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Surrogate modeling for the
climate sciences dynamics with
machine learning and data
assimilation

Marc Bocquet*

CEREA, École des Ponts and EdF R&D, Île-de-France, France

The outstanding breakthroughs of deep learning in computer vision and
natural language processing have been the horn of plenty for many recent
developments in the climate sciences. These methodological advances currently
find applications to subgrid-scale parameterization, data-driven model error
correction, model discovery, surrogate modeling, and many other uses. In this
perspective article, I will review recent advances in the field, specifically in the
thriving subtopic defined by the intersection of dynamical systems in geosciences,
data assimilation, and machine learning, with striking applications to physical
model error correction. I will give my take on where we are in the field and why
we are there and discuss the key perspectives. I will describe several technical
obstacles to implementing these new techniques in a high-dimensional, possibly
operational system. I will also discuss open questions about the combined
use of data assimilation and machine learning and the short- vs. longer-term
representation of the surrogate (i.e., neural network-based) dynamics, and finally
about uncertainty quantification in this context.
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1. Introduction

Computer vision and natural language processing have immensely benefited from the

emergence of deep learning neural networks (NNs) and the availability of huge datasets over

the past 15 years. It has long been recognized that arbitrarily large and deep NNs represent

functional models for non-linear regressors [1]. But progresses in non-linear optimization

due to a better derivation of the adjoint model1 and much richer datasets have allowed us to

practically demonstrate the considerable potential of the approach [2, 3]. However, climate

sciences (ormore generally sciences of the atmosphere, oceans, land surfaces, their respective

constituents, and biosphere) are far more error-prone and far less idealized than computer

vision and natural language processing, which slowed down transfers between disciplines.

The fabulous achievements of the methods nonetheless outweighed the hurdles, and the

techniques finally percolated into the fields of geoscience.

Yet, geosciences have specificities. Modelers rely on comprehensive, though imperfect,

scale-depend, costly numerical models, such as the dicretisation of the primitive equations

for the geofluids. Earth scientists acquire and exploit huge observation datasets, but which

1 More precisely, the adjoint operator of the sensitivity of the model output to the input variables.
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do not offer full coverage of the system, neither in space nor in

time. This challenge led to the development of data assimilation

(DA) techniques that aim to optimally merge information from the

observations and the numerical models to obtain a more accurate

representation of the physical fields and parameters of the models.

Both machine learning (ML) to which deep learning belongs

and DA are statistical estimation/inverse problems techniques

which can offer predictions of the dynamical system under study

and which share methodologies because they can both root in

statistical and Bayesian principles. However, the acceleration of

technical achievements, particularly the deep learning differentiable

libraries, and its subsequent hype, made it very attractive to test ML

techniques in geosciences. To address model deficiencies, which is

critical for better forecasts and hindcasts, the emphasis is thenmore

on data-driven rather than model-driven solutions.

In the following, I will first describe and justify this beneficial

infusion of ideas to the geo- and climate sciences from a viewpoint

at the intersection of the geoscientific dynamical systems, DA and

ML. I will review some of the recent accomplishments through deep

learning in the field, and in particular how the power of ML can be

embedded in the Bayesian framework of DA, with a view to more

accurate forecasts and surrogate modeling. I will give a realistic

numerical example of a deep learning-based surrogate model for

numerical weather prediction (NWP).

In the second part of this perspective paper, I will discuss

aspects of these developments that may play a key role in the future

success or represent significant challenges that must be addressed.

I will first examine whether building a data-driven surrogate model

requires focusing on very short-term dynamics (which amounts to

equations discovery) or on longer-term dynamics (which amounts

to building a surrogate resolvent of the dynamics). I will then return

to the beneficial iterative combination of DA and ML to discover

not only dynamics but also DAmethods and their solver. I will then

describe the potential of online vs. offline ML+DA schemes. As a

third perspective, I will briefly discuss uncertainty quantification,

where DA and ML can benefit from each other, before giving my

final thoughts.

2. State-of-the-art

The Earth’s climate is composed of several compartments with

heterogeneous space and time scales: the atmosphere and its trace

gases and aerosols, the oceans and its biological and chemical

species, the land surface and its biosphere, the cryosphere (Arctic,

Antarctic, Greenland, glaciers, and permafrost), etc. Its state and

evolution, of critical importance for everyday life as well as the

whole biosphere’s fate, are estimated using numerical models of

the geofluids and of the species’ fate and using Earth’s observation

through constellations of satellites, ground stations, aircrafts,

ships, buoys, radiosondes, and other remote sensors. Despite this

impressive coverage, these observations remain noisy, can be non-

local2, and can either be considered sparse or infrequent, depending

2 Non-local observations are typically linear or non-linear functions of

spatially extended variables. Typical examples in the geosciences are the

radiance measurements of space-born instruments which often probe full

on the instrument’s platform and the Earth’s compartment. Most

geofluids are chaotic, which severely limits the Earth system’s

predictability. Predictions are computed through the optimal

mathematical combination of these observations and the numerical

forecastingmodels, i.e., DA, which has met success even beyond the

boundaries of geoscience [5].

Note that the handling of these observations is a Big Data

problem. At the same time, these numerical models are often

computationally very demanding. They are orders of magnitude

slower than the inference of large NNs. Thus, DA for operational

numerical weather prediction is considered a high-performance

computing challenge [6].

The precision of the forecasts is driven by the number of

observations, their instrumental errors, as well as the fidelity of the

numerical models. It is impacted by the relevance and consistency

of the employed DA technique [7, 8]. It eventually depends on

the accuracy of the sensitivity map established by the observation

operator between the model variables and the observations, the

so-called representation error [9].

Data assimilation in geosciences is the counterpart to training

in ML and vice versa; they are both parts of estimation theory

or inverse problems and combine a numerical model of either

physical or statistical origin and possibly huge datasets (the

larger, the better) [10]. There are known correspondences between

them. For instance, the adjoint models [11] required by the

gradients in variational DA draw from the branch of applied

mathematics known as optimal control [12] and have been named

backpropagation in deep learning [13]. They both ultimately rely on

fine numerical optimization techniques. Yet, they diverge in their

use of the model. In ML, the models are essentially statistical and

fast to infer, while in DA, they are essential of physical origin and

are usually significantly slower.

In contrast to computer vision and natural language processing

which are well-delineated computer science problems, forecasting

geophysical systems cannot be so neat a mathematical problem.

Indeed, geophysical system have many sources of significant error

mentioned above (model, data, and methods), they are often

intrinsically multiscale and heterogeneous, and they are rarely

isolated. Then, why should we bother with the recent progress of

ML in computer vision and natural language processing if those

could be specific and difficult to transfer to the climate sciences?

The deep learning achievements are so spectacular that they cannot

be ignored, nor are the reasons behind their success. Deep learning

revived the NN techniques of the 90’s by proving their relevance, by

the availability of very large training databases, by demonstrating

that deeper, i.e., multiple internal layers, and larger NNs can

counter the curse of dimensionality of estimation theory, often

met in ML and DA [14]. On a more technical level, this progress

was critically accompanied by substantial software developments

supported by Google, Facebook, Apache, Nvidia, etc. They propose

open, easily accessible, and fast evolving deep learning libraries to

efficiently implement the new methods on CPUs, GPUs, TPUs, and

mobile/embedded devices. But the key ingredient is the ability of

columns of the atmosphere. See for instance The Frontiers’ Research Topic

Data Assimilation of Non-local Observations in Complex Systems [4].
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these software packages to generate the adjoint of any of the deep

learning models, yielding differentiable models. This capability

allows the generation of any loss function gradient relying on the

NN model. Whether based on graph generation of the codes or

eager execution (less numerically efficient but handling conditional

branching in the code), they offer partial to almost complete

remarkable solutions to the fundamental computational sciences

problem of automatic differentiation. Examples of these tools are

TensorFlow/Keras [15], PyTorch/Lightning [16], Jax [17], numpy,

and autograd [18], which are mainly used on top of python or

entirely new programming languages such as Julia/Flux [19].

In the meantime, over the past 20 years, progress has

been slower in DA applied to the geosciences. Automatic

differentiation was recognized as a critical challenge by this research

community, especially since the advent and the remarkable

success of the 4D-Var method and its implementation at the

ECMWF, Météo-France, the UK MetOffice, Environment Canada,

the Japan Meteorological office, and the Korean Meteorological

Administration [20]. Researchers got help from computer scientists

and experts in automatic differentiation but never got the means

of the aforementioned high-tech companies. Besides, the presence

of numerous physical thresholds (implemented via if statements

in numerical geophysical codes) complicates the task As a

consequence, the generation of adjoints was and can still be limited

to key components of forecasting models and implemented by

hand. This limitation significantly hampered the efforts to optimize

key physical or statistical parameters of the DA and forecasting

systems. Alternatives to variational-based DA methods exist, such

as the ensemble Kalman filter [21–25]. They are excellent for

forecasting but they are limited in their ability with non-linear

higher-dimensional problems, where non-linear gradient-based

optimization is the golden tool. Exceptions are iterative ensemble-

variational techniques thatmimic gradient-based optimization and,

when numerically affordable, particle filters.

Because handling model error is key to making progress in

geofluid forecasting, parameter estimation is also an important area

of geophysical DA (e.g., [26]). Yet, efficient parameter estimation

also relies on the ability to generate the adjoint of the models

(whichever is present in the numerical chain from the parameters

to the observations). Exceptions are some ensemble-variational

techniques (e.g., a comparison of adjoint-based and iterative

ensemble-based DA methods is given in [27]) but they come with

their own problems such as time-dependent localization [28, 29].

As a consequence, efforts were also mitigated by this computer

science issue.

As a result, deep learning techniques were welcomed into

the geosciences. Among the first specialists to experiment with

these techniques were the climatologists. They already have

significant experience, if not advanced expertise in statistics and

more traditional ML techniques. These techniques were applied

to past events, reanalysis, and Coupled Model Intercomparison

Project datasets, with decade-long forecast lead times, in contrast

to the short-term geophysical forecasts where DA is deemed

necessary. It was then proposed to apply advanced ML techniques

to derive parameterizations of physical processes such as subgrid

turbulent physics and convection, which are crucial for both

accurate climate and shorter-term NWP models [30–34]. Over

the past few years, in the realm of NWP and DA applied to the

geosciences, deep learning was also seriously considered, with the

research community shifting gears under ML influence. Obviously,

it was partly due to the computer vision successes and legitimate

exposure of these fashionable techniques. But my take is that

the ML blood flow into NWP and DA is also due to other

fundamental reasons. First, deep learning offers efficient non-

linear regression tools that the DA community craves. Second,

as mentioned earlier, the deep learning libraries offer solutions

to the automatic differentiation core problem of DA, at the very

least wherever NN architectures from these libraries are used, and

with the promise to go beyond with Jax and Julia. Third, the

possibilities offered by the deep learning methods and the related

software freed our minds from many constraints and limitations of

traditional DA-based parameter estimation. We can now attempt

ambitious parameter estimation techniques, i.e., with millions of

parameters non-linearly related to the observations and based on

combined DA and deep learning. Moreover, this endeavor blurred

the lines between NWP DA and ML experts in the geo- and

climate sciences, making the community larger and its impact

deeper with faster communication streams. EvenML/deep learning

specialists from the industry attracted by the challenges of NWP

and climate modeling brilliantly joined the collective efforts (e.g.,

Google, Nvidia, Huawei, and Microsoft [35–40]). Despite these

references and the amazing accurate surrogate skills of their deep

learning weather models, they still crucially rely on re-analysis

data of the ECMWF patiently produced from complex and large

physical models, huge datasets of meteorological observations, and

increasingly sophisticated DA methods to combine them [41].

The following is focused on the recent and ongoing

developments at the intersection of the dynamical systems in

geoscience, DA and ML, that we (R. Arcucci’s team at Imperial

as well as mine) dubbed MLDADS for ML, DA, and dynamical

systems. Despite the appearance of a niche subject, it reinvigorated

past DA and ML open problems and witnessed a significant

blooming of published works in geo- and environmental sciences

(and beyond).

Let us list a few MLDADS opportunities and challenges aiming

to combine DA and ML techniques. Deep learning can help us

with subgrid parameterization as a powerful non-linear regression

tool (e.g., [42, 43]). Most current parameterizations of geoscientific

forecasting models are based on physical models with many tuned

physical parameters. They alternatively rely on linear regressions, as

for instance used in downscaling and upscaling [44]. Deep learning

techniques hence offer more systematic non-linear regression tools

provided that the datasets are large enough.More generally, it could

help us with model error correction of forecasting systems [45–47].

Deep learning could help us build surrogate models of part or the

whole dynamical systems either from pure observations or from

data of high resolution simulations. In the first case, it bypasses the

requirement for physical principles and modeling. In the second

case, it can offer an acceleration to forecasting, or a way to simplify

automatic differentiation of the represented physical model since its

NN counterpart can easily be differentiated [48], or a fast means to

generate ensembles, etc. It can also be a very appealing versatile tool

to help with traditional DA methods, for instance in the tuning of

statistical parameters needed to regularize covariances in ensemble
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DA methods, or help carry out non-linear adaptive transformation

such as DA methods based on Gaussian anamorphosis.3

Creating data-driven surrogate models of low-order models of

geofluids, which aremeant to capture the key difficulties inherent to

high-dimensional numerical models was one of the first objectives

of the research community. There are by the end of 2022, dozens

of ML papers in the literature dealing with the problem of data-

driven surrogate dynamics, even if most of them focus on low-order

models. The problem can be addressed by typical ML techniques,

such as the projection on a regressor frame or basis, random forests,

analogs, diffusion maps, reservoir computing, long short-term

memory NN, and other NN approaches (e.g., [49–59]).

However, most ML techniques assume almost noiseless and

complete observations which are fundamental limitations to

extrapolating them to the geosciences. By contrast, most DA

methods can handle noisy and sparse observations. That is

why surrogate modeling in this context can be tackled using

a conjunction of ML and DA techniques to exploit noisy and

incomplete observations such as those met in realistic geoscience

systems [60–64]. For high-dimensional systems, the relative lack of

information can be mitigated by additionally using past trajectories

or information on the system such as an approximate model

derived from physical laws [65–67].

In a variational context, the mathematical problem of

estimating the dynamical model and the state trajectory can

be framed into a rigorous Bayesian formalism [60–63, 68–70].

Generalizing a classical short-windowDA rational [71] yields a cost

function for variational DA, where ML tools are leveraged upon:

J (p, x0 :K) =

K
∑

k=0

‖yk −H(xk)‖
2
R−1
k

+

K
∑

k=1

‖xk −M(p, xk−1)‖
2
Q−1
k

,

(1)

where xk 7→ H(xk) is the observations operator at time k,

xk 7→ M(p, xk) is the resolvent of the statistical dynamical model,

typically a NN with weights and biases stacked in the p vector;

the yk and xk for k = 0, . . . ,K are the observation and the

state vectors of the physical system over the time interval [0,K],

respectively. ThematricesRk andQk are the observation andmodel

error covariance matrices, respectively. The background term

−2 ln p(p, x0), which corresponds to the prior density function on

the initial condition x0 and the parameters p, is neglected here for

the sake of simplicity. Besides, the sensitivity to x0 vanishes in the

large K limit for chaotic dynamics, a standpoint at variance with

classical DA where K is small and regularization of p is usually

addressed via a stopping criterion built on the validation loss

and dropout layers (although a Tikhonov term is also sometimes

summoned). Accounting for this approximation, J is given up to

terms that do not depend on p and xk.

This cost function is rigorously obtained from Bayes’ rule under

Gaussian assumptions on some of the errors of the problem. This

resembles a typical weak-constraint 4D-Var cost function [72]. This

DA standpoint is remarkable as it allows for noisy and partial

observations of the physical system, whereas most ML approaches

do not account for this significantly noisy and partial data. Note

that the solution of this problem is a trajectory x⋆
0,K for the state over

3 Daisuke Hotta, communication at ISDA online 2021.

the time interval, a deterministic NN model parameterized by p⋆,

and a stochastic correction over the deterministic surrogate model,

whose predefined statistics is normal with model error covariance

matrix Qk. It is possible to partially estimate this stochastic

correction through the expectation-maximization algorithm (see

[62, 73, 74]).

Let us assume that the dynamics to be learned fully and directly

observed, i.e., Hk ≡ I, and that the observation errors vanish,

i.e., Rk → 0. Then the observation term in the cost function

gets frozen and imposes that xk ≃ yk, so that, in this limit,

J (x0 :K , p) becomes

J (p) =

K
∑

k=1

‖yk −Mk

(

p, yk−1

)

‖2
Q−1
k

. (2)

This cost function coincides with a typical ML loss function

providedQk ≡ I.

Note that it is also possible to accomplish the same goal of

joint estimation using ensemble-based DA methods [75, 76]. It

then appears as a much more ambitious parameter estimation

problem than in traditional DA. It has however a potentially higher

numerical complexity than the variational approach. In particular,

the size of the ensemble may have to match the number of global

parameters plus the number of a single copy of the local parameters,

in addition to careful use of localization to regularize ensemble-

based covariances.

3. Perspectives

Let us discuss a selection of important open questions of

the domain.

3.1. Physical and statistical hybrid models
and their resolvent vs. tendency corrections

Learning the full dynamics of the atmosphere or the ocean, not

to mention a holistic Earth systemmodel from pure observations to

build a surrogate dynamical model could be possible but would not

yet compete with state-of-the-art physical models. An intermediate,

reasonable step would be to use a hybrid representation of the

dynamics. In this framework, the statistical data-driven model

is a correction to a well-tuned physical numerical model [65,

66, 77, 78]. For instance, the partial differential equations of

the physical model could be corrected, i.e., the tendencies using

NWP terminology:

dx

dt
= ϕ(x)+ n(p, x), (3)

where x 7→ ϕ(x) is the physical tendency and x 7→ n(p, x) is the

tendency correction. Alternatively, one could correct the resolvent

which would be a substitute for the statistical model in the cost

function J (p, x0 :K):

xk+1 = M(p, xk) = 8(xk)+N (p, xk)

= xk +

∫ tk+1

tk

[

ϕ(x(t)) + n(p, x(t))
]

dt, (4)
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FIGURE 1

Schematic of the coordinate descent alternating DA and ML which aims to minimize J (p, x0,K ) and is expected to converge to the maximum a
posteriori estimator. ϕ represents the physical model, η is the deep learning model that depends on parameters p, and ϕ ⊕ η(p) is the hybrid model.

where x 7→ 8(x) is the resolvent obtained from the physical model

whereas x 7→ N (p, x) is the corrective statistical model. When

possible, this hybrid formulation has the key advantages of (i)

limiting the number of NN parameters, (ii) providing the learning

step with the physical model as a first guess, and consequently

(iii) accelerating the learning step. Hence, this approach has been

favored in several recent and ambitious surrogate models. One

potential issue can appear if the adjoint of the physical model is not

available. In that case, the tendencies cannot be learned through

non-linear optimization; only the resolvent approach would be

easily implementable since it would not require the physical model’s

adjoint. In both cases, the NN correction’s adjoint is obtained by

automatic differentiation. These options for learning corrections of

chaotic models are still largely unexplored.

Finally, note that surrogate modeling of geofluids has a lot of

connections with, and could gain from recent surrogate modeling

endeavors, in computational fluid dynamics and engineering (e.g.,

[79–82]).

3.2. MLDADS optimization system

An algorithm proposed to minimize J (p, x0 :K) as defined in

Equation (1), on both the state trajectory and the statistical NN

model parameters consists of iteratively (i) estimating the state

trajectory using classical DA methods with (ii) optimizing the NN

parameters usingMLmethods [61]. This is illustrated in Figure 1. A

DA smoother (e.g., 4D-Var, ensemble-based smoothers) is typically

used in the DA step while deep learning is used in the ML step. This

has been reckoned mathematically as a coordinate descent for non-

linear optimization, with iterations of the loop until convergence

[62]. Moreover, it has been demonstrated to be successful with

low-order models [62]. Nonetheless, this could seem numerically

costly for higher dimensional problems, such as NWP, so that

one should first focus on the first half steps of this loop. In this

framework, traditional DA can be considered as order–1/2 of the

loop, while order–1, i.e., DA followed by ML has been studied

in [78] and coincides with model error correction using analysis

increments of DA runs. Note that the notation order–1/2 merely

means that DA only represents half of the loop, the first step out

of two in the surrogate model estimation. This has the potential

to be used in an NWP context, since the analysis increments

are natural outputs of operational DA. Order–3/2 consists in

additionally using the NN model error correction of the order–

1 loop to improve NWP based on DA with an improved forecast

model [78]. This in turn means uncovering a state trajectory

closer to the true one which, in realistic conditions, cannot be

accessed directly since the observations are both sparse and noisy.

It certainly remains to implement these in an NWP framework. If

order–2 (and beyond) has been proven to be consistent and have a

lot of potential for low-order models [62], it would be interesting

to demonstrate this potential with higher dimensional models and

NWP. This entails a second application of ML, and hence obtaining

a more accurate surrogate model or model error correction in

the hybrid case. Nonetheless, this is expected to be a significant

numerical challenge.

One idea would be to skip the estimation of the state trajectory,

or marginalizing it out, and hence to compute the sensitivity

of the observations with respect to the parameters directly. This

idea is put forward by the Ensemble Kalman Inversion technique

[83] and has been experimented with but on a small number

of parameters [84]. It remains to be investigated whether the

method can be applied to larger sets of parameters, or even deep

learning NNs. This approach would likely call for model reduction,

explicitly or implicitly, which would be implemented by deep

learning.

Figure 2 illustrates learning the dynamics of the global

atmosphere from the ERA5 dataset [41]. We used the setup,

data, and ECMWF Integrated Forecasting System model runs

provided by the WeatherBench platform [85]. A residual deep

NN model of about 1.5 × 106 parameters is learned from 38

years of meteorology at coarse 5.625◦ × 5.625◦ spatial resolution.

This surrogate model is independently tested on the years 2017–

2018 over many forecast runs, on the 500 hPa geopotential fields

using the root mean square error (RMSE) and the auto-correlation

(ACC), as functions of the forecast lead time up to 14 days.

The surrogate model uses 3 levels of geopotential and 3 levels

of temperature. Its forecast skill is compared to global and daily

climatologies, to the persistence model, and to the ECMWF model

at truncation T42 (about 2.8◦ grid-cell at the equator). We observe

that in spite of its coarser resolution (about T21 truncation),

the surrogate model outperforms the ECMWF model at T42

projected on T21. The shades around the skill curves represent

the variability of the forecast scores induced by the variability of

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1133226
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Bocquet 10.3389/fams.2023.1133226

FIGURE 2

RMSE (top) and ACC (bottom) for the 500 hPa geopotential predicted by the learned neural network model that simulates weather at coarse
resolution, and comparison to uniform and daily climatologies, persistence, and the ECMWF model forecasts at T42 (see text for details).

the ERA5 meteorology over the test years 2017–2018, which is in

turn mostly decided by the distribution of initial states on (part

of) the current attractor of the chaotic dynamics and by forcings

(radiation, ocean). They were obtained by running 5, 000 forecasts

in the test period starting from as many distinct initial conditions

and computed from the dispersion of this ensemble of forecasts.

Provided the surrogate model is a good enough representation

of the truth, this variability is not expected to depend much on

the surrogate model solution, since it is mainly driven by the

dynamics.4 Surprisingly, this uncertainty (or risk of the forecast

scores) is usually not provided in the ML surrogate modeling

literature, where the focus is only on deterministic forecasts without

their uncertainty.

4 In particular, this variability is not the uncertainty attached to the learning

process from the dataset. However, it shows how easy it is to pick initial

conditions with flattering forecast scores.

Among the fundamental open problems in combining DA

with ML is the ability of the ML+DA schemes to assimilate

fresh observations. Upon receiving them, one would update our

knowledge of not only the state and possibly a few physical

model parameters (as in classical DA) but would also update any

neural network used within the sequential algorithm, whether

it is related to correcting the evolution model, the observation

model, or any block of the assimilation scheme itself. In other

words, one wishes to obtain from online/sequential ML+DA

algorithms what has been achieved in offline variational ML+DA.

This challenge has been explored with low-dimensional to

intermediatemodels with ensemble Kalman filters [75, 76] and with

variational schemes [67, 78] where the model (or a compartment

thereof) and the state trajectory were both updated when new

observations are acquired. We expect this topic to thrive in

the coming years since (i) it aligns with the conditions of

operational forecasting centers, (ii) it proposes algorithms for
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incremental learning over very long periods of time where data are

generated/acquired, and since (iii) later observations better capture

the current trends in a time-dependent model in the context of

climate change.

A more systemic approach to applying ML tools on DA is to

learn the DA scheme itself. This clearly requires that the building

blocks of the DA scheme be differentiable so that gradients with

respect to the outputs of the DA scheme, typically the analysis

products, could be efficiently computed [86–88]. Such a typical

holistic approach has been coined end-to-end in ML. Learning the

output of a local ensemble Kalman filter in conjunction with the

intermediate global circulation model SPEEDY was proposed very

early [89, 90]. A radically different approach consists in optimizing

the internal cogs of DA schemes by finding an efficient latent space

representation for either the ensemble Kalman filter [91–94] or

the variational schemes [95]. One can also try to learn the solvers

of, for instance, variational schemes since these are critical to the

DA analysis and its numerical efficiency and cost [96, 97]. Beyond

supplementing ML techniques to DA schemes as was originally

proposed, one may further replace key components of the DA

scheme with advanced NNs such as transformers and multi-headed

attention [98]. Possibilities of combining ML and DA from this

end-to-end standpoint seems endless as hinted at by the previous

examples. But the existence of a more powerful, unifying and

enlightening way to do so is still to be investigated.

3.3. Uncertainty quantification

Uncertainty quantification, i.e., the ability to quantify the

confidence we have in one of our statistical estimator, is in

the genes of DA and NWP. In particular, most DA methods

have an underlying Bayesian rationale that helps to formalize or

connect to uncertainty quantification. Ensemble Kalman filtering

and ensemble-variational methods in geoscience are based on an

ensemble of states, or state trajectories because ensembles provide

an estimate of the uncertainty of the state trajectory through the

ensemble spread and other empirical moments. The confidence

in weather forecasts is assessed with ensemble forecasts which

could be initialized with the ensemble from an ensemble Kalman

filter [99]. However, uncertainty quantification with variational DA

methods is challenging since it requires estimating a Hessian in

high dimension, which is a dreadful task. There are nowadays

several methods meant to address this, such as an ensemble of

DA for sequential DA [100, 101], approximating the Hessian of

cost functions [102], or randomized singular value decomposition

[103, 104]. Finally, model error estimation is one of themost critical

issues of DA in geoscience [115, and references therein].

For the same reason, uncertainty quantification in basic ML

is far from natural and simple. Besides, it does not have the same

rigorous basis as in DA despite seminal papers that paved the way

(e.g., [105, 106]) but were insufficiently followed. However, a wealth

of solutions have been proposed, most of them unsatisfactory

in view of the standards of uncertainty quantification. Some of

them underwent a preliminary investigation in geoscience. First

of all, learning models from several random initializations of

the weights and biases and from distinct randomization of the

data, hence generating a deep ensemble, yields some measure of

uncertainty quantification for the statistical model per se and its

internal parameters through e.g., generating an ensemble of model

variants [107]. But this quantification is unlikely to match, or

even target, the uncertainty of surrogate model estimates. Indeed,

those perturbations of the weights and biases are not sampled

according to their conditional likelihood. Dropout layers are used

as a regularization scheme which, through the increased robustness

to noise in the NN, mitigates overfitting. Optimizing these layers

is a priori used in the learning step while they are kept frozen in

the inference (i.e., the forecasts). Yet, again, the technique should

in general fail to target the uncertainty of the estimate [108].

Additionally, stochasticity can be introduced again in the forecasts

to build an ensemble [107, 109, 110]. Whether this generated

ensemble is a proper quantification of uncertainty is however

questionable. Alternatively, one can try to augment the NN and

predict statistical hyperparameters such as the standard deviation

of the variable estimates, or some parameters of their a priori

statistics. This is reminiscent of variational auto-encoders where

the hyperparameters nonetheless lie in the bottleneck layer. Yet,

such an approach is much more difficult to train [111]. Indeed,

those hyperparameters would be at the second level in a Bayesian

hierarchy and requires more testing and investigations. At the

first hierarchy level, the NN could output biases [112]. Another

approach consists of estimating probability density functions of

some of the output variables (marginals), using a softmax layer

for a categorical output of the density or a convolutional layer

for a continuous density [110]. More generally, one could account

for the weights uncertainty by including them as part of the

outputs, using Bayes’ rule, an approach even closer to the principles

of DA. These NNs are Bayesian neural networks [113]. Even

though basic ML does not genuinely account for uncertainty, it

is hoped that the flexibility of deep learning will allow designing

augmented architectures that address uncertainty quantification.

Yet, the subject remains in its infancy in ML. It could benefit

from the seminal papers of the field [105, 106] and from the

expertise developed on Bayesian uncertainty quantification within

geophysical and in particular meteorological DA. Finally, let us

highlight out that the subject is complementary to all of the topics

mentioned in Section 3.2.

4. Final thoughts

In the previous section, a few key MLDADS challenges have

been examined. The field is nonetheless evolving very fast. So where

does this lead us?

I believe supplementing DA with the power of ML tools is

already a success and, as a topic, should continue to thrive for many

years, boosting DA research, with still many applications to explore.

Furthermore, the DA+ML topic may not have clear boundaries yet;

the merging of DA and ML is at the beginning.

On the one hand, model error correction and surrogate

modeling, which is at the core of MLDADS, undergo much faster

progress than when they were only addressed by pure DA and

dynamical systems techniques. On the other hand, they rely on

either high-resolution simulations of existing models or from re-

analysis, a product of DA techniques, observation, and numerical

modeling. As recently proven by the industry artificial intelligence

research teams and others, the potential of surrogate modeling for
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short-termmeteorological forecasting is extraordinary but critically

relies on the modelers’ expertise through the reanalysis products.

That is why a long-term challenge in the geoscience domain is to

build surrogate models from large database of observations only,

without relying on physical and numerical expertise which, for

now, remains critical.

Moreover, the potential of such dynamical surrogate modeling

for longer time-scales, i.e., for climate modeling, is far from

established and the topic is nascent (e.g., [114]). Accounting for

slow-evolving trends and limited time reanalysis data from a

climate standpoint as opposed to numerical weather prediction, is

likely to make the surrogate and model error correction challenges

quite difficult.
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