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We propose a novel, e�cient, and powerful methodology to deal with

overdispersion, excess zeros, heterogeneity, and spatial correlation. It is based on

the combination of Hurdlemodels and Spatial filteringMoran eigenvectors. Hurdle

models are the best option to manage the presence of overdispersion and excess

of zeros, separating the model into two parts: the first part models the probability

of the zero value, and the second part models the probability of the non-

zero values. Finally, gathering the spatial information in new covariates through

a spatial filtering Moran vector method involves spatial correlation and spatial

heterogeneity to improve the model fitting and explain spatial e�ects of variables

that were not possible to measure. Thus, our proposal adapts usual regression

models for count data so that it is possible to deal with phenomena where

the usual theoretical assumptions, such as constant variance, independence,

and unique distribution are not fulfilled. In addition, this research shows how a

prolonged armed conflict can impact the health of children. The data includes

children exposed to armed conflict in Colombia, a country enduring a non-

international armed conflict lasting over 60 years. The findings indicate that

children exposed to high levels of violence, as measured by the armed conflict

index, demonstrate a significant association with the incidence and mortality rate

of LAP in children. This fact is illustrated here using one of the most catastrophic

conditions in childhood, as is Pediatric Acute Leukemia (LAP). The association

between armed conflict and LAP has its conceptual basis in the epidemiology

literature, given that, the incidence and mortality rates of neoplastic diseases

increase with exposure to toxic and chronic stress during gestation and childhood.

Our methodology provides a valuable framework for complex data analysis and

contributes to understanding the health implications in conflict-a�ected regions.
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spatial correlation, Moran eigenvector spatial filtering, excess zeros, chronic stress
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1. Introduction

The effects of violent environments that generate recurrent

adverse childhood events (ACEs) have been identified as risk factors

for some chronic diseases in adulthood. The term “Toxic Stress”

is defined “as the exposure to extreme, frequent and persistent

adverse events without the present of a supportive caretaker” [1].

Toxic stress is differentiated from other types of stress in two

notable ways: First, its sources are severe, prolonged, unpredictable,

and/or unrelenting; and second, it represents a hijacking of the

normal stress response mechanisms mediated by the brain [1].

This association has been seen even if the exposure occurs during

gestation, where the external maternal environment could cause

changes at the genetic and transcriptional level in the growing

fetus [2]. Violence and chronic stress during pregnancy were

associated with congenital malformations, intellectual disability,

growth retardation, and other complications for both the mother

and the child [3]. The biological explanation of the association

between exposure to toxic stress and diseases such as cancer is

described in epigenetics by the “two hits” model, see [4–6]. The

first “hit” occurs when the transcriptional control that regulates

gene activity is altered. Translocations and the production of

fusion genes arise as a response to chronic stress in the external

maternal environment: violence, malnutrition, and poverty, among

others, see [7, 8]. The second exposure to chronic and toxic

stress during the child’s life leads to the second “hit” with the

proliferation of malignant cells, given that the neuroendocrine

system is permanently activated. see details in [8–10].

Early and persistent exposure to chronic stress generates lasting

damage to the nervous, endocrine, and immune systems through

DNA alteration [11, 12]. Neurobiological effects of violence against

children produce a decrease in the volume of the hippocampus

and prefrontal cortex [12] and elevated levels of C-reactive protein,

IL-6, TNF-α, and IL-1β , see [13–15]. Concerning cancer, the

chronic activation of the neuroendocrine system alters the profile of

counter-regulatory hormones that modulate the activity of multiple

components of the tumor microenvironment, such as DNA repair,

the expression of oncogenes by viruses and oncogenic cells, and

the production of cell growth factors [5]. Once the tumor starts

its development, variables that regulate the activity of proteases,

angiogenic factors, chemokines, and adhesion molecules, allow

for invasion, metastasis, and other aspects of tumor progression

[10, 16].

Colombia is a country struck by a civil war since the 1950s

[17]. The main actors are insurgent groups such as guerrillas,

paramilitary groups, drug traffickers, common crime groups,

and the Colombian military forces [18]. During 2002–2013,

more than 30% of the Colombian population lived in extreme

poverty. Children with and without neoplastic diseases living in

conflict-affected areas and/or in extreme poverty do not have

timely health service [19]. For example, they face outbreaks of

vaccine-preventable diseases. Civil war and poverty also reduce

school attendance, increase unemployment rates, prevent food

production in rural areas, and generate slowdowns in the economy

and the erosion of human capital [20]. Civilians have had to

be witnesses and victims of all of these actions that lead to

chronic stress environments [1, 21]. Children have lost the right

to health, and they live in environments of fear, hopelessness,

and chronic uncertainty [20]. They have suffered the effects of

antipersonnel mines, forced displacement with or without their

family, kidnappings, murders and massacres of their relatives or

neighbors, being children of combatants, demobilization of their

parents, abuse and neglect, attacks, and armed clashes, spraying

of illicit crops, among others. Thus, children suffer severe damage

that changes their lives and those of their subsequent generations.

Research on this topic is scarce because these effects on children are

underestimated and considered low-priority problems [22].

In addition, statistical models for count data, such as the

number of cases of some illness per area, faced issues like

overdispersion, zero excess, and spatial association. These are

usually fitted, keeping all data in the same model and using the

independence assumption. Hence, data with these features needs

a specific methodology that allows us to consider all the richness of

the available information.

So, the aims of this study are two: First, to propose and

implement a methodology to describe andmodel data with features

as those we encountered here: high variance, excess of zeros, and

spatial association, and Second, to apply the proposal to explore,

test, and quantify the association among the civil war and poverty

in Colombia, and childhood leukemia incidence and mortality. It

is well-known that a country’s poverty has specific spatial patterns,

see [23, 24]. However, to our knowledge, no studies are exploring or

modeling the spatial correlation of the Colombian armed conflict

and its impact on the development of Leukemia. One of the main

barriers is acquiring a complete and good-quality Datasets.

We propose a novel approach for the estimation of spatial

generalized linear models by combining Poisson-Hurdle models,

the Moran coefficient, and Moran Eigenvectors Spatial Filtering.

Based on this procedure, it is possible to manage data with spatial

correlation and more variability in response variables than is

expected under usual models for count data. Hurdle models are

statistical models that separate the random variable values into two

parts: the first part models the probability of the 0 value, and the

second part models the probability of the non-zero values. The

spatial information is involved in several ways. The residuals of

the estimated model under independence are used to validate this

assumption and when the independence assumption is not fulfilled,

the best spatial weights matrix to find the Moran coefficient

is determined. Finally, we use lagged explanatory variables and

Moran Eigenvectors as predictors, to find a valid model with good

fitting. This proposal aims to investigate how armed conflict affects

the incidence and mortality rate of LAP in children. The Index

of Incidence of Armed Conflict (IICA), developed recently as a

result of the Colombian peace process, by the National Planning

Department, is the first opportunity to quantify the impact of the

civil war on the population across the country. The paper follows

with the methodological setup in Section 2, and description of

real dataset and results in Section 3. The paper ends with some

concluding remarks and future work in Section 4.

2. Materials and methods

Hurdle models present a methodology to treat excess zeros

through mixture and truncated distributions [25]. We here adapt

the Poisson Hurdle models, due to features of our study case, but
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analogous Hurdle Models can be adapted, according to response

variable distribution, see [25] and Figure 6. Generalized linear

models are built under the independence assumption. By default,

in the first stage, the fitting process does not consider any type

of correlation. Hence, it is necessary to check model assumptions

using the residual vector. Correlation tests make sense and are

useful when there is some knowledge about the origin of the

existing correlation. Based on this knowledge and test results,

the correlation structure is estimated and involved in the model

approach and fitting, in the next stage.

2.1. Poisson-Hurdle models

The response variable is based on count data with an excess

of zero counts. Although there are several alternatives, we choose

Hurdle models because one of its advantages is that by design

the number of zeros predicted is the same as the number of

zeros observed. Given that the excess zeros can be generated by

a separate process from the count values, the observations are

separated into two subsets: the first one with zeros and the second

one with positive counts, so, it is obtained the following binomial

distribution:







P (Zi = 0) = p,

P(Zi = k) = (1− p)
µk
i exp(−µi)

(1−exp(−µi))k!

(1)

Where k ∈ N − {0}, p is the probability of a count of zero and

Zi is the count response variable in the municipality i. Thus, pi can

be modeled with a logistic regression and positive counts can be

modeled with a truncated Poisson model, that is,

ln

(

pi

1− pi

)

= x′iβ and ln(µi) = x′iα (2)

Where xi is the vector containing predictor variables, and β and

α are vectors of regression coefficients, respectively. In addition, if

positive counts are observed from exposure ni, the link function for

positive counts is

E(Zi > 0) = µi = ni exp(x
′
iα) (3)

ni is the offset term, and

lnµi = ln ni + x′iα (4)

2.2. Lattice data

Data associated with spatial subregions which are elements of

a partition of some region of interest are called lattice data or

areal data. Thus, areal data have discrete spatial variation. It is very

common that for economic, epidemiology, or public health data,

this partition corresponds to the official administrative political

division. However, the partition can also be determined according

to each problem. For example, quadrats in ecological studies.

Usually, in this context, information is available for all subregions:

The gross domestic product by department or the number of live

births by municipality. Therefore, in most cases, the purpose is not

the prediction, but the estimation of regression models involving

and quantifying spatial dependence, to determine the significance

of covariates or the detection of spatial patterns. Z(sss) is the response

spatial random variable. Dsss is the region of interest, and it is

partitioned into N subregions

A = {A1,A2, ...,AN}

To identify these subregions, it is established a representative

coordinate, si for each polygon Ai, i = 1, ...,N. These coordinates

are known as centroids and can be determined by geometric

methods or according to criteria related to each particular study.

S defined as

S = {s1, s2, ..., sN } s ∈ Dsss

is the set of centroids. Then Z(Ai) with i = 1, ...,N represents the

spatial process in the region Ai with i = 1, ...,N. Its observation is

denoted z(si).

2.3. Spatial weight matrix

Our hypothesis is the existence of spatial correlation given

the similar conditions among areal units. In this context, each

observation corresponds to a specific areal unit. The set of these

areal units is a partition of the region of interest. Spatial correlation

measures the relationship among variables in a specific areal unit

and variables in its spatial neighborhood. The estimation of spatial

correlation is based on spatial contiguity relations, represented

graphically as a network, see [26] for a good exposition.

The quantification of these relations according to some

criterion, such as spatial proximity or relevant features, is

summarized in a square matrix W, of dimension N × N, called

spatial weight matrix.W is non-stochastic, with real, non-negative,

and finite entries, representing spatial interdependence between

areal units [27]. W defines the magnitude of spatial interactions

inside a region:

W =
(

wij

)

=

















0 w12 w13 . . . w1N

w21 0 w23 . . . w2N

w31 w32 0 . . . w3N

...
...

...
. . .

...

wN1 wN2 wN3 . . . 0

















i, j = 1, ...,N. Non-zero entries indicate related spatial areal units.

W considers the spatial multidirectional relations. The spatial

weights matrix W acts as a spatial lag operator. By performing its

product with the observations vector, a lag vector resulting from

a linear combination is obtained. Each observation is multiplied

by its respective spatial weight with the rest of the spatial

observations:WZ.

In this matrix, all possible pairs of observations are included,

and each other influence is determined. The row i is the vector of

spatial weights between Z(sj), j = 1, ...,N and Z(si). This matrix

is supposed to be known, and it is not part of the elements to

be estimated within the model. W must be previously defined
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since it enters the estimation processes as a constant. The correct

specification of the way in which individuals interact is crucial.

There are multiple criteria to generate its values. The most

used criteria are those that generate binary weights matrices,

assigning the value of one to the contiguous units and zero to the

others. Criticisms of the binary relations are the symmetry that is

imposed on spatial relationships and the use of physical adjacency

as the only criterion. Other criteria are based on associated graph

measurements involving distances between the centroids of the

regions considered, shared borders, and even covariates can be

considered. The standardized weights matrices are built from the

binary relations, and each wij is weighted by the sum of its row; this

transformation incorporates asymmetry in W. See [28] for more

details. The asymmetry can generate theoretical complications, and

often it is replaced by the product with its transpose in later stages.

Below, we describe some criteria to build the matrix W. Some

of them take physical contiguity into account; others are based on

associated graph measurements, or involve computing distances

between the centroids of the regions considered:

• Rock criterion: Areal units are neighbors if share a common

edge.

• Queen criterion: Areal units are neighbors if share a common

edge or a common vertex.

• Gabriel graph: Areal units are neighbors if

d
(

si, sj
)

≤ min

{
√

(

d (si, sk)
)2 +

(

d
(

sj, sk
))2|∀sk ∈ S

}

• k-Nearest neighbors:. In this case, relations are established

using non-symmetrical distances and standardized spatial

weight matrices. The neighborhood criterion chooses, for each

si, the k-nearest units. So, the rest of the data

k+ 1, k+ 2, ..., k+m

are considered non-neighbors of si.

• Relative neighbors: According to this criterion, areal units are

neighbors if

d(si, sj) ≤ min(max d(si, sj), d(y, sk))
1/2

• Using distance for weighting,

wij = 1− dij/max(dij)

Where dij is the distance between the units centroids. Note that

similarity is inversely proportional to distance.

For illustrative purposes, we show maps and neighbors with its

graphs, to observe the behavior of a criterion with different orders

of neighbors, in two cases: The 1,124 Colombian Municipalities

and the 85 departments of France [29], see Figure 1. In both cases,

the queen criterion is used. However, for the French departments,

first, second, and third-order neighbors are included, while for

Colombia, it included only the first neighbor. The spatial weights

matrix W is built based on the graph generated according to each

of the criteria. Thus, it is important to establish some rules to select

a criterion, see Section 2.4 and [30].

2.4. Moran coe�cient (MC)

The areal data are observations associated with spatial

subregions that are elements of a partition of the complete region

of interest. It is very common that for economic, epidemiology,

or public health data, this partition corresponds to the official

administrative political division. However, the partition can also be

determined according to each problem. For example, quadrats in

ecological studies. Usually, in this context, information is available

for all subregions. For example, the gross domestic product by

department or the number of live births bymunicipality. Therefore,

in most cases, the purpose is not the prediction, but the estimation

of regression models involving and quantifying spatial dependence,

to determine the significance of variables involved or to detect

spatial patterns.

There are several measures in areal data, to check if there

is significant spatial autocorrelation and its sign. In addition,

contrasts to detect spatial correlation are of two types, global

and local. The former calculates an autocorrelation coefficient

for the entire region of interest, while the latter calculates these

coefficients in subregions, see Figure 1. Given related theoretical

advances truly useful in spatial regression models, we use here the

Moran coefficient. This coefficient measures the spatial correlation

between each region and its neighbors, extending the idea of

the Pearson correlation coefficient for the spatial case. That is,

the product moment term is multiplied by its corresponding

spatial weight wij. When the mean of Z(s) is constant, the Moran

coefficientMC is given by:

MC =
N

N
∑

i=1

N
∑

j=1
wij

N
∑

i=1

N
∑

j=1
wij

(

z(si)− z̄
) (

z(sj)− z̄
)

N
∑

i=1

(

z(si)− z̄
)2

(5)

where z(si) is the value of Z in the region i, z̄ is its mean, wij are the

weights from the W matrix, i = 1, ...,N. If we denote with Z the

centered vector,MC can be written in matrix form as follows

MC =
N

S0

Z
′WZ

Z ′Z
where S0 =

∑

i

∑

j

wij

In the context of spatial regression models, this index is used

as a criterion to verify spatial autocorrelation between residuals

vector e [31]. So, the MC for the residuals of a regression model

is written as

MC =
N

S0

e′We

e′e
where S0 =

∑

i

∑

j

wij

The MC has been extended to the bivariate case through Lee’s

statistics index, L, see [32, 33]. This coefficient measures the spatial

cross-correlation between two variables in two different places and

also can be global and local. Assuming constant means, the Lee

coefficient is given by:

L =

N

N
∑

i=1

(

N
∑

j=1
wij

)2

N
∑

i=1

(

N
∑

j=1
wij(z1(sj)−z̄1)

)(

N
∑

j=1
wij(z2(sj)−z̄2)

)

N
∑

i=1
(z1(si)−z̄1)

2
N
∑

i=1
(z2(si)−z̄2)

2
(6)
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FIGURE 1

(A) Complete graph for French departments [29], using the queen criterion and including first, second, and third-order neighbors. (B) White areas are

first, second, and third-order neighbors in every direction for the highlighted department. (C) Complete graph for Colombian municipalities, using

the queen criterion and first-order neighbors. (D) White areas are the first neighbors in every direction for the highlighted municipality.

where z1(si) and z2(si) are the values (realizations) of Z1 and Z2 in

the region i, i = 1, ...,N, z̄1 z̄2 are the respective means, and wij

are the elements of theW matrix.

Two L bivariate analyses, between IICA and the two predictors

LR and UBN, are shown in Figure 2. The significant cross-

correlation is detected through L coefficient and allows identifying

the spatial clusters where the two variables show strong association.

2.5. Inference for the Moran coe�cient

Given that the distribution of statistical tests is usually

unknown and that a large number of combinations sometimes

makes them impossible to find the exact distribution,

randomization and Monte Carlo tests are typically used in

the inferential process. The associated null hypothesis is the

absence of spatial autocorrelation. According to Anselin [27], a

positive and significant value of MC indicates a concentration of

similar data in neighboring regions: High values of the variable are

surrounded by high values, and low values are surrounded by low

values. Negative values that lead to rejecting the null hypothesis

indicate that high values of the variable are surrounded by low

values and low values are surrounded by high values, thus in

neighboring units different values are presented.

LetMC1 be the observed value and let

MCi : i = 2, · · · , k

the k − 1 realizations by random sampling under spatial

independence. Then MC1 is combined with the MCi and these

values are sorted to get the following list

MC(1) MC(2) · · · MC(k)

Tests with MCi near zero indicate an absence of spatial

autocorrelation, while large values of MCi positive or negative

indicate autocorrelation of the same sign. The hypothesis is rejected

when

MC1 ≤ MC(r) MC1 ≥ MC(k−r)

where MC(r) denotes the r − th smallest value. This is a two-tailed

test with a significance level α, which is defined as

α =
2r

k

Depending on the required α, the number of simulations

needed is chosen.
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When the sample size is large enough, the standardized Moran

coefficient MC, follows an asymptotic normal distribution [27].

That is,

zMC =
MC − E(MC)
√
Var(MC)

∼ N(0, 1)

with

E(MC) = −
1

N − 1

and

E
(

MC2
)

=
N
[

(N2−3N+3)S1−NS2+3S20
]

−b2
[

(N2−N)S1−2NS2+6S20
]

(N−1)(N−2)(N−3)S20

where

b2 =
m4

m2
2

, m2 =

N
∑

i=1

(

z(si)− z̄
)2

N
, m4 =

N
∑

i=1

(

z(si)− z̄
)4

N

S1 = 1
2

N
∑

i=1

N
∑

j=1

(

wij + wji

)2
, S2 =

N
∑

i=1

(

wi· + w·i

)2
,

wi· =
N
∑

j=1
wij, w·i =

N
∑

j=1
wji

Now, we show the results of the Moran coefficient analysis for

IICA, using a spatial weight matrix W built according to queen

criteria and first-order neighbors, see Figure 3. The dispersion

plot shows IICA vs. WIICA, that is, the observed variable vs.

its spatial lag. This variable presents a positive and significant

spatial autocorrelation. Note that z − value for the asymptotic

normality test is 33.322 having a p ≈ 0. Monte Carlo test with

999 permutations gives a pseudo p = 0.001. So, the spatial

autocorrelation is significant at the 95% confidence level.

Figure 4 illustrates the local spatial autocorrelation (LISA)

analysis using the Moran coefficient, for suicides in France in 1830

[29]. Spatial clusters have been detected. For Colombian data, these

analyses are shown in Figure 5.

The Moran index can be strengthened through its articulation

with complex networks. It improves the detection of some patterns

and behaviors of spatial events. Among complex network metrics,

those related to the flow of information stand out. The performance

of the models can be improved by quantifying the propagation

force of the event by linking spatial dimensions with other

information, such as covariates that are present in said places

with higher values of the Moran index. On the other hand,

with these same results and metrics such as modularity and the

clustering coefficient, it is possible to understand the endogenous

characteristics that favored the configuration of spatial buffers,

or the presence of some spatial point patterns. These elements

are very useful for the management of computational complexity

[34]. The metrics (modularity, centrality, assortativity, and cluster

coefficient) of the networks are expressed in synthetic indicators.

They reflect properties of the information system, that facilitate the

construction of mining algorithms for the detection of patterns in

large volumes of information. On the other hand, these metrics

can even be calculated from heuristic approaches and statistical

computing (for example, Bootstrap) to boost the speed in obtaining

the results without affecting their quality [26, 35].

2.6. Moran eigenvector spatial filtering
method

This spatial filtering method pursues to remove the effects of

spatial autocorrelation and spatial heterogeneity of model residuals,

along with modeling the multiscale nature of the response variable.

These goals are accomplished through building and incorporating

into the model, new spatial predictor variables based on the

residuals of the initial model and on the spatial weights matrix.

The estimation procedure is very efficient because it only involves

standard generalized linear regression computations. This is an

advantage over methods that require the Markov chain Monte

Carlo algorithm, have limitations to treating with positive spatial

correlation, or involve optimization of intractable expressions [30].

Moran’s global autocorrelation criterion MC(.) can be written

as follows,

MC = N
1′W1

e′�e
e′(I−11′/N)e

with

� = (I − 11′/N)W(I − 11′/N) (7)

where I is the N × N identity matrix, 1 denotes the N × 1 vector

of ones.W is the N ×N spatial weights matrix. The spatial filtering

method consists of the spectral decomposition of �, using a spatial

weights matrix W. MC for an eigenvector obtained hj, j = 1, ...,N

is given by

(

N/1′W1
)

λj (8)

where λj is the j − th eigenvalue. So, the maximum and minimum

values ofMC are associated with λmax and λmin, respectively. Note

thatMC is not bounded between−1 and 1. Each element of theN×
1-eigenvector corresponds to each of the N areal units. Therefore,

it has a specific geographic distribution, and it can be included as a

covariate in the regression model. Thus, the set of hi, i = 1, ...,N are

known asMaps of Moran Eigenvectors (MEM) [30]. To account for

spatial autocorrelation, we use this method, and the set of predictor

variables is enlarged with the selected k Moran eigenvectors, H =
(h1, ..., hk), obtained from spectral decomposition of �. So, X is

replaced on the count model part, see Section 2.1 by

(X,H)

In addition, note that these eigenvectors are mutually

uncorrelated and mutually orthogonal. The connectivity matrix

W is selected among several neighborhood schemes based on

physical contiguity: graphs and distances, using the criterion of

minimization of the residual spatial autocorrelation [36], in the

final model.

The steps that we should follow to put into practice our

methodological proposal are the following:

1. To fit the regression model using ordinary least squares

or generalized least squares, according to response variable

distribution.
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FIGURE 2

Significance of Bivariate Local Moran Index for spatial association between: (A) IICA with LR. (B) IICA with UBN.

FIGURE 3

(A) Lagged plot for the Colombian index of armed conflict (IICA), the main variable of this study. For illustrative purposes, the queen criterion is used

with one neighbor. Note that the points are located in the first quadrant with a positive slope. MC = 0.6 see Equation 5. The spatial autocorrelation is

positive, that is, similar values of IICA are clustered together on the Colombian map. (B) Inference for the Moran coe�cient. Both, the Monte Carlo

test with 999 permutations and asymptotic normality, indicate significant spatial autocorrelation.

2. To define the criteria to be considered in the selection of the

spatial weight matrix.

3. To evaluate model assumptions: homoscedasticity,

independence, excess of zeros if it is the case.

4. If an excess of zeros is detected, estimate

Hurdle models according to response variable

distribution.

5. To test assumptions of the new model.

6. To perform the Moran spatial filtering method,

if there is spatial autocorrelation or spatial

heterogeneity.

7. To include eigenvectors obtained from the Moran

spatial filtering method as predictor variables on the

count model.
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FIGURE 4

(A) Spatial cluster of suicides in France in 1830 [29]. There are 15 departments with high suicide rates surrounded by similar high values, and 27

departments with low suicide rates surrounded by similar low values. Only one with a high value is near a cluster of low values and 11 low values are

near high values. (B) Significance of the local spatial analysis. The white areas do not show significant spatial association. The rest of the cases show

significance at 90, 95, or 99% confidence level.

A flowchart with these steps is presented in Figure 6.

3. Results

It is estimated that more than 7 million Colombian people

have been affected, more than 5 million people have been victims

of displacement between 1985 and 2012, and more than 200,000

people have died, 80% of them civilians [37]. However, the

collection and processing of information were difficult due to the

lack of political will regarding the official acknowledgment of this

conflict and its consequences [38].

3.1. Data description

The National Department of Planning (DNP) computed the

armed conflict index (IICA) based on data collected from 2002

to 2013 [39]. This index was based on six variables: Armed

actions, homicides, kidnappings, anti-personnel mines, forced

displacement, and cultivation of coca. During this period, there

was an upsurge in violent actions due to the breakdown of the

government’s truce [38, 40].

Childhood cancer is one of the main causes of morbidity and

mortality in the world and the most frequent neoplastic childhood

pathology. Pediatric acute leukemia (LAP) is the type of cancer

most common in children, with a worldwide incidence rate of

5 cases per 100,000 children between 0 and 19 years of age

[41]. In Colombia, its incidence rate was 4.8 cases per 100,000

inhabitants for the period from 2007 to 2011 and the mortality

rate was 2.2 deaths per 100,000 inhabitants [42]. In Colombia,

cancer is the eleventh cause of mortality in children under 1 year

of age and reached the third position in children under 5 years

of age in 2015 [43]. Survival in developed countries exceeds 80%

[44]. Nevertheless, in developing countries, survival is between 10

and 40% [45]. The mandatory leukemia registry began in 2008.

Therefore, data used here correspond to children born throughout

the years 2002–2013 having a diagnosis of leukemia in 2008–2016.

There were born 11.149.695 children between 2002 and 2013

in 1.124 Colombian municipalities. There were 4.775 children

diagnosed with leukemia during 2008–2016, born in 2002–2013.

The 45.7% were female, and 12.4% died of acute leukemia.

We aggregate all variables by municipalities, and we use data

linkage at this level to create the dataset based on the following

sources:

• From the National Institute of Health (INS) we obtained

anonymized data of children born between 2002 and 2013

diagnosed with (or who died due to) LAP.

• From the National Administrative Department

of Statistics (DANE) we obtained Unmet Basic

Needs (UBN) and Percentage of health coverage

(Coverage).

• From DANE - 2005 Colombia Census Data Geodatabase, we

obtain the Percentage of people living in rural areas (Per_Rur).

And

• From the National Department of Planning (DNP) we

obtained the Colombian index of armed conflict (IICA).

3.2. Exploratory spatial analysis

This is an ecological analysis of the incidence and mortality

rates of LAP, in terms of IICA and UBN of a retrospective

cohort. Figure 5 shows the spatial distribution across the country

of the variables involved in this study. We analyze spatial

autocorrelation using empirical Bayes modification of the Moran
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FIGURE 5

Spatial distribution of variables considered. (A) Colombian index of armed conflict (IICA). (B) Leukemia rate (LR). (C) Leukemia mortality rate (LMR). (D)

Unmet basic needs (UBN). (E) Percentage of people living in rural areas (Rurality). (F) Percentage of health coverage (Health Cov).

Index for rate variables, LR and LMR, and Moran Index

for the rest of the variables. Lee’s statistics index is used

[33], for testing spatial cross-correlation between incidence

and mortality rates and potential explanatory variables IICA,

UBN, percentages of health coverage, and rural population.

We test statistical significance, using Monte Carlo simulation
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FIGURE 6

Summary of the methodological proposal, study-case hypothesis and main results. G and H represent the matrix with MEMs for the respective model.

for global and local indicators of Spatial Association (LISA)

indices, and we present the respective significance maps. All

variables present 95%-significant spatial autocorrelation. The

Moran coefficients results are: 0.140, 0.065, 0.666, 0.645, 0.384,

and 0.282 for LR, LMR, UBN, IICA, Per_Rur, and Coverage,

respectively.

3.3. Spatial Poisson-Hurdle model results

Spatial Poisson Hurdle regression models are used in both

cases, for LR and LMR, due to the detected overdispersion through

excess zeros, and spatial autocorrelation found. To ignore this

situation and estimate inappropriate models such as Poisson
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models leads to incorrect inferences [25]. See results in Tables 1,

2 for LR and LMR, respectively. Note that Moran’s eigenvectors

(MEM) are used here as a proxy for spatial correlation and other

variables that we are not able to measure but that are relevant,

see Figure 7. The model parameter estimation is carried out via

maximum likelihood, and the spatial autocorrelation structure is

incorporated by including the first eigenvector in both models,

given that the first one is the only one that results statistically

significant as an explanatory variable. See Figure 8 for a comparison

between observed and fitted values. The residuals are now spatially

uncorrelated. Moran I test under randomization p-values are

0.2119 and 0.1458 for LR and LMR model residuals, respectively.

Finally, there is a summary and a flowchart of the process in the

following Figure 6.

The computations in this paper are done using the free software

R, and its packages spdep, rgeoda, sp, ggplot, pscl, and RANN. In

most cases, pairwise distances and their functions are needed for

the construction of the W matrix. So, N(N − 1)/2 distances have

to be computed. The criteria use mainly Euclidean and nearest

neighbors distances. For long distances, it is better to use a large

circular distance because it considers the curvature, latitude, and

longitude. Regarding the model, its estimation depends on the total

of areal units, N, and the number of variables. The R packages

have sets of internal parameters that control the computation

issues, and have default values defined that usually work, sowhile

the user can change them, this is rarely necessary. Given that we

have only, 1124 area units and a few variables, the estimation of

the models is not time-consuming. A recent complexity analysis

of software to perform exploration of spatial data, including the

packages, used here (spdep and rgeoda) among others, is presented

in [46]. The rgeoda package is a modern implementation in R

of a software for Windows called GeoDa, and has advantages in

computational time for W matrix creation over spdep. However,

spdep has truly important functionalities related to the estimation

of spatial regression models and its implementation of Moran

eigenvector filtering that makes this package more complete in

this context.

Bivariate local indicator of spatial association shown in

Figure 3, allows detecting areas with higher morbidity and

mortality rates and higher IICA according to the DNP data:

Catatumbo and the south of Cesar; Arauca; south of Bolívar; low

Cauca antioqueño and Nudo of Paramillo; east Antioquia; south of

Tolima and north of Cauca; Caucan Pacific, Tumaco, and Pacific

Nariño; Ariari, Guayabero, and Guaviare; Caquetá and medium

and low Putumayo. LM and LMR are spatially correlated with

the peripheral border areas of the country, predominantly in the

Orinoquia region and southern part of the Amazon, north of

the Pacific and north of the Andean region, and the Caribbean

toward Guajira. Of these regions, the involvement of 9 of the 15

zones of armed conflict described by the DNP stands out. There is

no significant local or global spatial cross-correlation of leukemia

incidence rate and rurality (global p = 0.2120). Mortality rates do

not show significant spatial cross-correlation with rurality or health

coverage, global p = 0.3510 and global p = 0.3390, respectively. LR

and LMR variances exceed the mean.

A Poisson model on the data for each rate shows that with a

confidence level of 95%, LR and LMR data are overdispersed, that

is, true dispersion exceeds 1. According to Cameron and Trivedi

TABLE 1 Rate ratios with their respective 95% confidence intervals,

obtained from the Poisson-Hurdle model fitted to the leukemia incidence

rate.

Count model

Variable RR 95% confidence interval

(Intercept) 1.2391*** 1.1635 1.3196

IICA_CatHH1 1.1853*** 1.1100 1.2659

UBN 0.9903*** 0.9887 0.9918

MEM29 15.2752*** 6.0101 38.8232

Zero model

Variable Odds ratio, OR 95% confidence interval

(Intercept) 1.9096** 1.2576 2.8996

Per_Rur 0.9913** 0.9850 0.9976

MacFadden PseudoR2 = 0.7784 and Maximum Likelihood PseudoR2 = 0.9999. *, **, and ***

indicate statistical significance at α = 0.05, 0.01, and 0.001 levels, respectively. UBN, Unmet

Basic Needs; IICA, Colombian index of armed conflict; Per_Rur, Percentage of people living

in rural areas; MEM29, Significant Moran’s Eigenvector.

TABLE 2 Rate ratios with their respective 95% confidence intervals,

obtained from the Poisson-hurdle model fitted to the leukemia mortality

rate.

Count model

Variable RR 95% confidence interval

(Intercept) 1.4268*** 1.1781 1.7281

IICA_CatHH1 1.3158** 1.0816 1.6008

UBN 0.9863*** 0.9790 0.9937

MEM11 0.0001*** 0.000005 0.0026

Zero model

Variable Odds ratio, OR 95% confidence interval

(Intercept) 0.2782* 0.09731 0.7955

UBN 0.9857*** 0.9775 0.9940

Health_Cov 10.5344*** 3.1456 35.2785

MacFadden PseudoR2 = 0.5536 and Maximum Likelihood PseudoR2= 0.7404. ∗ , ∗∗ and ∗∗∗

indicate statistical significance at α = 0.05, 0.01, and 0.001 levels, respectively. UBN, Unmet

Basic Needs; IICA, Colombian index of armed conflict; Per_Rur, Percentage of people living

in rural areas; MEM11, Significant Moran’s Eigenvector.

overdispersion test [25], the results are: For LR, z = 4.1887 and p

= 1.403e-05, and for LMR: z = 2.2049 and p = 0.01373. The excess

of zeros is detected using the Score test for zero inflation [47], and

p < 2.22e-16 for both rates. Comparing the observed frequency of

zeroes in data with that predicted by generalized Poisson models,

we have: For LR, 382 observed vs. 443 predicted, and for LMR

898 observed vs. 907 predicted. In addition, residuals of both

generalized Poisson models are spatially autocorrelated according

to Moran’s Index test. Thus, we estimated Spatial Poisson Hurdle

models described in Section 3.3 for LR as well as for LMR.

4. Discussion

This research shows how a prolonged armed conflict can

impact the health of children. This fact is illustrated here using one

of the most catastrophic conditions in childhood as is LAP. The

association between armed conflict and pediatric acute leukemia
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FIGURE 7

(A, B) Show the spatial distribution of the MEMs for LR y LMR, respectively. Both cases show positive spatial correlation, although correlation is

stronger for the LMR case. The clusters are well-defined. The inclusion of this positive spatial association on the count model part, in both cases, also

helps to explain variance. Now, there is no spatial autocorrelation or heterogeneity detected. MEMS increase from red, orange, and yellow for the

lowest values, blues for the middle values, and the highest values become purple.

FIGURE 8

Comparison between empirical and fitted frequencies for incidence and mortality due to Leukemia. See fitted models in Tables 1, 2.

has its conceptual basis in the epidemiology literature, given

that, the incidence and mortality rates of neoplastic diseases

increase with exposure to toxic and chronic stress during gestation

and childhood.

Given that armed conflict and poverty are generators of ACEs

we use them as explanatory variables of incidence and mortality of

childhood leukemia rates. The measure used for armed conflict is

the IICA and for poverty is the UBN. We found that the IICA is
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significant and positively correlated with both rates, so, it is a factor

that increases the risk of childhood leukemia.

Contrary to expectations, the UBN is significant but negatively

associated with both rates. This means that, according to the model

results, a higher poverty level lowers childhood leukemia cases.

However, this result could be a consequence of under-reporting

data or miscounting from misdiagnosis. Thus, there are inaccurate

records, if a child’s diagnosis is malnutrition, infectious disease, or a

late diagnosis.

These characteristics are also related to results found for

the relationship between the percentage of rural population.

This variable is significant and negative only for the zero-model

part, in both cases: incidence and mortality. Thus, in both

cases, the number of zeros observed is lower for municipalities

with a higher proportion of rural areas. Basically, municipalities

with people living in remote areas have an important problem

of underreporting in data collection and late access to the

health system.

In addition, for the mortality rate model, we include the

percentage of health coverage as an explanatory variable. This

predictor turns out to be significant only for the zero-model part,

so, the higher the health coverage, the higher the number of

observed zeros in the mortality from leukemia. The odds ratio

estimated value emphasizes the relevance of access to professional

and timely medical treatment. We want to draw attention to the

fact that in developed countries, child mortality for this disease

is almost null, while in low and middle-income countries like

Colombia, the prognosis of cancer in children is poor due to

delayed diagnoses and treatments, so, the provision of a children’s

cancer service is asymmetric and fragmented. Colombia has only 25

oncology service centers and half of them are in Bogotá, Antioquia,

and Valle.

The novel combination of the Poisson-Hurdle model with the

MEFS technique resulted in a simple and powerful methodology

to deal with overdispersion, excess zeros, spatial autocorrelation,

and spatial cross-correlation. Eigenvectors resulting from theMEFS

method included as predictors gathered the spatial dependence and

allowed validmodels with non-correlated errors andwith a good fit.

Moreover, along with spatial dependence, eigenvectors also contain

spatial effects of variables that were not possible to measure, such as

ancestries, exposure to pesticides, closeness to illegal mining areas,

access to education, and nutrition, among others. Prevention is

urgently required. The study of exposure to toxic stress includes

children, caregivers, environment, family strengthening and

support networks, and political processes of peace and restoration.

ACE prevention and trauma care diminish costs and reduce

health inequality.

We hope that this research focuses attention on the importance

of efforts to attain peace in Colombia, as well as the efforts

to improve socio-economic conditions and thus build an

equitable society.

Finally, we consider that mental and sociological health also can

be seriously affected. Children suffer alterations in their upbringing,

atypical social interactions, changes of behavior, and adaptation of

the scale of values, to name a few. Type and access limitation to

data, do not allow carrying on this study directly with individuals.

However, it would be interesting to design a longitudinal study with

a specific follow-up plan, at least for a small group of patients.

Dataset, Geographic Data Files, and R-code are attached as

Supplementary material and also are freely available at

https://github.com/mpbohorquezc/Spatial-Hurdle-models-

Leukemia_armed_conflict.
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