
TYPE Original Research

PUBLISHED 26 July 2023

DOI 10.3389/fams.2023.1128181

OPEN ACCESS

EDITED BY

Andreas M. Tillmann,

Technical University of Braunschweig, Germany

REVIEWED BY

Christoph Hansknecht,

Technical University of Braunschweig, Germany

Stephan Westphal,

Clausthal University of Technology, Germany

*CORRESPONDENCE

Andrea Lodi

andrea.lodi@cornell.edu

RECEIVED 20 December 2022

ACCEPTED 10 July 2023

PUBLISHED 26 July 2023

CITATION

Liu D, Perreault V, Hertz A and Lodi A (2023) A

machine learning framework for neighbor

generation in metaheuristic search.

Front. Appl. Math. Stat. 9:1128181.

doi: 10.3389/fams.2023.1128181

COPYRIGHT

© 2023 Liu, Perreault, Hertz and Lodi. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A machine learning framework for
neighbor generation in
metaheuristic search

Defeng Liu1, Vincent Perreault1, Alain Hertz1 and Andrea Lodi2*

1Department of Mathematics and Industrial Engineering, Polytechnique Montreal, Montreal, QC, Canada,
2Jacobs Technion-Cornell Institute, Cornell Tech and Technion—IIT, New York, NY, United States

This paper presents a methodology for integrating machine learning techniques

into metaheuristics for solving combinatorial optimization problems. Namely,

we propose a general machine learning framework for neighbor generation

in metaheuristic search. We first define an e�cient neighborhood structure

constructed by applying a transformation to a selected subset of variables from

the current solution. Then, the key of the proposed methodology is to generate

promising neighbors by selecting a proper subset of variables that contains a

descent of the objective in the solution space. To learn a good variable selection

strategy, we formulate the problem as a classification task that exploits structural

information from the characteristics of the problem and from high-quality

solutions. We validate our methodology on two metaheuristic applications: a

Tabu Search scheme for solving a Wireless Network Optimization problem and

a Large Neighborhood Search heuristic for solving Mixed-Integer Programs. The

experimental results show that our approach is able to achieve a satisfactory

trade-o�s between the exploration of a larger solution space and the exploitation

of high-quality solution regions on both applications.

KEYWORDS

combinatorial optimization, metaheuristics, Tabu Search, Large Neighborhood Search,

machine learning, Graph Neural Networks, Mixed Integer Programming (MIP)

1. Introduction

Combinatorial Optimization (CO) is an important class of optimization problems in

Operations Research (OR) and Computer Science (CS). In general, a CO problem is defined

by a set of decision variables, a constrained solution space and an objective function. The

goal of CO is to find optimal solutions with respect to the objective in the solution space.

Classical methods for solving CO problems can be roughly divided into three classes:

exact methods, heuristics and metaheuristics. Mixed-Integer Programming (MIP) is one of

the main paradigms of exact methods for modeling complex CO problems. Over the last

decades, there has been increasing interest in improving the ability to solve MIPs effectively.

ModernMIP solvers incorporate a variety of complex algorithmic techniques, such as primal

heuristics [1], Branch and Bound (B&B) [2], cutting planes [3] and pre-processing, which

results in complex and sophisticated software tools.

Exact methods are guaranteed to find optimal solutions as well as a proof of their

optimality. On the one hand, due to the NP-hardness nature of many CO problems, solving

them to optimality within an exact algorithm is still a very challenging task. On the other

hand, in many practical applications, one is more interested in getting a good solution within

a reasonable time rather than finding an optimal one. Those practical requirements have

motivated the development of specific heuristics andmetaheuristics (MHs). Specific heuristics

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1128181
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1128181&domain=pdf&date_stamp=2023-07-26
mailto:andrea.lodi@cornell.edu
https://doi.org/10.3389/fams.2023.1128181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1128181/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

are usually designed for solving a certain type of CO problem,

whereas MHs are frameworks for designing heuristics for solving

general CO problems, and provide guidelines to integrate basic

heuristic concepts with high-level diversification strategies.

It is worth noting that a lot of information can be produced and

observed fromMH processes, and therefore, a large volume of data

can be collected. These data might provide valuable information

about the optimization status of the process, the characteristics

of the problem, the structures and properties of high-quality

solutions in the solution regions being visited. However,

such knowledge has not been fully exploited by traditional

MH algorithms.

That can be viewed as a disadvantage when compared

to application-targeted CO algorithms, in which exploiting the

domain knowledge of the problem is generally preferable.

Meanwhile, real-world CO problems have a rich structure. With

similar instances repeatedly solved in many applications, statistical

characteristics and patterns appear. This provides the opportunity

for Machine Learning (ML) to extract structural properties of the

problem from data and automatically produce learning-based MH

strategies.

ML is a subfield of Artificial Intelligence (AI) that involves

developing algorithms to learn knowledge from data and make

predictions on new problems. In recent years, the application of

ML techniques in CO became an emerging research area with

quite a number of contributions for different purposes. On the

one hand, some research has been devoted to develop heuristics

for solving CO problems by ML, i.e., to perform "end-to-end

learning" to directly generate good solutions for a CO problem.

On the other hand, ML has been applied in combination with CO

algorithms, where the learning based algorithms have the potential

to achieve better performances, either because the current strategy

of performing some auxiliary tasks is computationally expensive

or because they are poorly understood from the mathematical

viewpoint. For a detailed review of "learn to optimize," the

interested reader is referred to the survey [4].

Specifically for metaheuristics, ML techniques can be used

to infer patterns from data generated from MH processes.

Integrating the extracted knowledge into the search strategies

can lead MHs to search the solution space more efficiently

and significantly improve the current performance. Recently, the

application of ML techniques for MHs has attracted increasing

research interest and we refer the interested reader to the following

surveys [5, 6].

In this paper, we focus on the integration of ML techniques into

MHs and propose a general learning-based framework for neighbor

generation in MHs. We first define an efficient neighborhood

structure by applying a transformation to a selected subset of

variables from the current solution. Then, the problem is to

determine how to select a subset of variables that leads to a

promising neighborhood of solutions containing a descent of the

objective in the solution space. By conducting a classification

task, our method learns good variable selection policies from

both structural characteristics of the problem and high-quality

solutions.We demonstrate the effectiveness of our approach on two

applications: a Tabu Search scheme for solving a Wireless Network

Optimization problem and a Large Neighborhood Search heuristic

for solving MIPs.

2. Background

In this section, we introduce the necessary background and

notation.

2.1. Combinatorial optimization

CO problems are a class of optimization problems with a set

of decision variables and a defined solution space. Without loss

of generality, a CO problem can be formulated into a constrained

optimization problem as follows:

min f (x) (1)

s.t. g(x) ≤ b, (2)

xi ∈ {0, 1}, ∀i ∈ B, (3)

xj ∈ Z
+, ∀j ∈ G, (4)

xk ≥ 0, ∀k ∈ C, (5)

where the index set V : = {1, . . . , n} of decision variables is

partitioned into B,G, C, which are the index sets of binary, general

integer and continuous variables, respectively.

Since many CO problems are NP-hard, determining optimal

solutions by exact methods requires in the worst case exponential

time and might be intractable, especially for large-size applications.

Inmany practical applications where the CO problems are hard and

complex, practitioners are often interested in finding good-quality

solutions in an "acceptable" amount of computing time rather than

solving the problem to optimality. Therefore, heuristic algorithms

are developed to efficiently compute high-quality solutions.

2.2. Metaheuristics

Metaheuristics are general framework strategies for designing

heuristics for solving CO problems, and provide guidelines to

integrate basic heuristic schemes such as local search with high-

level diversification strategies. A large part of metaheuristics are

built on top of a basic neighborhood search (NS) scheme, where NS

is a local search procedure that starts from an initial solution x and

iteratively search for improving solutions by exploring a series of

neighborhoods.

We consider an instance p ∈ P of a CO problem, where P is

the set of problem instances. X is the solution space, i.e., the set of

feasible solutions. The neighborhood is defined as follows. Let x be

a solution of an instance p such that x ∈ X . The neighborhood N(x)

of solution x is a subset of solutions defined from x in the solution

space X , i.e., N(x) ⊆ X .

In general, the structure of the neighborhoods and how

these neighborhoods are explored, are designed according to the

characteristics of the problem at hand. A neighborhood structure

is typically determined by a transformation operator that applies a

move to the current solution in the solution space.

A transformation operator is typically represented by1 :X →
2X , which is a function (or a set of functions) that maps a solution

x to a set of solutions. If the operator 1 is defined with a set M of

parameters, the operator can be defined by 1 :X ×M → 2X . For

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

Input: an initial solution x;

x∗ ← x;

repeat
N(x)← 1(x) (or N(x)← 1(x,m) withm ∈ M);

x′ ← argminx′′∈N(x) f (x
′′);

x← x′;
if f (x) < f (x∗) then

x∗ ← x;
end

until termination condition is reached;

return x∗

Algorithm 1. NS-based metaheuristic.

instance, a neighborhood N(x) 7→ 1(x,m) can be constructed by

applying the transformation operator with m ∈ M to the current

solution x.

At each NS iteration, the neighborhood N(x) is generated

by a 1(x) or 1(x,m) function. A basic template for NS-based

metaheuristic is shown in Algorithm 1.

2.3. Representation learning for CO

In ML, there is a vast library of models for representing CO

problems depending on the format of input data of the CO task.

For example, the model could be a linear function or some non-

linear Artificial Neural Network (ANN) with a set of parameters

to be optimized. In Deep Learning (DL), there are many types

of neural networks and architectures available for modeling CO

problems. For instance, a Multilayer Perceptron (MLP) is the

simplest architecture of feedforward neural networks and can be

used to model problems with fixed-size input data; Graph Neural

Networks (GNNs) are developed to process data that are naturally

representable with graphs; Recurrent Neural Networks (RNNs) can

be applied to process CO problems with sequential data, etc.

In particular, due to the ubiquity of graph data, problems

over graphs arise in numerous application domains. Moreover,

given the fact that the vast majority of CO problems have a

discrete nature, many of them are naturally described in graphs

or can be modeled into a graph structure. For instance, a network

optimization problem can be naturally modeled by a graph and

a generic MIP instance can also be represented into a bipartite

graph [7]. These graphs have inherent structural commonalities

and patterns, and there is a potential to exploit valuable graph

features to learn patterns from data. Therefore, graph representation

learning with the application of various GNNs [8–11] has recently

emerged as a popular approach for studying CO with a machine

learning perspective. Without loss of generality, GNNs learn a

graph embedding based on the input features and the graph

structure. In a nutshell, higher-level representations of a node or an

edge are obtained by kernel convolutions which leverage its local

structure.

In the literature, there has been an effort to learn algorithms

for solving specific CO problems and many of them apply GNNs

as the representation model. On the one hand, the first attempted

paradigm was "end-to-end" learning for generating a heuristic

solution by a ML model [12–17]. However, these methods are

typically limited to specific CO problems in which a heuristic

solution can be easily constructed, and scaling to large-size

instances is an issue. On the other hand, since a wide range of

constrained CO problems can be formulated into a MIP model,

there has also been increasing interest in learning decision rules

to improve MIP algorithms [7, 18–22]. While it is shown that

this direction has a great potential to improve the state-of-the-art

of MIP algorithms, convincing generalization performances, and

transfer learning across instances have not been fully tackled yet.

3. Methodology

In this section, we present our framework for learning to

generate high-quality solution neighbors for MH search. In Section

3.1 and 3.2, we first introduce an efficient neighborhood structure

by applying a transformation to a selected subset of variables from

the current solution. Then, in Section 3.3 the problem becomes

to determine how to select a subset of variables that leads to a

promising neighborhood, i.e., one containing a descent direction

of the objective in the solution space. By conducting a classification

task, our method learns promising variable selection policies from

the structural characteristics of the problem and high-quality

solutions.

3.1. Transformation operator and neighbor
generation

The definition of the neighborhood plays a critical role in

the NS-based metaheuristics. It specifies how the metaheuristic

search moves in the solution space. As introduced in Section

2.2, the structure of a neighborhood is typically determined by a

transformation operator, since the latter specifies how the current

solution is perturbed and transformed to solution neighbors.

For instance, in a classical Traveling Salesman Problem (TSP)

where a set of n cities and the distances between each pair of cities

are given, the task is to find the shortest tour that visits each city

exactly once. Given an arbitrary tour as the initial solution, a simple

transformation operator can be defined by firstly removing k edges

from the current tour and then adding k other edges to construct

a new tour. This is known as the "k-OPT" neighborhood. For a

generic CO problem at hand, there are many ways of defining

a transformation operator. In general, two main aspects must

be taken into consideration: exploitation (or intensification) and

exploration (or diversification) of the solution space.

On the one hand, the smaller the perturbation induced by

the operator, the closer the constructed neighborhood to the

current solution. The metaheuristic search thoroughly exploits the

local solution regions around the current solution. On the other

hand, with more perturbation or more randomness induced by

the operator, the neighbors can be defined far from the current

solution. The heuristic search has a larger chance to explore more

solution regions that have been less visited before. On the extreme

case, when an operator completely perturbs the solution or the

solution is allowed to be fully changed, the neighborhood could

be expanded to the entire solution space, and the complexity

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

of exploring this neighborhood will be very high, as high as

solving the original problem. Instead, the heuristic search becomes

totally random when the operator perturbs a part of the solution

randomly.Moreover, the design of the transformation operator also

strongly depends on the type of problem and its representation. The

effectiveness of an operatormight not be the same on different types

of problems.

In order to guide the metaheuristic search to promising regions

of the solution space, we present a general ML framework for

neighbor generation. More precisely, we design transformation

operators with parameterizations that are able to construct

neighborhoods containing high-quality solutions.

3.2. Variable selection for neighbor
generation

In this section, we define a neighborhood structure in NS-

based metaheuristics. As mentioned before, we aim at generating

promising neighbors by efficient transformation operators.

In NS, improving solutions are typically found from neighbors

defined by perturbing only a part of the solution. In practice,

in order to control the size of the neighborhood, the ratio of

perturbation is typically set to a relatively small value. Although

this ratio can be increased by diversification strategies when

no improving solution is found from the last search, it is still

very common that the best solutions found by two consecutive

local search iterations share a large part of variable values.

Nevertheless, this "partial evolution" of the local optima induces

a class of transformation operators for constructing structural

neighborhoods, where the transformation is defined on a subset of

variables.

Definition 1. A "subset" transformation operator is a function

1 :X ×Y → 2X , whereX denotes the solution space, V is the index

set of variables, andY = {0, 1}|V | defines a binary decision space for
selecting a subset of V . Consequently, for y ∈ Y , the neighborhood

N(x) of a solution x ∈ X is defined as 1(x, y), and only variables xi
with yi = 1 can have their value changed by transforming x into a

neighbor in N(x).

When the components of y are all set to 1, all the variables in V

will be allowed to change. As discussed before, generating neighbors

over the entire variable set V might result in a large local problem.

On the other hand, the "partial evolution" of improving solutions

in local search also indicates that it is possible to define efficient

transformation operators only on a subset of variables. Moreover,

common characteristics are often present in good solutions inmany

applications. For instance, in a classical TSP problem, two cities that

are far from each other are typically disconnected in good solutions,

whereas cities close to each other have a higher probability of

being connected. Hence, ML techniques can be employed to

learn structural information from high-quality solutions and select

a subset of variables that has a high probability of defining a

neighborhood that contains a descent point of the objective in the

solution space.

3.3. Learning a variable selection policy for
structural neighbor generation

Given an instance of a generic CO problem and a solution

x ∈ X , we denote its current state as s ∈ S , where S is the

state space of the problem and typically consists of a set of selected

features including x. In order to define a structural neighborhood

using the subset transformation operator (defined by Definition 1),

an instantiation of Y is required to select a subset of variables.

Hence, a variable selection policy π for selecting y ∈ Y can be

defined by

π :S −→ Y

s 7−→ y.

Now the question is:

How to design a variable selection policy by which

the subset transformation operator defines neighborhoods

containing high-quality solutions?

As mentioned before, the high-quality solutions found during

the metaheuristic search often share common characteristics and

patterns, and more importantly, many improved solutions in the

neighborhood often share a part of the variables with the same

values. Hence, we propose a general learning-based framework

to extract these characteristics from data, and exploit the learned

knowledge to guide the metaheuristic search toward compact

and promising solution regions. Specifically, the framework learns

a variable selection policy and the high-quality neighborhood

structure will then be defined by selecting promising variables,

the values of which are allowed to be changed from the current

solution.

The pipeline of the framework consists of three components:

data generation, machine learning and neighbor generation design.

The framework is depicted in Figure 1.

In the following, we will instantiate the learning problem

for variable selection as a classification task and train a variable

selection policy through supervised learning. Within our method,

the solution neighbors in metaheuristic search are generated based

on our trained model.

3.3.1. Generation of a training data set
Our aim is to learn a policy π that maps the state s of a problem

instance, to a high-quality y (referred to as label in the following),

the binary classification decisions for selecting the best subset of

variables that leads to a successful change of the current solution.

For this purpose, one typically generates a training data set by

applying an algorithm (referred to as expert) which explores the

neighborhood of some states s1, . . . , sN , allowing to modify the

values of all the variables, and then detects which are the variables

whose value modification results in an improvement. Hence a label

yi is associated with each si (i = 1, . . . ,N) and we thus have a

training data setDtrain = {(si, yi))}Ni=1.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

FIGURE 1

A learning-based framework for neighbor generation.

3.3.2. Training the variable selection policy
The policy we want to determine depends on parameters θ ∈ 2

of a model (see below), where2 is the set of candidate parameters.

Each policy is thus denoted πθ and, given a training data set

Dtrain = {(si, yi))}Ni=1, we aim to determine parameters θ∗ such that
πθ∗ (si) is as close as possible to yi (i = 1, . . . ,N). For this purpose,

we solve the following classification problem:

θ∗ = argmin
θ∈2

N
∑

i=1
L

(

πθ (si), yi
)

, (6)

where L
(

πθ (si), yi
)

denotes the loss function and will be

defined according to the CO application (see more details in

Sections 4.3.1, 4.3.2, and 5.2). In summary, given a state s ∈ S ,

we use y = πθ∗ (s) for selecting which variables are allowed to be

changed when moving to neighbors.

3.3.2.1. Modeling

Since CO problems generally have a discrete nature and many

of them can be represented by a graph structure, we will apply

GNN architectures [8–10] for parametrizing the variable selection

policy. More precisely, if the state of a CO instance is modeled by a

graph, GNNs can be implemented as the representation model for

πθ . GNNs exhibit some appealing properties for processing data

in graph format. First of all, GNNs are size-and-order invariant

to input data, i.e., they can process graphs of arbitrary size and

topology, and the graph model is invariant to the ordering of the

input elements, which brings a critical advantage compared to other

neural networks. Moreover, GNNs can exploit the sparsity of the

graph by localized propagation of information, making them an

ideal class of models for embedding sparse CO problems [7].

The basic architecture of GNNs consists of three modules: the

input module, the convolution module, and the output module. In

the input module, the state s of the problem is fed into the GNN

model. The input module embeds the features of s. The convolution

module propagates the features of the graph components by graph

convolution layers [7, 22] and further embeds the features.

In particular, the architecture of the graph convolution layers

used in this paper applies the message passing operator, defined as

v
(h)
i = f

(h)
ψ



v
(h−1)
i ,

∑

j∈N (i)

g
(h)
φ

(

v
(h−1)
i , v

(h−1)
j , ej,i

)



 , (7)

where v
(h−1)
i ∈ R

d denotes the feature vector of node i in

layer (h − 1), ej,i ∈ R
m denotes the feature vector of edge (j, i)

from node j to node i, N (i) denotes the set of nodes adjacent to

i in the graph, and f
(h)
ψ and g

(h)
φ denote the embedding functions

paramaterized by ψ and φ in layer h and are typically represented

by neural networks (e.g., MLP architectures). The output module

maps the embedding of the state into a distribution in the binary

decision space for each variable and the final output is the class

prediction of the variable (typically 1 for being selected into the

subset, 0 for not being selected).

3.3.3. Neighbor generation design
After training the classification model for variable selection, the

next step is to apply the pretrained model for neighbor generation.

It is important to note that, the trained classification model itself is

probabilistic, and it maps the current solution state of an instance

into a probability distribution in the binary decision space for each

variable. We still need to select a strategy to make binary decisions

on the variables.

The most straightforward way is to apply a greedy strategy.

The decision is made by always picking the class with a higher

probability and the resulting strategy is deterministic. Another way

is to sample decisions from the distribution, and hence the strategy

is probabilistic. In general, the greedy strategy only selects the

deterministic subset of variables and exploits the learned knowledge

from the training data set. Instead, the probabilistic strategy

selects from all the possible neighborhoods with a probability

preference defined by the classification model, thus results in a

better exploration of the less visited solution regions. There is no

guarantee that one strategy is always better than the other. In

practice, they can be combined. For each task, one should search for

a good trade-off between exploitation of the local solution regions

and exploration of the global solution space.

Finally, the template for a NS-based metaheuristic guided

by the variable selection policy π is given in Algorithm 2.

The neighborhood structure N(x) is defined by the subset

transformation operator that selects a subset of variables according

to policy πθ∗ , and modifies some of their values to lead the heuristic

search to promising solution regions.

4. Application 1: tabu search in
wireless network optimization

In this section, we apply our framework to the first case study, a

Wireless Network Optimization (WNO) problem.We demonstrate

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

Input: an initial solution x and a variable selection policy πθ∗ ;

x∗ ← x;

repeat
y← πθ∗ (s) where s is the state associated with x;

N(x)← 1(x, y);

x′ ← argminx′′∈N(x) f (x
′′);

x← x′;
if f (x) < f (x∗) then

x∗ ← x;

end

until termination condition is reached;

return x∗

Algorithm 2. NS-based metaheuristic guided by the variable selection

policy.

the effectiveness of our learning-based framework by generating

solution neighbors in a Tabu Search scheme.

4.1. The tactical WNO problem

When telecommunications are necessary but standard

networks are unavailable, as in the case of disaster relief operations,

small temporary wireless networks, called tactical networks, are

set up. These typically connect between 10 and 50 nodes (the key

locations that must communicate) in a single network. The design

of such networks can be optimized such that the network’s weakest

link is maximized. This, in turn, guarantees that all nodes can

receive important information in a timely manner.

Tactical wireless network design is a complex non-linear

combinatorial optimization problem that includes three sub-

problems: the design of the topology (P0), the configuration of the

network (P1), and the configuration of the antennas (P2). These

sub-problems are nested such that P1 is defined given a topology,

and P2 is defined given a topology and a network configuration,

namely

max
topology t∈T

︸ ︷︷ ︸

P0

max
network

configuration

︸ ︷︷ ︸

P1

max
antenna

configurations

o.

︸ ︷︷ ︸

P2

where T is the space of valid topologies and o is the objective

function of the problem. The problem has been proposed by an

industrial partner and the modeling of the full tactical wireless

network design optimization problem can be found in Perreault

[23].

Given a set of nodes V , the topology t ∈ T can be any

undirected tree (V ,E) that describes how information travels

in the network between every pair of nodes. Each edge in the

topology represents a direct connection between two antennas

in the network. A network configuration selects a root node

(also known as a master hub or gateway) and assigns waveforms

and channels/frequencies to the edges. The waveforms are the

communication protocols that depend on the local structure of the

edges and the channels and frequencies characterize their radio

signals. Together with the antenna configurations, they determine

which edges interfere with each other. An antenna configuration

requires to define an angular alignment with respect to the azimuth

as well as a set of activated beams, in the case of multi-beam

antennas. Given all these properties, the radio signals can be

physically modeled by also taking into account the path losses and

fade margins of the terrain between every pair of nodes. The data

transmission speed (called direct throughput) TPuv for all the edges

[u, v] ∈ E can then be computed and, depending on the traffic

scenario X and its distribution of congestion nXuv in the edges,

their effective throughputs TPuv/n
X
uv can also be computed. There

are three traffic scenarios: scenario A is a single communication

between any two nodes, scenario B is all nodes communicating

with the root node, and scenario C is all nodes communicating

with each other. For all traffic scenarios, the congestion of any

directed edge (u, v) can be computed as a function of the number of

descendants descv defined by the root node selected in the network

configuration.

To evaluate a single topology t ∈ T, problem P1, which is itself

a complex combinatorial optimization problem, must be solved,

and solving it requires solving P2 many times as well. In turn,

problem P2 can be efficiently solved by a simple geometrically-

based heuristic. Solving P1 to optimality every time that a topology

needs to be evaluated is too costly, especially in a NS context. It

can be approximated in such a way that it can be solved efficiently

by exhaustive enumeration. We denote the resulting approximated

objective function by f (t). However, this approximation does not

necessarily provide a feasible network because it does not define a

proper frequency assignment. Alternatively, P1 can also be tackled

directly by considering greedy frequency assignments which do

provide feasible networks, although this takes considerably more

time. We denote this final objective function by f (t).

Given such procedures for solving P1 and P2, P0, given by

max
t∈T

f (t),

can be solved with a NS-based MH in the space of topologies,

where local directions of descent are computed with f (t).

4.2. Topology tabu search

4.2.1. Neighborhoods
The neighborhood structure dictates how the local search can

move in the space of solutions. Our neighborhood N is the edge-

swap neighborhood. To construct the neighbor topologies, for

each tree edge e ∈ E in the current topology, we remove it,

which disconnects the topology into two connected components,

and we consider every possible way of reconnecting these two

connected components with another edge. Hence, 1(t) is the set

of all topologies that can be obtained from t by an edge-swap move.

An example of neighbor topologies is depicted in Figure 2,

where the edges in blue were “swapped”.

4.2.2. Tabu search
Tabu Search (TS) is a MH that explores the solution space by

temporarily not allowing to move in the direction from which it

came. The only case in which this rule does not apply is when

moving in such a direction improves the incumbent solution. This

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

FIGURE 2

Neighbor topologies.

Input: an initial topology t;

t∗ ← t; t
∗ ← t; Ldrop ← ∅; Ladd ← ∅;

repeat
N(t)← 1(t);

t′ ← argmaxt′′∈N(t) f (t
′′)

s.t. t′′ is not tabu or f (t′′) > f (t
∗
);

if f (t′) > f (t∗) then
t
∗ ← t′;

end

Make move t← t′ and update tabu lists Ldrop and Ladd;

if f (t) > f (t∗) then
t∗ ← t;

end

until termination condition is reached;

return t∗

Algorithm 3. P0 Topology Tabu Search.

is done by using tabu lists that record the opposites of the last few

moves, which then become tabu for the next few moves.

For our edge-swap neighborhood, two tabu lists are necessary:

a list Ldrop for forbidding edges to be dropped and a list Ladd for

forbidding edges to be added. Let t′ ∈ N(t) be a neighbor of the

current topology t, obtained by replacing an edge e with an edge

e′ : we consider t′ as tabu if e ∈ Ldrop or (non exclusive) e′ ∈ Ladd.

When amove is actually made from the current topology, the newly

dropped edge is added to Ladd (it cannot be added back for the next

few moves) and the newly added edge is added to Ldrop (it can not

be dropped for the next few moves).

The lengths of the tabu lists determine for how many moves

the dropped/added edges have tabu status. As observed in Perreault

[23], reasonable lengths for Ldrop and Ladd are
⌊

(
√
|V| − 1)/2

⌉

and
⌊√

|V| (|V| − 1)/2
⌉

, respectively, where ⌊x⌉ means x rounded to

the nearest integer. The pseudocode for the resulting topology Tabu

Searchmetaheuristic is given in Algorithm 3.

4.3. Learning to generate edge-swap
neighbors for TS

As a NS-based MH, TS can be roughly described as a NS

scheme plus a "tabu" strategy for preventing cycling by keeping

a short-term memory of visited solutions stored in the tabu list.

As discussed above, the topology design for the wireless network

optimization problem can be solved by applying a topology TS

algorithm (Algorithm 3). In this TS scheme, a neighborhood N(t)

of the current solution t is constructed by applying an edge-swap

move operator. Specifically, the move operator consists of two

steps: an edge will be dropped from the current topology (by

enforcing the value of the dropped edge variable from 1 to 0)

and another edge will be added to complete a new topology (by

enforcing the value of the added edge variable from 0 to 1). As a

result, the edge-swap neighborhood consists of all the edge-swap

moves.

In Algorithm 3, the neighborhood search at each TS iteration

explores the entire edge-swap neighborhood by enumerating all

possible moves. Although the algorithm is guaranteed to find

a locally optimal solution by exploiting the entire edge-swap

neighborhood, it is generally slow in terms of computing time since

a complex subproblem (P1) has to be solved to evaluate each "edge-

swap" move, and another subproblem (P2) has to be solved to

evaluate each solution in P1.

A potential improvement of the enumeration strategy is to

apply a random strategy to sample from droppable edge variables

and addable edge variables, thus evaluating only a subset of possible

moves. The random strategy generally explores a larger solution

space than the enumeration strategy because, if the overall amount

of time for the algorithm is fixed, it is able to do more iterations.

However, random sampling might not be efficient enough for

guiding the search toward high-quality neighborhoods. To achieve

a better trade-off between exploitation and exploration, we propose

to exploit structural characteristics of improving moves, and

learn good variable selection policies for selecting "drop" edge

variables and "add" edge variables to generate size-reduced, but

high-quality edge-swap neighborhoods. The scheme for variable

selection consists of two components: a classifier for selecting the

"drop" edge variables and another classifier for selecting the "add"

edge variables. The scheme is depicted in Figure 3 and a detailed

pseudocode will be given in Algorithm 4.

4.3.1. Learning to drop edges
Let S denote the state space of the topologies of a WNO

instance, and let Yd = {0, 1}|I| denote the set of possible binary
decisions for the droppable edge variables, where I is the index

set of droppable edges in the current topology. We aim to learn a

"drop-edge" policy that maps each state s ∈ S to a label πd
θ∗ (s) =

yd ∈ Yd. The generation of a training dataset is explained in Section

4.4.1. Roughly speaking, we consider a set J of WNO instances,

and apply Tj iterations of Algorithm 3 to each instance j ∈ J. At

each iteration of each instance, we determine the edges that can be

dropped and replaced by another edge to produce a better topology.

This gives a label for every visited state. Let {s(j)i }
Tj
i=1 be the states of

the jth instance, and let {yd(j)i }
Tj
i=1 be the corresponding labels. As

explained in Section 3.3.2, the policy πd
θ∗ is obtained by solving the

following problem :

θ∗ = argmin
θ∈2

|J|
∑

j=1

Tj
∑

i=1
L

(

πd
θ (s

(j)
i), y

d(j)
i

)

, (8)

where L is the loss function.

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

FIGURE 3

A learning-based framework for generating "edge-swap" neighbors.

4.3.1.1. Feature design

Since the topologes naturally have a graph structure, we

represent each state s by a graph. More precisely, given a WNO

instance with n nodes, we consider d features for each node and

e features for each edge. The matrix of node features is denoted

by V ∈ R
n×d and the tensor of edge features is denoted by E ∈

R
n×n×e. The features used for learning which edges have the best

potential to lead to an improvement when dropped are listed in

Table 11.

4.3.1.2. GNN model

Because of the intrinsic graph structure of the topologies, it

is natural to apply GNN to model the drop-edge classifier. The

chosen GNN architecture has 3 modules: the input module, the

convolution module and the output module. The output module

embeds the hidden features extracted from the convolutionmodule

and maps the embedding of each edge in the current topology into

a two-neuron output.

4.3.1.3. Loss function

From the data generation process, we observed that class

distribution is unbalanced and only < 50% of droppable edges

lead to an improving move. Since the objective of the learning is

to select as many "improving" edges to be dropped as possible, it

is reasonable to put more effort in improving the predictions on

the minority class. Therefore, we apply a weighted Cross Entropy

(WCE) loss to train the model. Specifically, we add a penalty factor

λ for the "improving" class and 1−λ for the "non-improving" class.

Formally, the WCE loss is defined as

Lwce

(

ŷ, y
)

= 1

|I|

|I|
∑

i=1

(

−λyi log ŷi − (1− λ)(1− yi) log(1− ŷi)
)

,

(9)

where ŷ denotes the prediction of probability given by the

policy model, y denotes a label, and I is the index set of droppable

edges in the current topology. The penalty factor λ ∈ [0.5, 1]

imposes a larger loss for the "improving" class during training.

1 More detailed definitions of the listed features can be found in Perreault

[23].

4.3.2. Learning to add edges
After dropping an edge, the next step is to select an edge to

be added from all addable edges. Let S denote the state space of

all graphs obtained from a topology by dropping an edge, and let

Ya = {0, 1}|I| be the set of possible binary decisions for addable

edges, where I is the index set of addable edges. We aim to learn an

"add-edge" policy πa
θ∗ that maps each state s ∈ S to a label ya ∈ Ya.

The generation of a a training dataset is similar to what was

done for dropping edges. Algorithm 3 is applied to a set J of WNO

instances for a few iterations in order to determine which edges

have the potential to improve a topology once one of their edges

has been dropped. More details are given in Section 4.4.1. Let

{s(j)i }
Tj
i=1 be the states of the jth instance, and let {ya(j)i }

Tj
i=1 be the

corresponding labels. The policy πa
θ∗ is obtained by solving the

following problem :

θ∗ = argmin
θ∈2

|J|
∑

j=1

Tj
∑

i=1
L

(

πa
θ (s

(j)
i), y

a(j)
i

)

, (10)

.

4.3.2.1. Feature design

As was done for dropping edges, we model a state s by a graph.

Given a WNO instance with n nodes, d features for each node, and

e features for each edge, we denote by V ∈ R
n×d the matrix of

node features and by E ∈ R
n×n×e the tensor of edge features. The

features used for learning which edges have the best potential to

lead to an improvement when added are listed in Table 2.

4.3.2.2. GNN model

As for the drop-edge classifier, we also apply GNN to model

the add-edge classifier for selecting the edge to be added. The GNN

architecture is the same as for the drop-edge classifier.

4.3.2.3. Loss function

The class distribution for addable edges is even more

unbalanced than for the droppable case. Actually, only < 10%

of addable edges lead to an improving move. Therefore, we also

applied the WCE loss to train the model with an emphasis on the

minority class.

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

4.4. Numerical experiments

This section contains the experimental results for the WNO

application. After presenting the data collection, in Sections 4.4.2

and 4.4.3, we discuss the experimental setting and the evaluation

metrics, respectively. Finally, the results are reported and discussed

in Section 4.4.4.

4.4.1. Data collection
4.4.1.1. Problem instance generation

For the numerical experiments, the instances were generated in

the following way. First, independent coordinates for the explicit

nodes v ∈ V are iteratively generated using

(xv, yv) =
(√

U0 cos(2πU1),
√

U2 sin(2πU3)
)

(11)

whereU0,U1,U2,U3 ∼ U(0, 1) are independent and identically

distributed (IID). These coordinates are then scaled to match

the average distance ratio of 10 km. This coordinate generation

is repeated until the minimum distance is above 2 km and the

maximum distance is below 150 km. Once this is achieved, for

each possible edge [u, v] with u, v ∈ V , a random uniform

variable is sampled for the path loss and another is sampled for the

fade margin, both according to empirical cumulative distribution

functions derived from North-American datasets.

We generate small instances of 10 nodes, as well as larger

instances of 30 nodes. For these instances, the TS MH is initialized

with a minimum spanning tree with a specific distance based on

the path losses and fade margins of the terrain between every pair

of nodes [23].

4.4.1.2. Training data generation

To collect data for training the drop-edge and add-edge

classifiers, we call Algorithm 3 to evaluate all possible moves in

the edge-swap neighborhood, and compute labels according to

the learning task. In particular, given a WNO instance, and an

initialization of the topology, we execute Algorithm 3 as follows:

for each TS iteration, we first call the TS algorithm to evaluate all

possible edge-swap moves. For each droppable edge, we evaluate

all the addable edges. If the best resulting edge-swap move

within the neighborhood of the droppable edge leads to a better

approximated pseudo-objective, then the droppable edge is labeled

as "improving;" otherwise, it is labeled as "non-improving." Given

the dropped edge, the label of each addable edge is also decided

by the quality of the resulting edge-swap move. If the move leads

to a better approximated pseudo-objective, then the addable edge

within the neigborhood of the corresponding dropped edge is

labeled as "improving;" otherwise, it is labeled as "non-improving."

4.4.1.3. TS guided by GNNs

The TS algorithm with GNN classifiers (TS-GNN) is obtained

by using the learned policies πd
θ∗ and πa

θ∗ to generate edge-

swap neighbors. Hence, the pseudocode of TS-GNN is the same

as Algorithm 3, except that the neighborhood N(t) of t results

from the subset transformation operator that performs edge-swaps

according to πd
θ∗ and πa

θ∗ . A detailed pseudocode is given in

Algorithm 4.

Input: an initial topology t, a variable selection policy πd
θ∗ for

dropping edges, and a variable selection policy πa
θ∗ for

adding edges;

t∗ ← t; t
∗ ← t; Ldrop ← ∅; Ladd ← ∅;

repeat
N(t)← ∅
yd ← πd

θ∗ (s) where s is the state associated with t;

for every ei in t such that ydi = 1 do
set si equal to the state obtained from s by dropping ei from

topology t;

ya ← πa
θ∗ (si);

for each reconnecting edge ej such that y
a
j = 1 do

set ti,j equal to the topology obtained from t by dropping

edge ei and adding edge ej;

N(t)← N(t) ∪ {ti,j};
end

end

t′ ← argmaxt′′∈N(t) f (t
′′)

s.t. t′′ is not tabu or f (t′′) > f (t
∗
);

if f (t′) > f (t∗) then
t
∗ ← t′;

end

Make move t← t′ and update tabu lists Ldrop and Ladd;

if f (t) > f (t∗) then
t∗ ← t;

end

until termination condition is reached;

return t∗

Algorithm 4. P0 Topology Tabu Search with GNN classifiers.

4.4.2. Experimental setting
4.4.2.1. Training

We train the drop-edge policy and add-edge policy on

the collected training dataset separately. The training dataset is

generated from 30 small instances of 10 nodes. The collected data

is split into training (70%), validation (10%), and test (20%) sets.

4.4.2.2. Evaluation

We evaluate the compared algorithms listed in Section 4.4.4

on two evaluation sets. The first evaluation set contains 50 small

instances of 10 nodes. In addition, to evaluate the generalization

performance of our approach on larger instances, we also evaluate

the model trained on small instances on a large evaluation set with

5 instances of 30 nodes.

4.4.2.3. Experimental environment

Our code is written in Python 3.9 and we use Pytorch 1.60 [24],

Pytorch Geometric 1.7.0 [25] for implementing and training the

GNNs.

4.4.3. Evaluation metrics
We use the primal integral [26] to measure the performance

of the compared algorithms. The primal integral was originally

proposed to measure the performance of primal heuristics for

solving mixed-integer programs. The metric takes into account

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

TABLE 1 Description of the features in the "droppable" graph (N, E).

Tensor Feature Description

V coordinates X and Y coordinates in km

desc_v Normalized descv = ((|descv| − 1)/(|V| − 1))

E pass_loss Path loss in dB

fade_margin Fade margin in dB

waveform Binary (point-to-point or point-to-multipoint)

channel Frequency channel

n_beams Number of beams used by the antenna of the

predecessor

tp_uv_a Throughput scenario A

tp_uv_b Throughput scenario B

tp_uv_c Throughput scenario C

tp_uv_m Throughput by mixed scenarios of A, B, C

edge indices Edge indices in current topology

TABLE 2 Description of the features in the "addable" graph (N, E).

Tensor Feature Description

V coordinates X and Y coordinates in km

desc_v Normalized |desc_v| = ((|desc_v| − 1)/(|V| − 1))

E edge_type Binary indicator of addable edges

pass_loss Path loss in dB

fade_margin Fade margin in dB

edge indices Edge indices in current topology

both the quality of solutions and the computing time spent to find

those solutions during the solving process. To define the primal

integral, we first consider a scaled primal gap function p(t) as a

function of time, defined as

p(t) =
{

1, if no incumbent until time t,

γ̄ (x̃(t)), otherwise,

where x̃(t) is the incumbent solution at time t, and γ̄ (·) ∈ [0, 1]

is the scaled primal gap

γ̄ (x̃) =
|f (x̃opt)− f (x̃)|
|f (x̃opt)− f (x̃init)|

,

where f (x̃) denotes the objective value given solution x̃, x̃opt is

either the optimal solution or the best one known for the instance

and x̃init is the initial solution. The original unscaled primal gap is

defined as

γ (x̃) =
|f (x̃opt)− f (x̃)|
|f (x̃opt)|

.

Let tmax > 0 be the time limit for executing the heuristic. The

primal integral measure is then defined as

P(tmax) =
∫ tmax

0
p(t) dt.

4.4.4. Results
In order to validate our approach, we compare multiple

versions of our TS-GNN algorithm with the baselines. Specifically,

we compare the following algorithms:

• TS with No-Classifier, the baseline topology TS algorithm

with an enumeration strategy that evaluates all the possible

edge-swap neighbors;

• TS with Random-Add-Classifier, the baseline topology TS

algorithmwith a sampling strategy that randomly selects edges

to be added for generating edge-swap neighbors;

• TS with Random-Add-Drop-Classifier, the baseline topology

TS algorithm with a sampling strategy that randomly selects

both the edges to be dropped and the edges to be added for

generating edge-swap neighbors;

• TS with GNN-Add-Classifier, the TS algorithm plus the GNN

classifier for selecting the edges to be added for generating

edge-swap neighbors;

• TS with GNN-Drop-Classifier, the TS algorithm plus the GNN

classifier for selecting the edges to be dropped for generating

edge-swap neighbors;

• TS with GNN-Add-Drop-Classifier, the TS algorithm plus the

GNN classifiers both for selecting the edges to be dropped and

for selecting the edges to be added.

We evaluate the performance of all the compared algorithms

on both small instances with 10 nodes and larger instances with

30 nodes. For each test set, we compute the average primal

integral defined in Section 4.4.3 as well as the average number of

iterations. The primal integral is our main performance metric for

evaluating metaheuristics and it measures the speed of convergence

of the objective over the entire search time (the smaller, the

better). In addition, the number of iterations counts the number

of neighborhoods explored by the algorithm. With the same

running time, it reflects how much exploration is guaranteed

by modifications made to the basic TS scheme. Indeed, larger

number of iterations for the same amount of time indicates a

faster moving between neighborhoods and is generally preferable,

although the outcome of the search still depends on the quality

of the neighborhoods. The evaluation results of the compared

algorithms are shown in Figures 4, 5 for instances with 10 and 30

nodes, respectively. Figure 4 plots the evolution of primal integral

of the compared algorithms over the running time and Figure 5

plots the evolution of number of TS iterations over time. Table 3

reports more statistical details about the final primal integral when

the compared TS algorithms reach the running time limit.

From these results, we observe that all our ML-based TS

algorithms with GNN classifiers outperform the original TS

baseline with no classifier. The No-Classifier baseline employs an

enumeration strategy that evaluates all the possible moves in the

edge-swap neighborhood. Although it is guaranteed to find the

best move at each TS iteration, its more extensive exploitation

results in the lowest number of iterations over all the compared

algorithms. For small instances of 10 nodes, the performance

of No-Classifier is still decent, as the solution space of these

instances is small for exploration. However, it gives the worst

results compared to all other algorithms on larger instances

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

FIGURE 4

Evolution of the average primal integral and the average number of

iterations over time on the dataset of instances of 10 nodes. (A)

Average primal integral. (B) Average number of iterations.

because the low number of iterations (slow exploitation) and the

resulting lack of exploration becomes the main bottleneck of the

algorithm.

The algorithms with random classifiers, on the contrary, are

more efficient in terms of number of iterations. The Random-

Add-Classifier algorithm explores a random subset of addable

edges in the edge-swap neighborhood and the Random Add-

Drop Classifier generates an even smaller neighborhood by

sampling from both droppable and addable edges. On small

instances with 10 nodes, Random-Add-Classifier achieves a

better performance with a lower primal integral although

the Random-Add-Drop-Classifier algorithm has a larger

number of iterations. This is because, for small instances,

the quality of the solutions in the sampled neighborhoods

is more important than the number of iterations. Whereas

for larger instances of 30 nodes, Random-Add-Drop-Classifier

performs better than Random-Add-Classifier since the sampling

efficiency becomes more important for exploring larger

edge-swap neighborhoods.

FIGURE 5

Evolution of the average primal integral and the average number of

iterations over time on the dataset of instances of 30 nodes. (A)

Average primal integral. (B) Average number of iterations.

On the one hand, the No-Classifier baseline can fully

exploit each edge-swap neighborhood (exploitation) but has a

low efficiency in terms of number of iterations. The baselines

with random classifiers are more effective in increasing the

number of iterations by reducing the size of each neighborhood

(exploration), however, the quality of the neighborhood is restricted

by its sampling efficiency. On the other hand, our complete

ML-based algorithm with GNN-Drop-Add-Classifier achieves a

smaller primal integral than all the baseline algorithms with

a reasonably large number of iterations. Moreover, as the size

of instances increases, the GNN-Drop-Add-Classifier algorithm

becomes more competitive and significantly outperforms all

the compared algorithms. These results demonstrate that our

approach offers a good trade-off in both exploration and

exploitation of the solution space. Since the GNN classifiers

are only trained with data generated from small instances,

the results also show that our method generalizes well on

larger instances.

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

TABLE 3 Statistics on final primal integral [mean, standard deviation (SD), maximum, and minimum] over instances from the evaluation set of 10 and 30

nodes.

Ten nodes Thirty nodes

Algorithm Mean SD Max Min Mean SD Max Min

No classifier 0.248 0.218 0.829 0.028 0.856 0.075 1.000 0.788

Random add classifier 0.227 0.228 0.735 0.017 0.574 0.179 0.727 0.222

GNN add classifier 0.233 0.226 0.865 0.023 0.701 0.22 1.000 0.332

Random Add-drop classifer 0.346 0.257 0.845 0.011 0.534 0.316 0.964 0.063

GNN Add-drop classifer 0.205 0.206 0.740 0.012 0.475 0.284 0.966 0.242

The bold value in the mean column indicates the best primal integral value over all the compared algorithms.

5. Application 2: large neighborhood
search in MIP

In this section, we explain how to apply our methodology to

another application: a Large Neighborhood Search (LNS) heuristic

for solving MIPs.

5.1. Large neighborhood search

LNS is a refinement heuristic, i.e., given an initial solution,

it is applied to improve the solution by exploring a "large"

neighborhood. There are several ways of describing a LNS scheme.

We adopt the following simple one based of three building

blocks:

• destroy function d: fixes the values of a subset of variables to

the current solution x and "destroy" the rest. The output of

this function is a sub-MIP with a neighborhoodN(x). The size

of the LNS neighborhood, i.e. the number of variables to be

destroyed, will be selected as a hyperparameter;

• repair function r: rebuilds the destroyed solution2, typically by

solving a sub-MIP defined by N(x);

• accept function a: decides whether the new solution should be

accepted or rejected.

Given as an input a feasible solution x̄, LNS searches for the

best feasible solution x̃ in the neighborhood of x̄ (the size of the

neighborhood is a parameter) and then updates x̄ ← x̃. This is

repeated until a termination condition is met. The pseudocode of

the scheme is given in Algorithm 5.

5.2. Learning to generate neighbors for LNS

In a LNS heuristic, the solution neighbors are obtained by

the destroy function that selects a subset of integer variables to

be "destroyed," thus freed for neighbor generation. The remaining

integer variables will be fixed to their values in the current solution.

The classic LNS algorithm applies a randomized sampling strategy

or hand-crafted rules for defining the destroy function (see, e.g.,

2 In some cases, the repaired solution can be worse than the destroyed

solution.

Input: an initial solution x;

x∗←x;

repeat

x′←r(d(x));

if a(x′, x) then
x←x′;

end

if f (x) < f (x∗) then
x∗←x;

end

until termination condition is reached;

return x∗

Algorithm 5. The LNS heuristic.

[27]). However, our observation shows that only a small subset

of variables have the potential to improve the current solution

by changing their values and such a subset is strongly dependent

to the structure of the problem. Hence, in order to optimize the

performance of LNS, we aim at learning new variable selection

strategies to select a subset of variables to be freed. In particular,

we investigate the dependencies between the state of the problem,

defined by a set of both static and dynamic features collected

from the LNS procedure (e.g., context of the problem, incumbent

solution) and the binary decisions about integer variables to be

either freed or fixed.

We now show how to use a GNN model for learning a destroy

policy. The LNS neighborhoods will then be defined based on our

pretrained GNN classifier.

Let S denote the state space of a MIP instance, and let Y =
{0, 1}|I| denote all candidate subsets of variables to be destroyed,

where I is the index set of integer variables. We aim to learn a

destroy policy πθ∗ that maps each state s to a label y ∈ Y .

To generate a training dataset, we consider a set J of instances,

and apply Tj iterations of the local branching heuristic [28] to each

instance j ∈ J. We thus determine improving subsets of variables

which give us labels. More details about this process can be found

in Section 5.3.1. Let {s(j)i }
Tj
i=1 be the states of the jth instance, and

let {y(j)i }
Tj
i=1 be the corresponding labels. As explained in Section

3.3.2, the policy πθ∗ can be obtained by solving the following

classification problem:

θ∗ = argmin
θ∈2

|J|
∑

j=1

Tj
∑

i=1
L

(

πθ (s
(j)
i), y

(j)
i

)

. (12)

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

TABLE 4 Description of the features in the bipartite graph s = (V, C, E).

Tensor Feature Description

V sol_val Solution value.

C bias Right-hand side value of the constraint.

E coef Constraint coefficient.

5.2.1. Feature design
We represent each state s of a MIP by a bipartite graph (V,C,E)

[7]. More precisely, assume that the consideredMIP has n variables,

m constraints, d features for the variables and q features for the

constraints. The variables of the MIP with their feature matrix

V ∈ R
n×d are represented on one side of the graph. On the other

side are nodes corresponding to the constraints with C ∈ R
m×q

being their feature matrix. A variable node i and a constraint node j

are connected by an edge (i, j) if variable i appears in constraint j of

the MIP. Finally, E ∈ R
n×m×e denotes the tensor of edge features,

with e being the number of features for each edge. The features in

the bipartite graph are listed in Table 4.

5.2.2. GNN model
Given that the state of a MIP instance can be represented

as a bipartite graph, we propose to use GNN to parameterize

the model for the destroy policy. Our GNN architecture again

consists of 3 modules: the input module, the convolution module,

and the output module. For a bipartite graph, a convolution

layer is decomposed into two half-layers: one half-layer propagates

messages from variable nodes to constraint nodes through edges,

and the other one propagates messages from constraint nodes to

variable nodes. We refer the reader to Gasse et al. [7] for more

details. The output module embeds the features extracted from

the convolution module for the prediction of each variable, which

maps the graph representation embedding of each variable into a

two-neuron output.

5.2.3. Loss function
The class distribution is highly unbalanced. In the training

dataset, we observe that only < 10% variables belong to the

"destroy" class, i.e., the variables in this class have the potential to

improve the current solution by changing their values. In order to

adapt to the imbalanced distribution, we applied the WCE loss and

focal loss [29] to train the model.

5.2.4. LNS guided by GNNs
Our refined LNS heuristic with GNN classifier (LNS-GNN) is

obtained by using the destroy policy πθ∗ in Algorithm 5. Hence,

given a solution x and its associated state s, we set y equal to πθ∗ (s),

we then destroy some variables xi with yi = 1 to get N(x), and we

finally obtain a repaired neighbor x′ of x by solving the sub-MIP

defined by N(x).

5.3. Numerical experiments

In this section, we present the experimental results for the ML-

based LNS. As for the WNO application, we first present the data

collection, then, we discuss the experimental setting in Section 5.3.2

and the results in Section 5.3.3. The evaluation metrics remain the

same as presented in Section 4.4.3.

5.3.1. Data collection
5.3.1.1. MIP benchmark

To train, evaluate and compare algorithms, we consider 126

MIP instances taken from the MIPLIB [30] dataset. For each

instance, an initial feasible solution is required to start the LNS

heuristic. We use an intermediate solution found by SCIP [31],

typically the best solution obtained by SCIP at the end of the root

node computation, i.e., before branching.

5.3.1.2. Training data generation

To collect data for the classification task, we use the Local

Branching (LB) algorithm of Fischetti and Lodi [28]. More

precisely, given a MIP instance and an initial incumbent x̄, we call

the LB algorithm to explore as many neighbors as possible, with a

time limit of 600 s, and by limiting to 25% the number of destroyed

variables. The best solution x∗ found by LB is compared with x̄ and

the variables with changed values are labeled as improving variables

for x. These improving variables are then distroyed from x, and the

partial solution is repaired by calling a MIP solver. The resulting

solution becomes the new incumbent to which we repeat the same

process. This is done for a set J of instances, as explained in Section

5.2.

5.3.2. Experimental setting
5.3.2.1. Training

In the classification task for producing a good destroy policy,

the GNN model learns from the features of the MIP formulation

and its incumbent solution. We train our GNN classifier with 29 of

the 126 considered MIP instances.

5.3.2.2. Evaluation

The algorithms are compared and evaluated on the remaining

97 binary MIP instances.

5.3.2.3. Experiment environment

Our code is written in Python 3.7 and we use Pytorch 1.60 [24],

Pytorch Geometric 1.7.0 [25], PySCIPOpt 3.1.1 [32], and SCIP 7.01

[31] for developing our models and solving MIPs.

5.3.3. Results
We compare our LNS-GNN algorithm with the following

algorithms:

• SCIP, the default SCIP solver;

• LNS-Random, the baseline LNS algorithm with a sampling

strategy that randomly selects variables to destroy;

• LB, the local branching algorithm [28].

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

FIGURE 6

Evaluation results on MIPLIB binary dataset.

For all these algorithms, we have limited to 40 the number of

variables that can be destroyed to generate neighbors.

For measuring the heuristic performance of the compared

algorithms, we also compute the average primal integral defined in

Section 4.4.3.We ran the listed algorithms for 60 s on each instance.

The results are shown in Figure 6.

From the results in Figure 6, we can see that the primal

integral of the LB baseline is the largest over the entire solving

time, which indicates that exploring all the possible neighbors

within the same Hamming distance to the current solution is

computationally expensive. Moreover, the LNS-Random baseline

performs better than LB baseline by applying a random sampling

strategy for selecting the subset of variables to be freed. The

default SCIP algorithm achieves similar primal integral as LNS-

Random, which indicates that adding a random LNS strategy

to the MIP solver would not significantly improve the overall

heuristic behavior of MIP solving. Moreover, from Table 5, we

observe that all the LNS algorithms achieve a lower final primal

gap than the default SCIP algorithm, showing that building a

LNS-based primal heuristic on top of a MIP solver generally

helps to find a better solution faster. Our LNS-GNN algorithm

presents the best heuristic behavior in terms of the primal integral,

showing that the pretrained GNN model is able to produce

structural neighborhoods that contain improving solutions. These

results demonstrate that our approach achieves a better trade-off

between exploitation and exploration of the promising solution

regions. Although, potentially, any of the baseline algorithms

could be tuned to obtain better results, this is true for LNS-

GNN too, and overall we believe that these results show

clear promise.

6. Conclusions and future work

In this work, we presented a methodology for integrating

machine learning techniques into metaheuristics for solving

combinatorial optimization problems. Namely, we proposed a

general ML framework for neighbor generation in metaheuristic

TABLE 5 Primal integral (mean ± standard deviation) for MIPLIB problems

with a time limit of 60s for each instance.

Algo. Final primal integral Final primal gap

SCIP 3.493± 7.242 3.766± 13.058

LB 5.661± 10.216 2.783± 10.883

LNS-Random 3.438± 7.233 2.724± 11.217

LNS-GNN 3.179± 6.017 2.536± 7.942

The bold value in each column of the table indicates the best achieved value of the metric over

all the compared algorithms.

search. We firstly defined a neighborhood structure constructed

by applying a transformation operator to a selected subset of

variables from the current solution. Then, the key of the proposed

methodology is to learn a variable selection policy by which the

subset transformation operator is able to produce neighborhoods

containing high-quality solutions. We formulated the variable

selection problem as a classification problem that exploits structural

information from the characteristics of the problem and high-

quality solutions.

We demonstrated our methodology on two applications. The

first problem we addressed occurs in the context of Wireless

Network Optimization, where a Tabu Search metaheuristic is

used for the topology design sub-problem. In a predefined

topology neighborhood structure, we trained classification models

to select sized-reduced, but high-quality neighborhoods. This

allowed the metaheuristic search to execute more iterations within

the same amount of time. As each iteration requires to solve a

series of complex combinatorial sub-problems, more iterations

entail a greater exploration of the solution space. In addition,

to demonstrate the broader applicability of our approach, we

also applied our framework to the Large Neighborhood Search

metaheuristic for solving MIPs. The experimental results of the

two applications have shown that our approach is able to learn a

satisfactory trade-off between the exploration of a larger solution

space and the exploitation of promising solution regions in

metaheuristic search.

Although deep neural networks such as GNNs have been

wildly applied to represent combinatorial optimization problems,

the current GNNs might not be expressive enough to capture

all the crucial patterns from data [11]. For future research, it

would be interesting to develop more expressive ML models that

exhibit better transferability and scalability across broader classes

of problems.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://github.com/pandat8.

Author contributions

All authors contributed to the study, development of this work,

and read and approved the final manuscript.

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://github.com/pandat8
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Liu et al. 10.3389/fams.2023.1128181

Funding

This work was supported by Canada Excellence Research Chair

in Data Science for Real-Time Decision-Making at Polytechnique

Montreal.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Blum C, Roli A. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys. (2003) 35:268–308.
doi: 10.1145/937503.937505

2. Land AH, Doig AG. An automatic method for solving discrete programming
problems. In: Jü̈nger M, M, Leibling TM, Naddef D, Nemhauser GL, Pilleyblank WR,
Reinelt G, Rinaldi G, Wolsey LA, editors. 50 Years of Integer Programming 1958–2008.
Berlin: Springer (2010). p. 105–32.

3. Bixby R, Rothberg E. Progress in computational mixed integer programming—a
look back from the other side of the tipping point. Ann Operat Res. (2007) 149:37–41.
doi: 10.1007/s10479-006-0091-y

4. Bengio Y, Lodi A, Prouvost A. Machine learning for combinatorial
optimization: a methodological tour d’horizon. Eur J Operat Res. (2021) 290:405–21.
doi: 10.1016/j.ejor.2020.07.06

5. Talbi EG. Machine learning into metaheuristics: a survey and
taxonomy. ACM Comput Surveys. (2021) 54:1–32. doi: 10.1145/
3459664

6. Karimi-Mamaghan M, Mohammadi M, Meyer P, Karimi-Mamaghan AM, Talbi
EG. Machine learning at the service of meta-heuristics for solving combinatorial
optimization problems: a state-of-the-art. Eur J Operat Res. (2022) 296:393–422.
doi: 10.1016/j.ejor.2021.04.032

7. Gasse M, Chetelat D, Ferroni N, Charlin L, Lodi A. Exact combinatorial
optimization with graph convolutional neural networks. In: Wallach H,
Larochelle H, Beygelzimer A, Alche-Bue F, Fox E, Garnett R, editors. Advances
in Neural Information Processing Systems, Vol. 32. Curran Associates, Inc (2019).
Available online at: https://proceedings.neurips.cc/paper_files/paper/2019/file/
d14c2267d848abeb81fd590f371d39bd-Paper.pdf

8. Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains.
In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol. 2.
Montreal, QC: IEEE (2005). p. 729–34.

9. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The
graph neural network model. IEEE Trans Neural Netw. (2008) 20:61–80.
doi: 10.1109/TNN.2008.2005605

10. Hamilton WL, Ying R, Leskovec J. Representation learning on
graphs: methods and applications. arXiv preprint arXiv:170905584. (2017).
doi: 10.48550/arXiv.1709.05584

11. Cappart Q, Chételat D, Khalil E, Lodi A, Morris C, Veličković P.
Combinatorial optimization and reasoning with graph neural networks.
arXiv preprint arXiv:210209544. (2021). doi: 10.48550/arXiv.2102.
09544

12. Khalil E, Dai H, Zhang Y, Dilkina B, Song L. Learning combinatorial
optimization algorithms over graphs. In: Guyon I, Von Luxburg U, Bengio
S, Wallach H, Fergus R, Vishwanathan S, Garnett R, editors. Advances in
Neural Information Processing Systems, Vol. 30. Curran Associates, Inc (2017).
Available online at: https://proceedings.neurips.cc/paper_files/paper/2017/file/
d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf

13. Nazari M, Oroojlooy A, Snyder L, Takác M. Reinforcement
learning for solving the vehicle routing problem. Adv Neural
Inform Process Syst. (2018) 31:4240. doi: 10.48550/arXiv.1802.
04240

14. Zhang C, Song W, Cao Z, Zhang J, Tan PS, Chi X. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Adv
Neural Inform Process Syst. (2020) 33:1621–32. doi: 10.48550/arXiv.2010.
12367

15. Bello I, Pham H, Le QV, Norouzi M, Bengio S. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:161109940. (2016).
doi: 10.48550/arXiv.1611.09940

16. Gao L, Chen M, Chen Q, Luo G, Zhu N, Liu Z. Learn to design the
heuristics for vehicle routing problem. arXiv preprint arXiv:200208539. (2020).
doi: 10.48550/arXiv.2002.08539

17. Liu D, Lodi A, Tanneau M. Learning chordal extensions. J Glob Opt. (2021)
81:3–22. doi: 10.48550/arXiv.1910.07600

18. He H, Daume III H, Eisner JM. Learning to search in branch and
bound algorithms. Adv Neural Inform Process Syst. (2014) 27:3293–301.
doi: 10.5555/2969033.2969194

19. Khalil E, Le Bodic P, Song L, Nemhauser G, Dilkina B. Learning to branch
in mixed integer programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence. (2016) .p. 30. Available online at: https://ojs.aaai.org/index.php/AAAI/
article/view/10080 (accessed Febuery 21, 2016).

20. Khalil E, Dai H, Zhang Y, Dilkina B, Song L. Learning combinatorial
optimization algorithms over graphs. In: Advances in Neural Information Processing
Systems. (2017). p. 30.

21. BalconM-F, Dick T, Sandholm T, Vitercik E. Learning to branch. In: Dy J, Krause
A, editors. Proceedings of the 35th International Conference on Machine Learning, Vol.
80. PMLR (2018). p. 344-53. Available online at: http://proceedings.mlr.press/v80/
balcan18a/balcan18a.pdf

22. Liu D, Fischetti M, Lodi A. Learning to Search in Local Branching. Proc AAAI
Conf Artif Intell. (2022) 36:3796–803. doi: 10.1609/aaai.v36i4.20294

23. Perreault V. Tactical Wireless Network Design for Challenging Environments.
Montreal, QC: Polytechnique Montreal. (2022).

24. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: an
imperative style, high-performance deep learning library. Adv Neural Inform Process
Syst. (2019) 32:8026–37. doi: 10.48550/arXiv.1912.01703

25. Fey M, Lenssen JE. Fast graph representation learning with PyTorch Geometric.
arXiv preprint arXiv:190302428. (2019). doi: 10.48550/arXiv.1903.02428

26. Berthold T. Measuring the impact of primal heuristics. Operat Res Lett. (2013)
41:611–4. doi: 10.1016/j.orl.2013.08.007

27. Danna E, Rothberg E, Le Pape C. Exploring relaxation induced
neighborhoods to improve MIP solutions. Math Progr. (2005) 102:71–90.
doi: 10.1007/s10107-004-0518-7

28. Fischetti M, Lodi A. Local branching. Math Progr. (2003) 98:23–47.
doi: 10.1007/s10107-003-0395-5

29. Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal Loss for dense
object detection. IEEE Trans Pattern Anal Mach Intell. (2020) 42: 318–27.
doi: 10.1109/TPAMI.2018.2858826

30. Gleixner A, Hendel G, Gamrath G, Achterberg T, Bastubbe M, Berthold T, et al.
MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming library.
Math Progr Comput. (2021) 2021:1–48. doi: 10.1007/s12532-020-00194-3

31. Gamrath G, Anderson D, Bestuzheva K, Chen WK, Eifler L, Gasse M, et al. The
SCIP Optimization Suite 7.0. Berlin:Zuse Institute. (2020). p. 10–20. Available online at:
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023 (accessed March 30, 2020).

32. Maher S, Miltenberger M, Pedroso JP, Rehfeldt D, Schwarz R, Serrano F.
PySCIPOpt: mathematical programming in python with the SCIP optimization suite.
In: Mathematical Software – ICMS. (2016). Cham: Springer International Publishing
(2016). p. 301–7.

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2023.1128181
https://doi.org/10.1145/937503.937505
https://doi.org/10.1007/s10479-006-0091-y
https://doi.org/10.1016/j.ejor.2020.07.06
https://doi.org/10.1145/3459664
https://doi.org/10.1016/j.ejor.2021.04.032
https://proceedings.neurips.cc/paper_files/paper/2019/file/d14c2267d848abeb81fd590f371d39bd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d14c2267d848abeb81fd590f371d39bd-Paper.pdf
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.48550/arXiv.1709.05584
https://doi.org/10.48550/arXiv.2102.09544
https://proceedings.neurips.cc/paper_files/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://doi.org/10.48550/arXiv.1802.04240
https://doi.org/10.48550/arXiv.2010.12367
https://doi.org/10.48550/arXiv.1611.09940
https://doi.org/10.48550/arXiv.2002.08539
https://doi.org/10.48550/arXiv.1910.07600
https://doi.org/10.5555/2969033.2969194
https://ojs.aaai.org/index.php/AAAI/article/view/10080
https://ojs.aaai.org/index.php/AAAI/article/view/10080
http://proceedings.mlr.press/v80/balcan18a/balcan18a.pdf
http://proceedings.mlr.press/v80/balcan18a/balcan18a.pdf
https://doi.org/10.1609/aaai.v36i4.20294
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.1016/j.orl.2013.08.007
https://doi.org/10.1007/s10107-004-0518-7
https://doi.org/10.1007/s10107-003-0395-5
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1007/s12532-020-00194-3
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	A machine learning framework for neighbor generation in metaheuristic search
	1. Introduction
	2. Background
	2.1. Combinatorial optimization
	2.2. Metaheuristics
	2.3. Representation learning for CO

	3. Methodology
	3.1. Transformation operator and neighbor generation
	3.2. Variable selection for neighbor generation
	3.3. Learning a variable selection policy for structural neighbor generation
	3.3.1. Generation of a training data set
	3.3.2. Training the variable selection policy
	3.3.2.1. Modeling

	3.3.3. Neighbor generation design

	4. Application 1: tabu search in wireless network optimization
	4.1. The tactical WNO problem
	4.2. Topology tabu search
	4.2.1. Neighborhoods
	4.2.2. Tabu search

	4.3. Learning to generate edge-swap neighbors for TS
	4.3.1. Learning to drop edges
	4.3.1.1. Feature design
	4.3.1.2. GNN model
	4.3.1.3. Loss function

	4.3.2. Learning to add edges
	4.3.2.1. Feature design
	4.3.2.2. GNN model
	4.3.2.3. Loss function

	4.4. Numerical experiments
	4.4.1. Data collection
	4.4.1.1. Problem instance generation
	4.4.1.2. Training data generation
	4.4.1.3. TS guided by GNNs

	4.4.2. Experimental setting
	4.4.2.1. Training
	4.4.2.2. Evaluation
	4.4.2.3. Experimental environment

	4.4.3. Evaluation metrics
	4.4.4. Results

	5. Application 2: large neighborhood search in MIP
	5.1. Large neighborhood search
	5.2. Learning to generate neighbors for LNS
	5.2.1. Feature design
	5.2.2. GNN model
	5.2.3. Loss function
	5.2.4. LNS guided by GNNs

	5.3. Numerical experiments
	5.3.1. Data collection
	5.3.1.1. MIP benchmark
	5.3.1.2. Training data generation

	5.3.2. Experimental setting
	5.3.2.1. Training
	5.3.2.2. Evaluation
	5.3.2.3. Experiment environment

	5.3.3. Results

	6. Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

