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Recently, a noninformative prior distribution that is di�erent from the Je�reys prior

was derived as an extension of Bernardo’s reference prior based on the chi-square

divergence. We summarize this result in terms of information geometry and clarify

some geometric properties. Specifically, we show that it corresponds to a parallel

volume element and can be written as a power of the Je�reys prior in flat model

manifolds.
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1. Introduction

The problem of noninformative prior in Bayesian statistics is to determine what kind of

probability distribution (often called a noninformative prior or an objective prior) is desirable

on a statistical model in the absence of information about the parameters. In theory, though

not in practice, it is essentially a problem of small-sample statistics, which has been under

consideration for a long time [1–4].

Theoretical research on noninformative priors dates back to Jeffreys [3], and currently,

a noninformative prior proposed by him, called the Jeffreys prior, is the standard

noninformative prior. Theoretical justification of the Jeffreys prior comes from the theory

of reference priors, which were originally proposed by Bernardo [5] decades ago when

considering the maximization of the mutual information between the parameter and the

outcome. Many related studies in this direction have since been reported [for review, see,

e.g., Berger et al. [6]].

On the contrary, there are several criteria for considering noninformative priors.

For example, Komaki [7, 8] has proposed objective priors to improve the performance

of Bayesian predictive densities. Some significant results were presented by his co-

workers, including the author [e.g., noninformative priors on time series models have been

proposed [9, 10]]. From the viewpoint of information geometry, Takeuchi and Amari [11]

proposed an α-parallel prior. For a recent review of other noninformative priors, see, e.g.,

Ghosh [12].

Recently, considering a certain extension of Bernardo’s reference prior, Liu et al. [13]

showed that a prior distribution different from the Jeffreys prior can be derived. Since it

is based on the chi-square divergence, we call it χ2-prior for convenience. Apart from the

Jeffreys prior, the geometric properties of χ2-prior are yet to be discussed.

In the present study, we investigate the derivation by Lie et al. of χ2-prior from the

viewpoint of information geometry. We put emphasis on the invariance of the theory under

reparametrization (coordinate transformation in differential geometry). While we follow

their derivation, we rewrite the asymptotic expansion in geometric terms, which makes the

problem easier to understand. We also derive the tensor equations that χ2-prior and an
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α-parallel prior satisfy. As a consequence, we find that χ2-

prior agrees with an α-parallel prior for α = 1
2 , i.e., the

1
2 -parallel prior.

Basic definitions and notation are given in Section 2. We

also review some noninformative priors in terms of information

geometry. In Section 3, we rewrite the asymptotic expansion by Liu

et al. [13] in geometric terms to simplify their argument. In Section

4, we briefly review α-parallel priors, clarify a relation between χ2-

prior and α-parallel prior, and derive a formula of an α-parallel

prior in γ -flat models. Finally, concluding remarks are given in

Section 5.

2. Preliminaries

We briefly review some definitions and notation of information

geometry [for details, refer to textbooks on information

geometry [14, 15]]. We also review some noninformative

priors in terms of information geometry.

For a given statistical model, we would like to consider

noninformative prior distributions defined in a manner

independent of parametrization. For this reason, it is convenient

to introduce differential geometrical quantities into our discussion,

i.e., to consider them from the viewpoint of information geometry.

2.1. Basic definitions of information
geometry

Suppose that a statistical model M = {p(x; θ) : θ ∈ 2 ⊂
R
p} is given, which is regarded as a p-dimensional differential

manifold and called a statistical model manifold (though it will be

called simply a model where no confusion is possible). As usual, all

necessary regularity conditions are assumed.

We also define the Riemannian metric and affine connections

on the manifold M. Let l = log p(x; θ) denote the log-

likelihood function.

Definition 1. The Riemannian metric gij = g(∂i, ∂j) is defined as

gij = E[∂il∂jl],

where ∂il = ∂ l
∂θ i

= ∂ log p(x;θ)
∂θ i

and E[·] denotes expectation with

respect to observation x. The above quantities are also called the

Fisher information matrix in statistics. Thus, we often call the above

metric the Fisher metric.

The statistical cubic tensor and the coefficients of the e-

connection are defined as

Tijk = E[∂il∂jl∂kl],

(e)
Ŵ ij,k = E

[
∂i∂jl∂kl

]
.

Definition 2. For every real α, p3 quantities

(α)
Ŵ ij,k =

(e)
Ŵ ij,k +

1− α
2

Tijk

define an affine connection, which is called the α-connection.

We identify an affine connection with its coefficients below.

Connection coefficients with upper indices are obtained by

(e)
Ŵ

k
ij =

(e)
Ŵ ij,l g

lk,

(α)
Ŵ

k
ij =

(e)
Ŵ

k
ij +

1− α
2

Tijlg
lk,

where gij is the inverse matrix of the Fisher metric gij, and we

have used Einstein’s summation convention [see, e.g., Amari and

Nagaoka [14] for details].

Conventionally, when α = 1, we call it the e-connection and

when α = −1, we call it the m-connection and denote it as
(m)
Ŵ ij,k, i.e.,

(m)
Ŵ ij,k=

(e)
Ŵ ij,k +Tijk.

It is well-known that α-connection and −α-connection are

mutually dual with respect to the Fisher metric. (In a Riemannian

manifold with an affine connection Ŵ, another affine connection

Ŵ∗ is said to be dual with respect to Ŵ if it satisfies ∂kgij = Ŵki,j +
Ŵ∗
kj,i
. For equivalent definitions, see, e.g., Amari and Nagaoka [14],

Chap. 3.) When α = 0, the self-dual connection is called the

Levi-Civita connection, which defines a parallel transport that keeps

the Riemannian metric invariant. The Levi-Civita connection is

defined by the sum of the partial derivative of the metric, and its

explicit form is given by

(0)
Ŵ ij,k =

(e)
Ŵ ij,k +

1

2
Tijk =

1

2
(∂jgki + ∂igkj − ∂kgij). (1)

2.2. Useful identities for alpha-connections

In the present study, the following identities are useful. They

are obtained in a straightforward manner; thus, their proofs

are omitted.

Lemma 1. Letmijk = E[∂i∂j∂kl]. Then,

mijk = −∂igjk−
(e)
Ŵ jk,i,

and

∂kgij =
(e)
Ŵ ki,j +

(e)
Ŵ kj,i +Tijk,

=
(e)
Ŵ ki,j +

(m)
Ŵ kj,i .

hold.

The first equation yields relation (Equation 1). The last

equation shows the duality of e- and m-connections directly and

is generalized to±α-connections.

Lemma 2. For mutually dual connections, the following identities

hold.

∂kgij =
(α)
Ŵ ki,j +

(−α)
Ŵ kj,i, (2)

(α)
Ŵ ki,j −

(−α)
Ŵ ki,j = −αTkij. (3)
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Using Lemma 1 and Equation (1), we obtain the Bartlett

identity, which is well-known in mathematical statistics.

Lemma 3. For mijk,Tijk, and, the first derivative of Fisher metric,

gij, the following holds.

mijk =
1

2

(
Tijk − ∂kgij − ∂jgik − ∂igjk

)
. (4)

2.3. Prior distributions and volume
elements

In Bayesian statistics, for a given statistical model M, we need

a probability distribution over the model parameter space, which is

called a prior distribution, or simply a prior. We often denote a prior

density as π (π(θ) ≥ 0 and
∫
2
π(θ) θ = 1).

A volume element on a p-dimensional model manifold

corresponds to a prior density function over the parameter space

(θ ∈ 2 ⊂ R
p) in a one-to-one manner. For a prior π(θ), its

corresponding volume element ω is a p-form (differential form of

degree p) and is written as

ω = π(θ)dθ1 ∧ · · · ∧ dθp

in the local coordinate system.

For example, in two-dimensional Euclidian space (p = 2), the

volume element is given by ω = dx ∧ dy in Cartesian coordinates

(x, y). In polar coordinates (r, θ), it is written as ω = rdr ∧ dθ .

Then, under the coordinate transformation θ → ξ , how do

the probability density on the parameter space and its ratio change?

From the formula for the p-dimensional volume element, it is

written as

π(ξ ) = π(θ)

∣∣∣∣
∂θ

∂ξ

∣∣∣∣ , (5)

where
∣∣∣ ∂θ∂ξ

∣∣∣ denotes the Jacobian. In differential geometry, such

quantities are called tensor densities.

From the above Equation (5), we see that the ratio

of two probability densities, say π1(θ)
π2(θ)

, is invariant

under reparametrization.

2.4. Noninformative priors defined by
equations

We briefly summarize some of the prior studies on

noninformative priors in Bayesian statistics. Basically, a

noninformative prior is often defined as the solution of a

partial differential equation (PDE) derived from fundamental

principles. If it is independent of parametrization, then it usually

has a geometrical meaning. The defining equation itself is expected

to be invariant under every coordinate transformation.

2.4.1. Tensor equations
Before proceeding, we briefly review the definition of tensor on

a manifold [for strict modern definitions, see, e.g., Kobayashi and

Nomizu [16], Chap. 1].

For simplicity, we assume that the manifold admits global

coordinates 2, and each point is specified by θ . We fix some

nonnegative integers r and s. Suppose that a set of pr+s functions

of the parameter θ

Ab1...bs
a1...ar

(θ), a1, . . . , ar; b1, . . . , bs = 1, . . . , p

is given, and these functions also have a representation in a

different coordinate system, say ξ . Suppose they satisfy the

following equation:

Ãβ1...βsα1...αr
(ξ ) = 3̃a1

α1
. . . 3̃ar

αr
3
β1
b1
. . . 3

βs
bs
Ab1...bs
a1...ar

(θ),

where3
β

b
= ∂ξβ

∂θb
denotes the Jacobi matrix and 3̃a

α = ∂θa

∂ξα
denotes

the inverse. Then these functions are called a type (s, r) tensor field,

or simply a tensor.

Some specific types have established names. For example, a type

(0, 0) tensor is called a scalar (field) and a type (1, 0) tensor is called

a vector (field). In particular, the ratio of two prior densities is a

scalar. For a differential one-form, which is written as A = Ajdθ
j,

the set of components Aj is regarded as a contravariant vector [type

(0, 1) tensor].

For a type (s, r) tensor A, which often includes a derivative,

we refer to an equation like A = 0 as a tensor equation. Usually,

such a tensor A is derived using some differential operators, and

the component-wise form yields a PDE. The component-wise form

is given as

Ab1...bs
a1...ar

(θ) = 0, a1, . . . , ar; b1, . . . , bs = 1, . . . , p.

By definition, tensor equations are invariant under coordinate

transformation (reparametrization). When we show that

A
b1...bs
a1...ar (θ) = 0 for one coordinate system, say θ , then, for

another coordinate system, say ξ , due to multilinearity,

Ã(ξ )β1...βsα1...αr
= 3̃a1

α1
. . . 3̃ar

αr
3
β1
b1
. . . 3

βs
bs
A(θ)b1...bsa1...ar

= 0

holds. Tensor equations are often written in the form A = B.

2.4.2. Noninformative priors
Now let us explain about noninformative priors [see, e.g.,

Robert [4] for more details]. As mentioned before, we need to set

a prior distribution over the parameter space for a given statistical

model in Bayesian statistics. If we have certain information on the

parameter in advance, then the prior should reflect this, and such

a prior is often called a subjective prior. If not, we adopt a certain

criterion and use a prior obtained through the criterion. Such priors

are called noninformative priors.

The definition of a noninformative prior, which is often written

as a PDE, should not depend on a specific parametrization (a

coordinate system of the model manifold). If we claim to have no

information on the parameter, then we do not determine which

parametrization is natural. Based on this viewpoint, we take several

examples of noninformative priors defined through a PDE with a

certain criterion. Some equations defining a noninformative prior

are not tensor equations and their solutions, that is, noninformative

priors, do not satisfy the equation in another coordinate system.
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2.4.3. Uniform prior
The uniform prior πU (θ) over the parameter space 2 would

be the most naive noninformative prior. This idea dates back to

Laplace and has been criticized [3]. The uniform prior is given by a

solution of the following PDE:

∂

∂θ i
logπ(θ) = 0. (6)

Clearly, the above PDE (Equation 6) is not a tensor equation. In

other words, it is not invariant under reparametrization. While the

solution for the original parameter θ is constant, πU (θ) ∝ 1, the

solution for another parameter ξ is obtained by

π̃U (ξ ) = πU (θ)
∣∣
θ=f (ξ )

×
∣∣∣∣
∂θ

∂ξ

∣∣∣∣ =
∣∣∣∣
∂θ

∂ξ

∣∣∣∣ .

Thus, the final form does not satisfy the PDE (Equation 6) for ξ

any more. That is,

∂

∂ξα
log π̃U (ξ ) 6= 0.

2.4.4. Je�reys prior
Let us modify the above PDE (Equation 6) slightly so that it

is invariant under coordinate transformation. Thus, we obtain the

following PDE:

∂

∂θ i
log{π(θ)/√g} = 0, (7)

where g denotes the determinant of the Fisher metric. The solution,

which is given as a constant times
√
g, is called the Jeffreys prior [3].

It is the most famous noninformative prior in Bayesian statistics.

Let πJ(θ)(∝
√
g) denote the Jeffreys prior from here on. It is the

straightforward extension of the uniform prior.

As Jeffreys himself pointed out, it is not necessarily reasonable

to adopt the Jeffreys prior as an objective prior in a higher

dimensional parametric model. This is one of the reasons to

propose noninformative priors under a fundamental criterion [see,

e.g., Robert [4] and references therein].

Note that the following identity for the Riemannian metric

tensor will be useful:

∂i logπJ =
1

2
∂i log g,

= 1

2
gjk∂igjk. (8)

2.4.5. First moment matching prior
The moment matching prior was proposed by Ghosh and

Liu [17]. From the original article, we obtain a PDE in terms of

information geometry.

Theorem 1. Ghosh and Liu’s moment matching prior is given by

the solution of the following PDE:

∂i log

(
π(θ)

πJ(θ)

)
− 1

2
gjk(θ)

(e)
Ŵ jk,i (θ) = 0.

From the aforementioned form, it is clearly not a

tensor equation, and thus, the PDE is not invariant under

reparametrization. Indeed, while the first term of the LHS is a (0, 1)

tensor, the second term is not.

Proof. First, from the formula in Ghosh and Liu [17] (Section 3,

p. 193), we obtain

n(θ̂mπ − θ̂mML) =
(
Um + 1

2
Vm

)
+ oP(1),

where θ̂mML and θ̂mπ are the MLE and the posterior mean of θ ,

respectively, Um = gml∂l logπ and Vm = gmlgjkmljk. Therefore,

the condition of the first moment matching is given by

Um + 1

2
Vm = 0.

Multiplying both sides with Fisher matrix gim, we obtain an

equivalent equation as follows:

∂i logπ + 1

2
gjkmijk = 0.

Therefore, using Lemma 1 and Equation (8), we obtain

∂i logπ = −1

2
gjkmijk

= −1

2
gjk

(
−∂igjk−

(e)
Ŵ jk,i

)

= ∂i log
√
g + 1

2
gjk

(e)
Ŵ jk,i .

Since we may replace
√
g with πJ in the last expression, we can

obtain

∂i log(π/πJ)−
1

2
gjk

(e)
Ŵ jk,i= 0.

Remark 1. For the exponential family with the natural parameter

θ , it is known that
(e)
Ŵ jk,i≡ 0. When all connection coefficients

vanish, the coordinate system is called affine. In this sense, the

natural parameter is called the e-affine coordinate. From the above

equation, in this parametrization, the moment matching prior

agrees with the Jeffreys prior. However, if we begin with a different

parametrization, then we obtain a prior which is different from the

Jeffreys prior. As a specific example, let us consider the binomial

model with the success probability η (0 < η < 1) in Ghosh [12]

(Section 5.2, p. 199). Thereafter, the moment matching prior for η

is given by πM(η) ∝ η−1(1 − η)−1. However, taking the natural

parameter θ = log
(
η/(1− η)

)
, the moment matching prior for θ

is given by the Jeffreys prior, πJ(θ) ∝ eθ/2(1+ eθ )−1. It is rewritten

as πJ(η) ∝ η−1/2(1− η)−1/2, which is different from πM(η).

2.4.6. Chi-square prior
Liu et al. [13] developed an extension of the reference prior

by replacing the KL-divergence in the original definition with the

general alpha-divergence. As an exceptional case, we obtain a prior

which is different from the Jeffreys prior. The PDE is given by

∂i log

(
π(θ)

πJ(θ)

)
= −1

4
Ti, (9)
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where Ti = Tijkg
jk is a type (0, 1) tensor. Thus, the above PDE

is a tensor equation. Its derivation and details are explained in the

next section.

Definition 3. [Liu et al. [13]]. If the PDE (Equation 9) has a

solution, then we call the prior distribution χ2-prior. We denote

χ2-prior as πχ2 .

As we will see later, πχ2 does not necessarily exist. However,

usual statistical models satisfy a necessary and sufficient condition

for the existence of πχ2 . These models are invariant under

coordinate transformation.

3. Derivation of chi-square prior in
terms of information geometry

Liu et al. [13] derived the PDE (Equation 9) that πχ2 should

satisfy by considering the maximization of a functional of a prior

π based on χ2-divergence. In the present section, we review

their result and rewrite the functional in terms of information

geometry. As a result, we obtain a more explicit form and a better

interpretation of the maximization.

3.1. Extension of the reference prior

As an underlying principle, Bernardo [5] adopted

construction of the minimax code in information theory to

derive noninformative priors. After that, the noninformative prior

is defined as the input source distribution that maximizes the

mutual information between the parameter and the outcome.

This prior is called a (Bernardo’s) reference prior. Under some

conditions, his idea has been strictly formulated by several

authors [18, 19] (for a review, see, e.g., Berger et al. [6]).

In one of the many studies and variants of reference

priors, recently Liu et al. [13] adopted the α-divergence instead

of the KL-divergence in Bernardo’s argument and obtained a

generalized result.

Definition 4. Let p(x) and q(x) be probability densities. For a fixed

real parameter α, the α-divergence from p to q is defined as

Dα(p; q) =
1

α(1− α)

{
1−

∫
p(x)αq(x)1−αdx

}
(≥ 0). (10)

Remark 2. In the textbook on information geometry by Amari

[20], the following parametrization is used because of the emphasis

on the duality:

D̃β (p; q) =
4

1− β2
{
1−

∫
q(x)

1+β
2 p(x)

1−β
2 dx

}
, (11)

where we write β instead of α. We adopt the parametrization of α in

Equation (10). For example, χ2-divergence corresponds to α = −1

in Equation (10) and β = 3 in Equation (11). More explicitly, the

relation α = 1−β
2 (and thus, 1− α = 1+β

2 ) holds.

When α = 0, 1, taking the limit, the α-divergence reduces to

the KL-divergence.

Now, let us see the definition of the noninformative prior

proposed by Liu et al. [13]. Under regularity conditions (e.g.,

the compactness of the parameter space 2), they considered the

maximization of the following functional of a prior density π

as follows:

J[π] =
∫

E
[
Dα

(
π(·);π(·|X)

)
| θ

]
π(θ)dθ , (12)

where E[·|θ] denotes expectation with respect to p(X|θ), and the

expression emphasizes that the parameter θ is fixed in the integral.

Under their criterion, the maximizer of J[π] is adopted as a

noninformative prior.

Following Liu et al. [13], we rewrite the above

functional Equation (12) in a more simple form as follows:

α(1− α)J[π] = 1−
∫

E
[
π(θ |X)−α | θ

]
π(θ)α+1dθ .

Depending on the sign of α(1 − α), our problem reduces to

maximization or minimization of the expectation E[π(θ |X)−α| θ].
Clearly, it is not solved explicitly for general cases. Thus, as usual,

we adopt the approximation of the expectation term under the

assumption that X = (X1, . . . ,Xn)
i.i.d.∼ p(x|θ) with n → ∞.

3.2. Asymptotic expansion of the
expectation term

Except for α = −1 (χ2-divergence), the maximization of J[π]

reduces to that of the first-order term in the following expansion

(Theorem 2), which yields the Jeffreys prior for −1 < α < 1.

However, for χ2-divergence, we need to evaluate the second-order

term since the first-order term is constant.

First, we present a key result in Liu et al. [13]. Some notation

in their result follows ours. For example, the Fisher information

matrix and its determinant are denoted as gij and g, respectively.

The dimension of the parameter θ is denoted as p. Please refer to

the original article for technical details.

Theorem 2. [Liu et al. [13], Theorem 3.1] The expectation term

E[π(θ |X)−α | θ] in the functional J[π] can be rewritten as

E[π(θ |X)−α| θ] = (2π)pα/2n−
pα
2 g−

1
2 α(1− α)−

p
2

[
1+ 1

n

{
· · · + s(θ)

}
+ o(n−1)

]
,

where the 1/n part in braces {· · · } is given by

α

1− α ∂jg
ij · ∂i logπ + −α2

2(1− α) g
ij 1

g
∂jg ∂i logπ

− α2

2(1− α)mijk(∂l logπ)g
ijgkl

− α

2
gij∂i logπ · ∂j logπ + 2α − α2

2(1− α) g
ij ∂i∂jπ

π
+ s(θ).

The last term s(θ) does not include the prior density π .

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1141976
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Tanaka 10.3389/fams.2023.1141976

From Theorem 2, for a positive constant Cn and a sufficiently

large n, the functional Equation (12) is approximated by

α(1− α)J[π] ≃ 1− Cn

∫
g−

1
2 απα+1dθ .

When −1 < α < 1, the maximization yields π ∝ g
1
2 , that

is, the Jeffreys prior. When α < −1, rather, the Jeffreys prior

minimizes the functional J[π].

However, at the boundary point α = −1 (χ2-divergence), the

above first-order term becomes a constant independent of π . In this

case, we need to evaluate the second-order term more carefully.

3.3. Rewriting Liu et al.’s Theorem 3.1 in
geometrical terms

Now let us rewrite the second-order term of the asymptotic

expansion in Theorem 2 in terms of information geometry. We

fix α = −1, and from here on, consider only the case for χ2-

divergence.

Although our approach differs from that in the original article,

the final PDE agrees with their result. The difference and our

contribution are discussed in the next subsection.

We summarize how we rewrite each term to obtain the final

result (Theorem 3) later. First, we rewrite
∂i∂jπ

π
by using the

following relation:

∂i∂jπ

π
= ∂i∂j logπ + ∂i logπ · ∂j logπ .

After that, we replace a prior density π with the density ratio

h = π/πJ , where πJ =
√
g. The terms including the prior density

π and its derivatives are expected to be written using the scalar

function log h. Indeed, this expectation is correct, and we obtain the

final form after tedious, lengthy, and straightforward calculation.

Because we use partial integrals in transforming the original form

of the asymptotic expansion, the integral symbol remains in the

expression below.

Theorem 3. [Liu et al. [13]], Corollary of Theorem 3.1.

∫
E[π(θ |X)| θ]dθ

= (2π)−p/2n
p
2 (2)−

p
2

[∫ √
gθ + 1

n

∫
{· · · + s(θ)}√gdθ + o(n−1)

]
,

where the 1/n part in square brackets is given by

1

n

∫ {
−1

4

∥∥∥∥d log h+
T

4

∥∥∥∥
2

+ 1

4

∥∥∥∥d logπJ −
T

4

∥∥∥∥
2

+ s(θ)

}
√
gdθ ,

(13)

in which, we set T : = Tidθ
i and the norm of one-form A is defined

as ‖A‖2 : = AiAjg
ij.

The above one-form T is called the Tchebychev form in affine

geometry [see, e.g., p. 58 in Simon et al. [21]].

From Theorem 3, maximizing J[π] over the set of all prior

densities is equivalent to maximizing the above integral with

respect to a scalar function h when n → ∞. Since the second and

third terms inside braces {· · · } in Equation (13) are independent of

h, the expression achieves the maximum if the first term vanishes,

that is,

d log h+ T

4
= 0 (14)

holds. Thus, we obtain an equation of a differential one-form

which determines χ2-prior. In a proper coordinate system, the

component-wise form of equation (14) is given by

∂

∂θ i
log h = −1

4
Ti,

which agrees with the original PDE (Equation 9) derived in the

previous study.

Finally, we discuss the existence of χ2-prior. Generally, χ2-

prior does not necessarily exist on a statistical model. The existence

of a χ2-prior on a given model is equivalent to the existence of the

solution of PDE (Equation 9).

A solution of PDE (Equation 9) exists if and only if Ti satisfies

the following condition:

∂jTi − ∂iTj = 0, (15)

which is called an integrability condition and is well-known. As a

simplification, we may write dT = 0.

A bit surprisingly, the above condition (Equation 15) agrees

with the condition that the α( 6= 0)-parallel prior exists [11]. This

implies a certain relationship between χ2-prior and an α-parallel

prior. Indeed, its expectation is correct and χ2-prior is shown to be

the 1
2 -parallel prior, which is the theme in the next section.

3.4. Discussion

We here discuss the difference between the original result

obtained by Liu et al. [13] and the present study.

First, the PDE they obtained for χ2-prior is not in the form of

tensor equations. They gave a PDE for logπ as follows

∂i logπ = −1

4
Tijkg

jk + 1

2
g−1∂ig, (16)

instead of our PDE (Equation 9) [Liu et al. [13], p. 357,

Equation (48)]. Both sides of Equation (16) are not tensors, i.e., not

invariant under coordinate transformation.

Second, although Liu et al. obtained the asymptotic expansion

as in Theorem 2 (Theorem 3.1 in the original article), their

approach to derive the PDE (Equation 16) is not sufficient. Strictly

speaking, they only show that πχ2 satisfying the PDE (Equation 16)

achieves the extreme value asymptotically. They did not organize

messy terms and utilized the variational method in an ad hoc

manner to derive the PDE (Equation 16). Moreover, their approach

does not exclude the possibility of achieving the minimum.

Our approach shows more directly that πχ2 satisfying the

PDE (Equation 16)achieves the maximum of the functional

asymptotically. Using the square completion for the one-form

d log h, we show that πχ2 maximizes the functional J[π] when

n → ∞.
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In addition, our underlying philosophy is the invariance

principle under coordinate transformation. Clearly, the expected

χ2-divergence from a prior to its posterior is independent of

parametrization. Thus, we naturally expect that the O(n−1) term

is independent of parametrization, i.e., represented by geometrical

quantities. As a result, we obtain a simpler expression (Equation 13)

in Theorem 3. This is a good example of how organizing from the

viewpoint of information geometry can simplify various terms and

make the structure of the problem easier to understand.

As for derivation of fundamental PDEs, we point out a formal

analogy between general relativity and ours. Historically speaking,

Hilbert showed that the Einstein equation is derived from Einstein–

Hilbert action integral S[gab], where gab is the pseudo-Riemannian

metric on the time-space manifold [see, e.g., Wald [22], Appendix

E.1]. In our problem, we take the expected χ2-divergence from a

prior to its posterior instead of S[gab]. The maximization of J[π]

and minimization of S[gab] yield the tensor equation (Equation 16)

and the Einstein equation, respectively.

4. Relation between chi-square priors
and alpha-parallel priors

In this section, we show that χ2-prior is the 1
2 -parallel prior, a

special case of an α-parallel prior. As we shall see later, an α-parallel

prior is defined through an α-parallel volume element and was

proposed by Takeuchi and Amari [11]. Among several existence

conditions for an α-parallel prior, we focus on the PDE of logπ

and rewrite it in terms of the log ratio log h.

In the exponential family, χ2-prior and α-parallel priors were

derived by the two author groups, and Takeuchi and Amari [11]

and Liu et al. [13], respectively. We also generalize this result for

any α-flat model.

4.1. Alpha-parallel priors

Takeuchi and Amari [11] introduced a family of geometric

priors called α-parallel priors, which include the well-known

Jeffreys prior and maximum likelihood (ML) prior [23]. We briefly

review basic definitions and related results on α-parallel priors

below.

4.1.1. Equia�ne connection
First, we recall the definition of equiaffine connection in affine

geometry. Let us consider a p-dimensional orientable smooth

manifold M with an affine connection ∇ . We shall say that a

torsion-free affine connection ∇ is equiaffine when there exists a

parallel volume element, that is, a nonvanishing p-form ω such that

∇ω = 0.

One necessary and sufficient condition for ∇ to be equiaffine is

R∇ijk
k = 0, (17)

where R∇
ijk

l is the Riemann–Christoffel curvature tensor with

respect to the connection ∇ .The condition (Equation 17) is slightly

weaker than the condition that an affine manifold is flat, R∇
ijk

l = 0.

4.1.2. Definition of alpha-parallel prior
Here, we develop an aforementioned argument in statistical

models. Since statistical models have a family of affine connections

in a natural manner, we expect that the condition of being an

equiaffine connection is obtained as a property of model manifolds

rather than one of affine connections.

Let a p-dimensional statistical model manifoldM be given. We

assume that it is covered by a single coordinate, say, θ ∈ 2 ⊆ R
p,

orientable, and simply connected.

Definition 5. Suppose that there exists a parallel volume element ω

for a fixed α, i.e.,
(α)
∇ ω = 0. Therefore, in a coordinate system, say,

θ = (θ1, . . . , θp), α-parallel volume element ω is represented as

ω ∝ π(θ)dθ1 ∧ · · · ∧ dθp,

where π is a nonnegative function over the parameter space2. We

call π an α-parallel prior.

Some examples of α-parallel prior are as follows: when α = 1,

the 1-parallel prior (also called the e-parallel prior) is the so-called

ML prior proposed by Hartigan [23]; and when α = 0, the 0-

parallel prior is the Jeffreys prior. As we shall see later, the 0-parallel

prior is exceptional and always exists on a statistical model. Indeed,

a 0-parallel volume element,
√
gdθ1 ∧ · · · ∧ dθp, is known as

the invariant volume element on a Riemannian manifold (M, gij)

with the Levi-Civita connection (0-connection in information

geometry). Note that an α-parallel prior could be an improper

prior. For other properties of α-parallel priors, see Takeuchi and

Amari [11].

4.1.3. Existence conditions of alpha-parallel prior
In statistical models, we obtain a deeper result for the existence

of an α-parallel prior. First, we note that the relation

R
(α)
∇
ijk

k = −α
2
(∂iTj − ∂jTi) (18)

holds for every α. From the necessary and sufficient condition for

the existence of α-parallel prior (Equation 17), we find that the 0-

parallel prior (α = 0) necessarily exists. For α 6= 0, we introduce

the concept of statistically equiaffine.

Definition 6. A statistical model manifold M is said to be

statistically equiaffine [11], when the cubic tensor Tijk satisfies the

following condition:

∂jTi − ∂iTj = 0. (19)

Observing the existence condition for α-parallel

prior (Equation 17) and the relation (Equation 18), we easily

obtain the following theorem.

Theorem 4. For a statistical model manifold M, the following

conditions are equivalent:

(a) an α-parallel volume element exists for all α,

(b) an α-parallel volume element exists for α ( 6= 0),

(c) M is statistically equiaffine.
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Note that a weaker condition (b) implies stronger conditions

(a) and (c). The usual statistical models have been shown to be

statistically equiaffine [11]. An important statistical model that

is not statistically equiaffine is the ARMA model in time series

analysis [24].

4.2. Chi-square prior is the half-parallel
prior

Now let us consider a relation between α-parallel prior and χ2-

prior. To compare them, we focus on the following PDE for an

α-parallel prior:

∂i logπ = gjk
(α)
Ŵ ij,k (20)

[Takeuchi and Amari [11], Proposition 1, p. 1016, Equation (7)].

Since both sides of the PDE (Equation 20) are not tensors, its

invariance under coordinate transformation is not clear. Thus, we

introduce a one-form (geometrical quantity) derived from a scalar

function h = π/πJ and modify the equation.

Theorem 5. The above PDE (Equation 20) is equivalent to the

following tensor equation:

∂i log h = −α
2
Ti. (21)

When we set T = Tidθ
i, then the above equation (21) can be

rewritten as

d log h+ α

2
T = 0,

which is the equation of a differential one-form.

Proof. Using Equation (8), we rewrite the PDE (Equation 20) as

follows:

∂i log h =
(
−1

2
∂igjk+

(α)
Ŵ ij,k

)
gjk. (22)

Therefore, using Lemma 2, we modify the RHS of Equation (22):

(
−1

2
∂igjk+

(α)
Ŵ ij,k

)
gjk =

(
−1

2

(α)
Ŵ ij,k −

1

2

(−α)
Ŵ ik,j +

(α)
Ŵ ij,k

)
gjk,

=
(
−1

2

(−α)
Ŵ ik,j +

1

2

(α)
Ŵ ki,j

)
gjk,

= −1

2
αTikjg

jk,

= −α
2
Ti.

Surprisingly, the PDE defining πχ2 (Equation 9) agrees with

Equation (21) with α = 1
2 . Thus, χ

2-prior derived by Liu et al.

[13] is the 1
2 -parallel prior. This finding is interesting in two ways.

First, to Bayesian statistics, it is a new example where the

formulation in terms of information geometry is useful to research

on noninformative priors [for several examples, see Komaki [7] and

Tanaka and Komaki [9]]. Liu et al. [13] derived the PDE (Equation

9) by considering one extension of the reference prior with χ2-

divergence. Their starting point is completely independent of the

geometry of statistical models. In spite of this, χ2-prior has a good

geometrical interpretation: it is volume element invariant under the

parallel transport with respect to the 1
2 -connection.

Second, to information geometry, it would be the first

specific example where only the 1
2 -connection makes sense

in statistical applications. In information geometry, the

meaning of each connection among α-connections has not

been clarified enough except for specific alphas (α = 0,±1).

In Takeuchi and Amari [11], α-parallel priors were not

proposed as noninformative priors. Rather, they regarded the

Jeffreys prior as the 0-parallel prior and extended it to every α.

Except for α = 0, only the 1
2 -parallel prior is interpreted as a

noninformative prior.

4.3. General form of alpha-parallel priors in
statistically equia�ne models

Let us derive a general form of α-parallel priors in statistically

equiaffine models. In the following, we denote an α-parallel prior

as πα . For example, π1/2 = πχ2 and π0 = πJ .

First, we briefly review some formulas for α-parallel priors

derived by several authors [11, 25]. According to Matsuzoe et al.

[25], there exists a scalar function φ that satisfies Ta = ∂aφ

on a statistically equiaffine model manifold. Therefore, using this

function φ, a general solution of the PDE (Equation 21) is given

by h(θ) ∝ exp
{
− α

2 φ(θ)
}
. Thus, we obtain α-parallel prior πα as

having the following form:

πα(θ) ∝ exp
{
−α
2
φ(θ)

}
πJ(θ).

In the exponential family (e-flat model), Takeuchi and Amari

show that α-parallel priors are representable as a power of Jeffreys

prior πJ for every α [Takeuchi and Amari [11], Example 2, p. 1017].

Here, we extend their result for the exponential family to a

γ (γ 6= 1)-flat model. We use the parameter γ instead of α because

the two parameters may be different.

Theorem 6. Let γ 6= 0. Suppose that a statistical model manifold

(M, g,
(γ )

∇ ,
(−γ )
∇ ) is γ -flat. Then, there exists an α-parallel prior πα

for every α. In a γ -affine coordinate system, {θ i}, it is written as a

power of Jeffreys prior πJ , that is,

πα(θ) ∝ πJ(θ)
1− α

γ

holds.

Proof. Since the model is γ -flat, we take a γ -affine coordinate

system, say, {θ i}. Then,
(γ )

Ŵ ij,k= 0 and from Equation (3) in

Lemma 2,

Tijk =
1

γ

(−γ )
Ŵ ij,k (23)

holds.
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On the contrary, from a result in Amari and Nagaoka [14],

Section 3.3, there exists a scalar function ψ(θ) such that

gij =
∂2

∂θ i∂θ j
ψ ,

(−γ )
Ŵ ij,k =

∂3

∂θ i∂θ j∂θk
ψ

for the γ -affine coordinates {θ i}. This implies that

(−γ )
Ŵ ij,k= ∂kgij =

∂3

∂θ i∂θ j∂θk
ψ . (24)

Therefore, using Eqs (23) and (24), we can rewrite Ti as follows:

Ti = gjkTijk

= 1

γ
gjk

(−γ )
Ŵ ij,k,

= 1

γ
gjk∂igjk,

= 2

γ

∂

∂θ i
log

√
g.

Clearly, T satisfies the condition (Equation 19), and thus, the

model is statistically affine. Therefore, Theorem 4 implies that there

exists an α-parallel prior πα for every α.

Now, let us obtain an explicit form by using πJ . Substituting the

above Ti into the RHS of Equation (21),

∂

∂θ i
log h = −α

γ

∂

∂θ i
logπJ ,

and thus, we obtain

h(θ) = πα(θ)

πJ(θ)
∝ πJ(θ)

− α
γ .

In particular, we get

πα(θ) ∝ πJ(θ)
1− α

γ .

It is true only in the γ -affine coordinate system {θ i} that πα is

equal to a power of the Jeffreys prior. Since the above argument

is not invariant under coordinate transformation, we take the

Jacobian into consideration in another coordinate.

Theorem 6 includes previous results. Liu et al. [13], Example

1, corresponds to the case when α = 1/2 and γ = 1. Takeuchi

and Amari [11], Example 2 (p. 1017), corresponds to the case when

γ = 1.

5. Conclusion

In the present study, we investigated the derivation by Lie et

al. of χ2-prior from the viewpoint of information geometry. We

showed that χ2-prior agrees with the 1
2 -parallel prior (α-parallel

prior for α = 1
2 ), which gives a geometrical interpretation. In

addition, in our formulation, using the log ratio logπ/πJ , which

is invariant under reparametrization, simplifies a PDE defining a

noninformative prior π in Bayesian analysis.
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