 0.1 0.089 2.29 0.11 1.08

Trial parameter set 4 0.3 0.1 1.0 0.2 1.01

posteriors (Figure 4A). inlabru provides a good estimate of the

background rate µ for this catalog. The other posteriors are the

parameters that govern the rate of self-exciting triggering. These

posteriors are all skew, and some of the posteriors are strongly

influenced by their priors, for example, the posterior for p spans

the entire range of its prior (compare Figure 1 for the priors and

Figure 4A for the posteriors). The posteriors for the triggering

parameters are relatively broad because the data are not sufficient

to produce a narrow likelihood function.

In the second catalog, we have seeded an M6.7 event on

day 500 (Figure 3B). This catalog has a well defined aftershock

sequence and, therefore, contains significantly more events, 2530

events in total. Again, all four sets of initial trial parameters find

the same posteriors (Figure 4B). The posterior for the background

rate, µ, remains well resolved, and there is no reduction in

its standard deviation; this indicates that both catalogs have

sufficient information to resolve the background rate, even though

they are dominated by aftershocks. All of the posteriors for the

triggering parameters are significantly narrower than for the first

unseeded catalog. This is down to two factors; first there are
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FIGURE 3

Two catalogs we use when varying the starting point for the ETAS parameters. (A) Unseeded catalog, nEvents = 217. (B) Catalog seeded with M6.7

event on day 500, nEvents = 2,530.

FIGURE 4

Posteriors for the inversion of the catalogs in Figure 3 are given four di�erent starting points. The vertical black line shows the true values used when

generating the synthetic catalogs. Note the very di�erent scales on the x-axis. (A) Inversion of a 1,000-day catalog with no large events, nEvents =

217. (B) Inversion of a 1,000-day catalog with a M6.7 on day 500, nEvents = 2,530.

many more events in the seeded catalog, and second the well-

resolved aftershock sequence makes it much easier to constrain the

triggering parameters.

All of these models find similar posteriors irrespective of the

initial trial ETAS parameters set. It is important that the priors are

set broad enough to allow the potential for the posteriors to resolve

the true value. This is particularly evident for the quieter model

where the posteriors on the triggering parameter’s rely on more

information from the priors.

In real catalogs, the prior the background rate needs to be

set with care because, when considering a purely temporal model,

it will vary depending upon the spatial extent being considered;
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FIGURE 5

Propagation of ETAS parameter uncertainty on the triggering functions. We take 100 samples of the ETAS posteriors for the 1,000-day quiescent

baseline (A, C, E) and the 1,000-day catalog with an M6.7 on day 500 (B, D, F) and use these samples to explore variability in the Omori decay (A, B),

the time-triggering function following an M4 event, and the time-triggering function following an M6.7 event.

i.e., the background rate of a temporal model when considering a

global dataset would be significantly higher than just California.

Furthermore, changing the lower magnitude limit significantly

changes the total number of background events.

It is difficult to interpret the ETAS posteriors directly, thus,

we explore the triggering function by sampling the parameter

posteriors 100 times, calculating the triggering functions for these

posterior samples, and plotting the ensemble of triggering functions

(Figure 5). The first column shows the Omori function, which is

the temporal decay of the triggering function, but without the

magnitude dependent term, and is, therefore, also independent of

the ETAS α parameter. The larger uncertainty in the posteriors

for the unseeded quieter catalog (Figure 3A) propagate through

to much larger variability in the Omori decay (Figure 5A) than

when the sequence is seeded with the large event in the sequence

(Figure 5B). It is reassuring to see that the Omori decay from the

sequence seeded with the M6.7 event lies within the confidence

intervals of that derived from the quieter unseeded sequence. This

implies that the prior is sufficiently broad to capture these extremes

in catalog type.

When incorporating the magnitude dependence, any bias

or uncertainty in α becomes important. The figures show the

triggering functions for magnitude 4.0 and 6.7 events over 24

hours. While the triggering functions for the M4 events are nested

similarly to the Omori sequences; the triggering functions for the

M6.7 event are systematically different. The posteriors from the

training catalog were seeded with an M6.7 event result an initial

event rate 50% higher, and the two distributions barely overlap.

We conclude that the choice of training data could have a

significant effect on the forecasts of seismicity rate after large events.

In the next section, we explore the robustness of these results to

stochastic uncertainty in the training catalogs.

3.2. Impact of stochastic variability

We extend the analysis of the previous section to explore the

impact of stochastic variability. We produce 10 synthetic catalogs

for both the unseeded and M6.7 seeded catalogs and compare the

parameters posterior distribution.

In the family of catalogs where we did not seed large event

(Figure 6), we see posteriors of the background rate, µ, that

are distributed about the true background rate (Figure 8A) and

captured well. By contrast, we mostly see very large uncertainty

in the posteriors for the triggering parameters. However, the true

values generally still lie within these posteriors. The very broad

posteriors correspond to catalogs that had very few triggered

sequences in them. Such broad posteriors illustrate how the

Bayesian approach enables us to see where the data did not have

sufficient power to narrow the priors significantly; this is useful

in evaluating the robustness of a fit. Moreover, the large posterior

uncertainty on the parameters would propagate through to large

uncertainty in the triggering function if used within a forecast

with a rigorous quantification of uncertainty. Synthetic catalogs 3

and 6 (Figure 6) contain the largest number of events (1,842 and

930 events, respectively) as a result of the events triggered by a

largely random event; these cases have correspondingly tighter and

more accurate posteriors for the triggering parameters (Figure 8A).

Similarly, catalogs 1 and 9 have the next highest number of events

(265 and 245 events, respectively), and these also have the next

most informative posteriors. catalogs 2 and 5 have the fewest

events (117 and 128, respectively) and produce posteriors that are

significantly informed by the priors, as can be seen the range of

values being explored.

Considering the 10 seeded catalogs (Figure 7), we see a

complementary story in the posteriors (Figure 8B). Again, the
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FIGURE 6

A total of 10 synthetic catalogs based on the baseline model of 1,000-days with background events but no large seeded event. All parameters are the

same between the runs, and these just capture the stochastic uncertainty. These are all inverted using inlabru , and the family of posteriors is

presented in Figure 10.

posteriors for the background rate are distributed about the true

value and show a similar spread to the unseeded case. All of the

triggering parameters have much tighter posteriors. Even though

some of the triggering parameter posteriors do not contain the true

value, and the percentage error remains small. This is due to the

stochastic variability of these catalogs, and this bias should decrease

for longer catalogs.

There is always trade-off between α and K, which is difficult

to resolve. K describes the magnitude independent productivity

seen in the Omori law and α describes how the full triggering

function productivity varies with magnitude; consequently, one

requires many sequences from parents of different magnitudes to

resolve K and α well.

Studies which are seeking to assign a physical cause to spatial

and/or temporal variability of the background and triggering

parameters should ensure that the variability cannot be explained

by the stochastic nature of finite earthquake catalogs. The methods

presented here provide one possible tool for doing this.

The runtime for a model with 2,000 events is 6 min on a laptop.

We find that not only is our inlabrumethod 10 times faster

than “bayesianETAS” for catalogs of more than 2,500 events but

also that it scales relatively linearly with the number of events. We

inverted a catalog with 15,000 events in 70 min, and it is likely this

can be speeded up further using the high performance sparsematrix

solver pardiso package.

The inversions of synthetic data presented here show that

the stochastic variability in the training catalogs produces

understandable variability in the posteriors. More data and

sequences containing both triggered sequences and background

allow us to resolve all parameters well. Better resolution of α and K

would require aftershock sequences from parents of different sizes.

We see that only having lower magnitude events leads to broad

posteriors on the triggering parameters. The following section

explores the impact of reducing the amount of background data on

the resolution of µ for the seeded sequences.

3.3. Importance of a representative sample

The motivation for applying the ETAS model is sometimes the

presence of an “interesting” feature, such as an evolving or complex

aftershock sequence following a notable event. In this section, we

explore whether it is important to have both quiet periods, as well

as the aftershock sequence itself for accurately recovering the true

parameterization. This motivates defining what a representative

sample looks like; evaluating this in practice is non-trivial, but we

can outline what is insufficient.

We start with the 1,000-day catalog including an M6.7 event

seeded on day 500. We then generate catalog subsets by eliminating
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FIGURE 7

A total of 10 synthetic catalogs based on the baseline model of 1,000-days with background events and an M6.7 event on day 500. All parameters are

the same between the runs, and these just capture the stochastic uncertainty. These are all inverted using inlabru , and the family of posteriors is

presented in Figure 10.

the first 250, 400, 500, and 501 days of the catalog (start dates of

subcatalogs shown as vertical-dashed lines in Figure 9A) and rerun

the inlabruETAS inversion on these subsets. Since the initial

period is relatively quiet, we do not remove a large proportion

of the events—however, we are removing events from the period

where the background events are relatively uncontaminated by

triggered events. In doing this, we explore what the necessary

data requirements are for us to expect that inlabru can reliably

estimate both the background and triggering parameters. When we

remove 501 days, we are also removing the seeded mainshock from

the subcatalog.

First, we consider what happens to the posterior of the

background rate, µ, as the length of the subcatalogs is shortened.

With 500 days of background before the seeded event, we resolve µ

accurately. As the quiet background is progressively removed, the

model estimate of µ systematically rises. When there is between

250 and 100 days of background data, the mode overestimates

the data-generating parameter by approximately 30%, but it still

lies within the posterior distributions (turquoise and brown curves

for µ in Figure 9B). When there is no background period, the

overestimation of µ (blue curve for µ in Figure 9B) is on the order

of a factor of 2.5. The estimate corresponds to the level of seismicity

at the end of the model domain which has not decayed back to the

background rate. From an operational perspective, it is much easier

to extend the start date of training data back before the sequence

of interest started than to wait until the background rate has been

recovered. We should, therefore, expect an analysis looking for

time-varying background rate during the sequences carries a risk

of bias by this effect.

All of the models, apart from the one starting on day 501,

contain the M6.7 event and 500 days of its aftershocks (Figure 9A).

In these cases, the triggering parameters are well described by the

posteriors (Figure 9B). However, where the model domain starts on

day 501, we lose the M6.7 event and its aftershocks on the first day.

This results in significant bias in all the triggering parameters, as

well as the background rate (Pink curve in Figure 9B). Modeling of

specific sequences needs particular care to be taken in the choice of

model domain and exclusion of the mainshock from the analysis

can pose a major problem in conditioning the ETAS parameters.

The results already presented in Figure 8 showed that the

inversion scheme struggles to recover the triggering parameters,

when there is no significant sequence in the dataset. Combined

with the results of having no background period in this section,

we argue that a representative sample should include periods of

activity and inactivity if both the background rate and triggering

parameters are to be estimated reliably.We also suggestmainshocks

of different magnitudes would help for resolving α. By running

synthetics such as the ones presented here, one can gain insight into

the data requirements in specific case studies.

The model, where the mainshock was not part of the sub-

catalog, was particularly biased (pink curve in Figure 9B). In

the next section, we explore whether we can correct for this by
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FIGURE 8

Posteriors that explore the impact of stochastic variability on the inverted ETAS parameters using inlabru . These are based on the relatively quiet

catalogs in Figure 6 and those with a large event seeded on day 500 in Figure 7. The catalog numbers can be cross-referenced between the figures.

(A) Impact of stochastic variability for 1,000-day catalog with no large events seeded. (B) Impact of stochastic variability for 1,000-day catalog with

an M6.7 event seeded on day 500.

including the triggering effects of events that occurred prior to the

temporal domain being evaluated.

3.4. Impact of historic run-in period

In the previous section, we explicitly cropped out subcatalogs

and ran the analysis on that subset of the data, effectively throwing

the rest away. We demonstrated the consequences removing

the M6.7 mainshock from the sub-catalog being analyzed; the

posteriors on the triggering parameters and background became

significantly biased (Figure 9B). This example talks to the wider

need for the intensity function to be conditioned on historic events

prior to the start of the model domain. This is a common issue in

modeling regions that have experienced the largest earthquakes.

In ETAS.inlabru, we have another option when analyzing

catalog subsets. Rather than cropping out the data, we can provide

an extended catalog and specify a model domain that is smaller

than the whole dataset. For the time component, this means that

events prior to the temporal domain will have their triggering
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FIGURE 9

(A) Catalog used to explore the concept of a representative sample and history conditioning. The baseline case on the top row has 500 days of

background and an M6.7 event on day 500 with the sequence being recorded until day 1000. We vary the start date for the analysis to remove the

first 250 days, 400 days, 500 days, and 501 days. In the last two cases, there is no background period remaining, and the large event is also prior to

the catalog subset for the final case. (B) Posteriors of the ETAS parameters for each of the catalog subsets when we crop the subcatalog and do not

use the preceding data to condition the model. (C) Rather than cropping out subcatalogs, we now retain the events preceding the start of the model

domain and use these when estimating the triggering function. This produces a notably improved performance for the start date on day 501 when

the large event is no longer within the model domain.

contributions to the model domain taken into account. This

approach crops off events beyond the temporal model domain

because they do not have a causal impact on the results. The model

domain is defined using “T1” and “T2” in the input list for the start

and end time, respectively. inlabru assumes any events in the

catalog prior to “T1” should be used to historic preconditioning.

In practice, this complicates the implementation of the time

binning because events occurring prior to the start of the model

domain only need to be evaluated from “T1” onward. The breaking

of similarity of the time bins has a penalty in the speed of

the implementation.

The results of conditioning the inversion using the historic

events can be seen in Figure 9C and should be compared to

the equivalent results for the cases where the subcatalogs did

not have this preconditioning (Figure 9B). As the start date

increases, the inclusion of small background events in the

history has little effect on the results because their triggering

effect is small. However, a significant improvement in the

estimated posteriors is seen, when the M6.7 mainshock is removed

from the model domain (c.f. pink lines for each parameter

in Figures 9B, C). The historic preconditioning improves the

estimation of all the triggering parameters, when the mainshock is

missing.

In the analysis of real catalogs, this effect will be particularly

relevant when there have been very large past earthquakes, which

are still influencing today’s rates.

3.5. Impact of short-term incompleteness

Finally, we explore the effect of short-term incompleteness after

large mainshocks on the inverted parameters. This rate-dependent

incompleteness occurs because is hard to resolve the waveforms of

small earthquakes when overprinted by many larger events, yet the

effect is short-lived.

We take a 1,000-day catalog with an M6.7 event seeded on day

500 and then introduce a temporary increase in the completeness

threshold after the M6.7 event using the functional form suggested

by Helmstetter et al. [28],

Mc(t) = Mi − G−H log10(t − ti), (16)

where, Mi and ti are the magnitude and occurrence time of the

event, we are modeling the incompleteness for, t is the time

we wish to evaluate the new completeness threshold for, and G
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FIGURE 10

Plots of the complete baseline catalog and the catalog with incompleteness artificially introduced using the functional form suggested by

Helmstetter et al. [28]. The complete catalog contains 1,832 events, and the incomplete has 1,469 events. The time-magnitude plot does not present

this incompleteness well because it occurs in the very short term after the M6.7 event. The plot of magnitude as a function of event number clearly

highlights the temporally varying incompleteness just after the large event. (A) Complete catalog, nEvents = 1,832, (B) Complete, (C) Incomplete

catalog, nEvents = 1,469, and (D) Incomplete.

FIGURE 11

Plot comparing the posteriors of the complete and incomplete catalogs presented in Figure 10. The true parameters are shown with the

black-dashed lines.

and H are parameters of the model. We do not address here

how these parameters should be determined in a real dataset

and, informed by van der Elst [29], we set them to 3.8 and

1.0, respectively, for our synthetic study. Furthermore, in this

exploratory analysis we do not include incompleteness effects for

other events in the sequence—so it should be considered a relatively

conservative analysis.

We perform the inversion on the original catalog and the one

where short-term incompleteness has removed a number of events

(Figure 10) and compare the posteriors (Figure 11).

The complete catalog contained 1832 events, and the

incomplete catalog contains 1469 events (Figure 10). This is

difficult to see on the event time plot as most of these events are

very close in time to the mainshock, so we have also plotted the

magnitudes as a function of the event number; here, we see that

after the mainshock (red-dashed line), there is a transient in the

completeness threshold.

All of the parameter estimates in the incomplete catalog

are now notably more biased, and their standard deviation has

not increased to compensate for this, so the true values lie

significantly outwith the posteriors (Figure 11) and are therefore

biased. The incomplete catalog underestimates the background

rate as there are fewer events in the same time period.

Propagating the triggering parameter posteriors to compare the

triggering functions, we see extremely different triggering behavior

(Figure 12). The Omori decay for the incomplete catalog is

longer lasting but the productivity, driven by α and K, is

systematically lower.
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FIGURE 12

Propagation of ETAS parameter uncertainty on the triggering functions. We take 100 samples of the ETAS posteriors for the complete 1,000-day

catalog with an M6.7 on day 500 (A, C, E) and for the temporally incomplete version of this catalog, as described in the text. We then use these

samples to explore variability in the Omori decay (A, B), the time-triggering function following an M4 event (C, D), and the time-triggering function

following an M7.6 event (E, F).

The bias in the predicted triggering functions

arising from short-term incompleteness is significant

and cannot be ignored within an OEF context. Solving

this problem within inlabru is beyond the scope of

this article.

4. Discussion

Having analyzed a range of synthetic datasets, we now

emphasize the lessons learned we should carry forward for the

analysis of real sequences.

Reliable inversions can only result from data that are

representative of the processes the model is trying to capture. This

means that datasets need to contain both productive sequences and

periods that resolve the background without being overprinted by

triggered events. The main difference between α and K is that the

former describes how the productivity varies with the magnitude

of the triggering event while the latter is a magnitude insensitive

productivity. If we are to resolve these uniquely, the training data

would need relatively isolated sequences that are triggered by

mainshocks of different; this will be challenging in many use cases.

Interpreting the results of an ETAS inversion is non-trivial. We

advocate the routine analysis of synthetic to understand what it is

possible to resolve in principle.

Preconditioning models using large historic events can be

significant. By considering samples of the triggering functions once

can pre-determine themagnitude of events that need to be included

as a function of time.

The use of synthetic modeling should be, particularly,

important if time-varying background rates are being inferred from

the inversion of catalog subsets in moving windows using the ETAS

model.

The impact of short-term incompleteness following large

events is very significant and needs to be addressed either by

raising the magnitude of completeness or formal modeling of the

incompleteness. Resolving this for ETAS.inlabru is beyond the

scope of this article.

These are some of the considerations we explored here, but

different use cases will present other modeling challenges that can

be effectively explored through similar suits of synthetic modeling.

5. Conclusion

ETAS.inlabru is a fast and reliable tool for approximate

Bayesian inference of the temporal ETAS model. The advantage of

INLA overMCMC-basedmethods is that it is much faster. For large

models, INLA finds a solution where MCMC methods would take

far too long. For smaller problems, the speed of computation allows

us to take a more exploratory and interactive approach to model

construction and testing [30].

The exploratory approach illustrated here can be used to

identify and understand sources of uncertainty and bias in

the ETAS parameter posteriors that are derived from the

structural and stochastic nature of the training data. We

identify the need for a representative sample to contain

periods of relative quiescence, as well as sequences with

clear triggering behavior, if all parameters are to be well

resolved.

Where studies focus solely on active sequences, the background

rate can be erroneously estimated to be several times larger
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than the real background rate, and the triggering parameters

erroneously imply more rapidly decaying sequences than the true

underlying parameterization would. This implies that caution is

needed in studies that allow the parameters to vary in time

using windowing methods. While one cannot conclusively rule

out that background rates and triggering behaviors may vary,

we advocate that a stationary model with constant parameters

should be adopted unless there is compelling evidence independent

of the ETAS inversion, Colfiorito being a case in point (e.g.,

[31]).

Rate-dependent incompleteness severely degrades the accuracy

of the ETAS inversion and needs to be addressed directly.

The use of synthetic modeling, as presented here, provides

a basis for discriminating when variations in the posteriors

of ETAS parameters can be explained by deficiencies in the

training data, and when there is likely a robust and potentially

useful signal. Such exploration requires a fast method for

performing the inversion. The interpretation is easier when

full posteriors can be compared, as opposed to just having

point estimates. inlabru is, particularly, well suited to

this task.
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