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In the present study, we consider a thermal-Timoshenko-beam system with

suspenders and Kelvin–Voigt damping type, where the heat is given by Cattaneo’s

law. Using the existing semi-group theory and energy method, we establish the

existence and uniqueness of weak global solution, and an exponential stability

result. The results are obtained without imposing the equal-wave speed of

propagation condition.
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1. Problem setting and introduction

In the present study, we consider a cable-suspended beam structure such as the
suspension bridge, where the roadbed has a negligible sectional dimension in comparison
with its length (span of the bridge). Therefore, it is modeled in Timoshenko theory through
a one-dimensional extensible beam, while the (main) suspension cable models an elastic
string that is coupled to the deck. The equations of motion describing such Timoshenko-
suspended-beam system, see [1–9], are given by





ρutt − Vx − Q = 0, in (0, L)× R+,

ρAϕtt − Sx + Q = 0, in (0, L)× R+,

ρIψtt −Mx + S = 0, in (0, L)× R+,

(1.1)

where u = u(x, t) is the vertical displacement of the vibrating spring of main cable, ϕ =

ϕ(x, t) is the transverse displacement, ψ = ψ(x, t) is the rotation angle, and L, ρ,A, and
I are, respectively, length, mass density, cross-section area, and moment of inertia. The
constitutive laws V ,Q, S, andM are defined by

V = αux, Q = λ (ϕ − u) , S = kGA(ϕx + ψ), M = EIψx, (1.2)

where the physical parameters α, λ,E,G, and k are, respectively, the elastic modulus of
the string, the stiffness of elastic springs, the Young’s modulus of the beam, the shear
modulus, and the shear correction coefficient of the beam. Generally, the system (1.1) is
not exponentially stable, see for instance [10, 11], and the references therein. Therefore, we
need to introduce a dissipative mechanism to achieve an exponential stability. A common
and powerful way of stabilizing hyperbolic systems from mechanical structures in literature
is through thermal damping, see [12], where a generalized theory on thermoelasticity
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is established. Assuming the cable is thermally insulated and
consider a stress–strain constitutive law of Kelvin–Voigt type, see
[11], then (1.2) takes the form





V = αux, Q = λ (ϕ − u) ,

S = kGA(ϕx + ψ)+ γ1(ϕx + ψ)t − βθ ,

M = EIψx + γ2ψxt ,

(1.3)

where γ0 and γ1 are damping coefficients, θ = θ(x, t) is the
temperature difference, and β > 0 is a coupling constant.When the
heat conduction θ in (1.3) is governed by Cattaneo’s law [13–15],
we have the following:

{
ρ3θt + qx + β(ϕx + ψ)t = 0, in (0, L)× R+,

τqt + σq+ θx = 0, in (0, L)× R+,
(1.4)

where q = q(x, t) is the heat flux and ρ3, τ , and σ > 0
are coupling constants. Considering linear damping force with
damping coefficient γ0 on the vertical displacement of suspenders
and by setting L = 1, ρ1 = ρA, ρ2 = ρI, k1 = kGA, and k2 = EI,
then substituting (1.3) into (1.1) and coupling it with (1.4), we
arrive at the following system:





ρutt − αuxx − λ (ϕ − u)+ γ0ut = 0, in (0, 1)× R+

ρ1ϕtt − k1(ϕx + ψ)x − γ1(ϕx + ψ)xt + βθx + λ (ϕ − u) = 0, in (0, 1)× R+ ,

ρ2ψtt − k2ψxx − γ2ψxxt + k1(ϕx + ψ)+ γ1(ϕx + ψ)t − βθ = 0, in (0, 1)× R+ ,

ρ3θt + qx + β(ϕx + ψ)t = 0, in (0, 1)× R+ ,

τqt + σq+ θx = 0, in (0, 1)× R+ .

(1.5)

We supplement system (1.5) with the boundary conditions as
follows:

{
u(0, t) = u(1, t) = ϕx(0, t) = ϕ(1, t) = 0, t ∈ R+,

ψ(0, t) = ψ(1, t) = θ(0, t) = q(1, t) = 0, t ∈ R+,
(1.6)

and the initial data are





u(x, 0) = u0(x), ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), θ(x, 0) =

θ0(x), x ∈ (0, 1),

ut(x, 0) = u1(x), ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x),

q(x, 0) = q0(x), x ∈ (0, 1).
(1.7)

The main focus of this article was to investigate system
(1.5)−(1.7). We establish the well-posedness and the asymptotic
behavior of solution by using the semi-group and the multiplier
methods. For related results to system (1.5)−(1.7), we mention the
result of Bochicchio et al. [16], where the authors considered system
(1.5) with heat conduction governed by Fourier ’s law (τ = 0),
γ1 = γ2 = 0, and linear frictional damping on (1.5)1 and (1.5)2.
They proved an exponential stability result and numerical analysis
of the system. Very recently, Mukiawa et al. [17] studied (1.5) with
general, delay, and weak internal damping on the first equation
and established a general stability result. We also mention the
study of Enyi [18], the author proved exponential stability results
for thermoelastic Timoshenko beam systems with full and partial
Kelvin–Voigt damping, where the heat conduction is governed by
the Cattaneo law of heat transfer. There are many closely related

Timoshenko systems in literature, which have discussed a lack of
exponential stability, see [11, 19, 20], and the references therein.
In comparison to the present system, there is no ambiguity since
the system is fully damped. Another interesting direction that can
be considered is a type of thermoelastic system governed by Saint-
Venant’s principle on bounded bodies, see [21], where the decay
estimates of two-temperature model are obtained. For more related
results, the reader should consult the following articles [22–26]
and the references therein. The rest of this study is organized as
follows: In Section 2, we prove an existence and uniqueness result.
In Section 3, we state and prove the main stability result.

2. Well-posedness

In this section, we transform system (1.5)−(1.7) into semi-
group setting and establish the existence and uniqueness result. Let
〈., .〉 and ‖.‖ denote, respectively, the inner product and the norm
in L2(0, 1).

1. We shall convert Problem (1.5)–(1.7) into the Cauchy form

Wt + AW = 0, W(0) = W0. (2.1)

2. Define appropriate spaces and use the semi-group method,
see Pazy [27], to establish the well-posedness.

To this end, we set W = (u, v,ϕ,w,ψ , z, θ , q)T , where v = ut ,
w = ϕt , and z = ψt . Thus, problem (1.5)–(1.7) becomes

(P)





Wt +AW = 0,

W(0) = W0,

(2.2)

whereW0 = (u0, u1,ϕ0,ϕ1,ψ0,ψ1, θ0, q0)T and

AW =




−v

−
α

ρ
uxx −

λ

ρ
(ϕ − u)+

γ0

ρ
v

−w

−
k1

ρ1
(ϕx + ψ)x −

γ1

ρ1
(wx + z)x +

β

ρ1
θx +

λ

ρ1
(ϕ − u)

−z

−
k2

ρ2
ψxx −

γ2

ρ2
zxx +

k1

ρ2
(ϕx + ψ)+

γ1

ρ2
(wx + z)−

β

ρ2
θ

1

ρ3
qx +

β

ρ3
(wx + z)

σ

τ
q+

1

τ
θx




.
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Next, we define the Sobolev spaces as follows:

H1
a(0, 1) : = {φ ∈ H1

0(0, 1) :φ(0) = 0}, and H2
a(0, 1) : =

{φ ∈ H2(0, 1) : φx ∈ H1
a(0, 1)},

H1
∗(0, 1) : = {φ ∈ H1

0(0, 1) :φ(1) = 0}, and H2
∗(0, 1) : =

{φ ∈ H2(0, 1) : φx ∈ H1
∗(0, 1)}.

The phase space of our problem is the following Hilbert space,

H : = H1
0(0, 1)× L2(0, 1)× H1

∗(0, 1)× L2(0, 1)×H1
0(0, 1)×

L2(0, 1)× L2(0, 1)× L2(0, 1).

We endow H with the following inner product:

〈W, Ŵ〉H : =ρ

∫ 1

0
v̂vdx+ α

∫ 1

0
uxûxdx+ λ

∫ 1

0
(ϕ − u)(ϕ̂ − û)dx

+ ρ1

∫ 1

0
wŵdx+ k1

∫ 1

0
(ϕx + ψ)(ϕ̂x + ψ̂)dx+

ρ2

∫ 1

0
ẑzdx

+ k2

∫ 1

0
ψxψ̂xdx+ ρ3

∫ 1

0
θ θ̂dx+ τ

∫ 1

0
q̂qdx,

for any W = (u, v,ϕ,w,ψ , z, θ , q)T , Ŵ = (̂u, v̂, ϕ̂, ŵ, ψ̂ , ẑ, θ̂ , q̂)T ∈

H, and norm

‖W‖2
H

: =ρ‖v‖2 + α‖ux‖
2 + λ‖ϕ − u‖2 + ρ1‖w‖

2 + k1‖ϕx + ψ‖
2

+ ρ2‖z‖
2 + k2‖ψx‖

2 + ρ3‖θ‖
2 + τ‖q‖2,

for anyW = (u, v,ϕ,w,ψ , z, θ , q)T ∈ H.

The domain ofA is defined as,

D(A) : =




(u, v,ϕ,w,ψ , z, θ , q) ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ H2(0, 1) ∩H1
0 (0, 1), v ∈ H1

0 (0, 1),

ϕ ∈ H2
a(0, 1) ∩H1

∗(0, 1), w ∈ H1
∗(0, 1),

ψ , z ∈ H2(0, 1) ∩H1
0 (0, 1), θ ∈ H1

a(0, 1),

q ∈ H1
∗(0, 1), wx + z ∈ H1

a(0, 1),

and (ϕx + ψ) ∈ H1
a(0, 1)





.

Lemma 2.1. The operatorA :D(A) ⊂ H → H is monotone.

Proof. Let W = (u, v,ϕ,w,ψ , z, θ , q) ∈ H, then using integration
by parts and the boundary conditions (1.6), we get,

〈AW,W〉H =ρ

∫ 1

0

[
−
α

ρ
uxx −

λ

ρ
(ϕ − u)+

γ0

ρ
v

]
vdx− α

∫ 1

0
uxvxdx

+ λ

∫ 1

0
(v− w)(ϕ − u)dx

+ ρ1

∫ 1

0

[
−

k1

ρ1
(ϕx + ψ)x −

γ1

ρ1
(wx + z)x +

β

ρ1
θx +

λ

ρ
(ϕ − u)

]
wdx

− k1

∫ 1

0
(wx + z)(ϕx + ψ)dx

+ ρ2

∫ 1

0

[
−

k2

ρ2
ψxx −

γ2

ρ2
zxx +

k1

ρ2
(ϕx + ψ)+

γ1

ρ2
(wx + z)−

β

ρ2
θ

]
zdx

− k2

∫ 1

0
zxψxdx+ ρ3

∫ 1

0

[
1

ρ3
qx +

β

ρ3
(wx + z)

]
θdx+ τ

∫ 1

0

[
σ

τ
q+

1

τ
θx

]

qdx

=γ0‖v‖
2 + γ1‖wx + z‖2 + γ2‖zx‖

2 + σ‖q‖2 ≥ 0.

Therefore,A is monotone.

Lemma 2.2. The operatorA :D(A) ⊂ H → H is maximal.

Proof. Let F = (f 1, f 2, f 3, f 4, f 5, f 6, f 7, f 8)T ∈ H. We consider the
stationary problem

W +AW = F, (2.3)

whereW = (u, v,ϕ,w,ψ , z, θ , q). Now, from (2.3), we get,





u− v = f 1, in H1
0(0, 1),

ρv− αuxx − λ(ϕ − u)+ γ0v = ρf 2, in L2(0, 1),

ϕ − w = f 3, in H1
∗(1, 0),

ρ1w− k1(ϕx + ψ)x − γ1(wx + z)x + βθx + λ(ϕ − u) = ρ1f
4,

in L2(0, 1),

ψ − z = f 5, in H1
0(1, 0),

ρ2z − k2ψxx − γ2zxx + k1(ϕx + ψ)+ γ1(wx + z)− βθ = ρ2

f 6, in L2(0, 1),

ρ3θ + qx + β(wx + z) = ρ3f
7, in L2(0, 1),

τq+ σq+ θx = τ f 8, , in L2(0, 1).
(2.4)

From (2.4)1, (2.4)3, and (2.4)5, we have v = u− f 1, w = ϕ − f 3,
and z = ψ − f 5, respectively. Therefore, (2.4) becomes,





(ρ + γ0)u− αuxx − λ(ϕ − u) = ρf 1 + γ0f
1 + ρf 2

︸ ︷︷ ︸
g1

, in L2(0, 1),

ρ1ϕ − (k1 + γ1)(ϕx + ψ)x + βθx + λ(ϕ − u)

= ρ1f
3 + ρ1f

4 − γ1f
3
xx − γ1f

5
x︸ ︷︷ ︸

g2

, in H−1(0, 1),

ρ2ψ − (k2 + γ2)ψxx + (k1 + γ1)(ϕx + ψ)− βθ

= γ1f
3
x + ρ2f

5 + γ1f
5 − γ2f

5
xx + ρ2f

6

︸ ︷︷ ︸
g3

, in H−1(0, 1),

ρ3θ + qx + β(ϕx + ψ) = βf 3x + βf 5 + ρ2f
7

︸ ︷︷ ︸
g4

, in L2(0, 1),

(τ + σ )q+ θx = τ f 8
︸︷︷︸
g5

, in L2(0, 1).

(2.5)
We define the following bilinear form B on H × H and linear

formL onH, whereH : = H1
0(0, 1)×H1

∗(0, 1)×H1
0(0, 1)×L2(0, 1)×

L2(0, 1), as follows:

B((u,ϕ,ψ , θ , q), (u∗ ,ϕ∗ ,ψ∗ , θ∗ , q∗))

: =(ρ + γ0)

∫ 1

0
uu∗dx+ α

∫ 1

0
uxu

∗
xdx+ λ

∫ 1

0
(ϕ − u)(ϕ∗ − u∗)dx

+ ρ1

∫ 1

0
ϕϕ∗dx+ (k1 + γ1)

∫ 1

0
(ϕx + ψ)(ϕ

∗
x + ψ∗)dx

+ ρ2

∫ 1

0
ψψ∗dx+ (k2 + γ2)

∫ 1

0
ψxψ

∗
x dx+ ρ3

∫ 1

0
θθ∗dx

+ (τ + σ )

∫ 1

0
qq∗dx,

and

L((u∗,ϕ∗,ψ∗, θ∗, q∗)) : =

∫ 1

0
u∗g1dx+

∫ 1

0
ϕ∗g2dx+

∫ 1

0
ψ∗g3dx

+

∫ 1

0
g4θ

∗dx+

∫ 1

0
g5q

∗dx,

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1153071
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Mukiawa et al. 10.3389/fams.2023.1153071

for every (u,ϕ,ψ , θ , q), (u∗,ϕ∗,ψ∗, θ∗, q∗) ∈ H.
WhenH is endowed with the following norm,

‖(u,ϕ,ψ , θ , q)‖2
H
=ρ‖u‖2 + α‖ux‖

2 + λ‖ϕ − u‖2+

ρ1‖ϕ‖
2 + k1‖ϕx + ψ‖

2

+ ρ2‖ψ‖
2 + k2‖ψx‖

2 + ρ3‖θ‖
2 + τ‖q‖2,

it is easy to see that B is a continuous and coercive bilinear form
on H × H, and L is a linear continuous form on H. Therefore, by
the Lax–Milgram theorem, there exists a unique (u,ϕ,ψ , θ , q) ∈ H

such that

B((u,ϕ,ψ , θ , q), (u∗,ϕ∗,ψ∗, θ∗, q∗)) =

L((u∗,ϕ∗,ψ∗, θ∗, q∗)), ∀ (u∗,ϕ∗,ψ∗, θ∗, q∗) ∈ H.

It follows from (2.4)1, (2.4)3, and (2.4)5 that v ∈ H1
0(0, 1),

w ∈ H1
∗(0, 1), and z ∈ H1

0(0, 1), respectively. Then, using regularity
theory, it follows from (2.5)1, (2.5)2, and (2.5)3, that u,ϕ,ψ ∈

H2(0, 1). Moreover, from (2.5)4 and (2.5)5, we deduce that θ ∈

H1
a(0, 1) and q ∈ H1

∗(0, 1). Therefore, W = (u, v,ϕ,w,ψ , z, θ , q) ∈
D(A) and satisfies (2.3), that is,A is maximal.

On account of Lemma 2.1 and Lemma 2.2, we apply the semi-
group theory for linear operator, see [27], and immediately have the
following result.

Theorem 2.1. Let W0 ∈ H be given, then the Cauchy Problem
(2.2) has a unique local weak solution,

W ∈ C([0,Tm),H), for some, Tm > 0.

Remark 2.1. One can easily compute [see (3.3)] that the solution

W = (u, ut ,ϕ,ϕt ,ψ ,ψt , θ , q)

of (1.5)–(1.7) is given by Theorem 2.1 that satisfies

‖W(t)‖2
H

≤ C‖W0‖
2
H

, ∀ t ≥ 0.

Thus, the solution W is global, that is, if W0 ∈ H then W ∈

C([0,∞),H).

Now, due to the density of D(A) in H, we can announce the
following result.

Theorem 2.2. Given W0 ∈ D(A), then problem (1.5)–(1.7) has a
unique global solution in the class

W ∈ C([0,∞),D(A)) ∩ C
1([0,∞),H).

3. Stability result

This section is devoted to the exponential stability of system
(1.5)–(1.7). The energy functional associated with problem (1.5) −
(1.7) is defined by

E(t) =
1

2

[
ρ‖ut‖

2 + ρ1‖ϕt‖
2 + ρ2‖ψt‖

2 + α‖ux‖
2 + λ‖(ϕ − u)‖2

]

+
1

2

[
k1‖ϕx + ψ‖

2 + k2‖ψx‖
2 + ρ3‖θ‖

2 + τ‖q‖2
]
.

(3.1)
The main stability result is as follows:

Theorem 3.1. The energy functional E(t) defined in (3.1) decays
exponentially as time approaches infinity. That is, there exist two
constants K, δ > 0 such that

E(t) ≤ Ke−δt , ∀ t ≥ 0. (3.2)

3.1. Proof of Theorem 3.1

We provide several Lemmas to facilitate the proof of Theorem
(3.1).

Lemma 3.1. Let (ϕ,ψ , θ , q) be the solution of (1.5). Then, the
energy functional (3.1) satisfies

E
′(t) = −γ0‖ut‖

2 − γ1‖ϕxt + ψt‖
2 − γ2‖ψxt‖

2 − σ‖q‖2 ≤ 0,

∀ t ≥ 0.
(3.3)

Proof. Multiplying (1.5)1 by ut , (1.5)2 by ϕt , (1.5)3 by ψt , (1.5)4 by
θ , (1.5)5 by q, integrating over (0, 1), using integration by parts and
the boundary conditions (1.6), we have,

1

2

d

dt

(
ρ‖ut‖

2 + α‖ux‖
2 + λ‖(ϕ − u)‖2

)
− λ〈(ϕ − u),ϕt〉 + γ0‖ut‖

2 = 0,

(3.4)

1

2

d

dt

(
ρ1‖ϕt‖

2 + k1‖ϕx + ψ‖
2
)
− k1〈(ϕx + ψ),ψt〉 + γ1〈(ϕx + ψ)t ,ϕxt〉

+ λ〈(ϕ − u),ϕt〉 − β〈θ ,ϕxt〉 = 0,
(3.5)

1
2
d
dt

(
ρ2‖ψt‖

2 + k2‖ψx‖
2
)
+ γ2‖ψxt‖

2 + k1〈(ϕx + ψ),ψt〉 +

γ1〈(ϕx + ψ)t ,ψt〉 − β〈θ ,ψt〉 = 0, (3.6)

1

2

d

dt

(
ρ3‖θ‖

2) + 〈θ , qx〉 + β〈θ , (ϕx + ψ)t〉 = 0, (3.7)

and

1

2

d

dt

(
τ‖q‖2

)
+ σ‖q‖2 − 〈qx, θ〉 = 0. (3.8)

Adding (3.4)–(3.8), we obtain,

d

dt
E(t) = −γ0‖ut‖

2−γ1‖ϕxt+ψt‖
2−γ2‖ψxt‖

2−σ‖q‖2 ≤ 0, ∀ t ≥ 0.

(3.9)
The computations above are done for regular solution.

However, the result remains true for weak solution by density
argument.

Remark 3.1. The lemma above implies that the energy (3.1) is
decreasing and bounded above by E(0).

Now, we construct a suitable Lyapunov functional L such that

a1E(t) ≤ L(t) ≤ a2E(t), ∀ t ≥ 0, (3.10)
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for some a1, a2 > 0, and show that L satisfies for some η > 0

L′(t) ≤ −ηL(t), ∀ t ≥ 0, (3.11)

from which, we obtain

L(t) ≤ L(0)e−̟ t , ∀ t ≥ 0, (3.12)

for some ̟ > 0. The exponential decay of L in (3.12) will then
imply the exponential decay of the energy functional E(t). To
achieve (3.10)–(3.12), we define L as follows:

L(t) : = NE(t)+ N1G1(t)+ N2G2(t)+ N3G3(t), t ≥ 0, (3.13)

for some N,N1,N2,N3 > 0 to be specified later, and

G1(t) = ρ〈ut(t), u(t)〉 + ρ1〈ϕt(t),ϕ(t)〉 + ρ2〈ψt(t),ψ(t)〉 +
γ0

2
‖u(t)‖2,

G2(t) = τρ3〈θ(t),Q(t)〉, where Q(x, t) =

∫ x

0
q(y, t)dy,

G3(t) = −ρ1ρ3〈θ(t),8t(t)〉, where 8(x, t) =

∫ x

0
ϕ(y, t)dy.

(3.14)
Let us mention that routine computations, applying Young’s,
Cauchy–Schwarz, and Poincaré’s inequalities give (3.10). Next, we
provide some Lemmas needed to establish (3.11)–(3.12).

Lemma 3.2. The functionalG1, along the solution of system (1.5)−
(1.7) satisfies the estimate

G′
1(t) ≤−α‖ux‖

2 − λ‖ϕ − u‖2 −
k1

2
‖ϕx + ψ‖

2 −
k2

2
‖ψx‖

2 + ρ‖ut‖
2

+ρ1‖ϕt‖
2 + c1‖ψxt‖

2 + c2‖ϕxt + ψt‖
2 + c3‖θ‖

2, ∀ t ≥ 0.
(3.15)

Proof. Differentiating G1, using (1.5)1, (1.5)2, and (1.5)3, then
applying integration by parts and the boundary conditions (1.6),
we obtain

G′
1(t) =ρ‖ut‖

2 + ρ1‖ϕt‖
2 + ρ2‖ψt‖

2 − α‖ux‖
2 − λ‖ϕ − u‖2 − k1

‖ϕx + ψ‖
2 − k2‖ψx‖

2 − γ1〈(ϕx + ψ), (ϕxt + ψt)〉−

γ2〈ψx,ψxt〉 + β〈(ϕx + ψ), θ〉.
(3.16)

Exploiting Young’s and Poincaré’s inequalities, we obtain,

G′
1(t) ≤ρ‖ut‖

2 + ρ1‖ϕt‖
2 + ρ2‖ψxt‖

2−

α‖ux‖
2 − λ‖ϕ − u‖2 − k1‖ϕx + ψ‖

2

− k2‖ψx‖
2 +

k1

4
‖ϕx + ψ‖

2 +
γ 2
1

k1
‖ϕxt + ψt‖

2+

k2

2
‖ψx‖

2 +
γ 2
2

2k2
‖ψxt‖

2 +
k1

4
‖ϕx + ψ‖

2+

β2

k1
‖θ‖2 = −α‖ux‖

2 − λ‖ϕ − u‖2 −
k1

2
‖ϕx + ψ‖

2−

k2

2
‖ψx‖

2 + ρ‖ut‖
2 + ρ1‖ϕt‖

2+

(
ρ2 +

γ 2
2

2k2

)
‖ψxt‖

2 +
γ 2
1

k1
‖ϕxt+

ψt‖
2 +

β2

k1
‖θ‖2.

(3.17)

By setting c1 = ρ2 +
γ 22
2k2

, c2 =
γ 21
k1
, and c3 =

β2

k1
, we obtain

(3.15).

Lemma 3.3. The functionalG2, along the solution of system (1.5)−
(1.7), satisfies the estimate

G′
2(t) ≤ −

ρ3

2
‖θ‖2 + c4‖ϕxt + ψt‖

2 + c5‖q‖
2, ∀ t ≥ 0. (3.18)

Proof. Differentiation of G2, using (1.5)3 and (1.5)4, and applying
integration by parts leads to

G′
2(t) = −ρ3‖θ‖

2 + τ‖q‖2 − τβ〈(ϕxt + ψt),Q(t)〉 − σρ3〈θ ,Q(t)〉,

where

Q(x, t) =

∫ x

0
q(y, t)dy.

Using Cauchy–Schwarz, we note that

‖Q‖2 =

∫ 1

0

(∫ x

0
q(y, t)dy

)2

dx ≤ ‖q‖2.

It follows by Young’s and Cauchy–Schwarz inequalities that

G′
2(t) ≤− ρ3‖θ‖

2 + τ‖q‖2 +
τβ

2
‖ϕxt + ψt‖

2 +
τβ

2
‖Q‖2+

ρ3

2
‖θ‖2 +

σ 2ρ3

2
‖Q‖2 ≤ −

ρ3

2
‖θ‖2+

τβ

2
‖ϕxt + ψt‖

2 +

(
τ +

τβ

2
+
σ 2ρ3

2

)
‖q‖2.

(3.19)
Hence, we obtain (3.18), with c4 =

τβ
2 and c5 =(

τ +
τβ
2 +

σ 2ρ3
2

)
.

Lemma 3.4. The functionalG3, along the solution of (1.5), satisfies,
the estimate

G′
3(t) ≤−

βρ1

2
‖ϕt‖

2 + ǫ1‖ϕx + ψ‖
2 + ǫ2‖ϕ − u‖2 + c6‖ψxt‖

2 + c7‖ϕxt + ψt‖
2

+c8

(
1+

1

ǫ1
+

1

ǫ2

)
‖θ‖2 + c9‖q‖

2 , ∀ t ≥ 0. (3.20)

Proof. Differentiation of G3, using (1.5)2 and (1.5)4, integration by
parts and boundary conditions, we get,

G′
3(t) =−βρ1‖ϕt‖

2 − ρ1〈q,ϕt〉 + βρ1〈ψt ,8t(t)〉 − ρ3k1〈θ , (ϕx + ψ)〉

−ρ3γ1〈θ , (ϕxt + ψt)〉 + λρ3〈θ ,�(t)〉 + ρ3β‖θ‖
2,

where,

8t(x, t) =

∫ x

0
ϕt(y, t)dy and �(x, t) =

∫ x

0
(ϕ(y, t)− u(y, t))dy.

Exploiting Cauchy–Schwarz inequality, we see that

‖8t‖
2 ≤ ‖ϕt‖

2 and ‖�(t)‖2 ≤ ‖(ϕ − u)‖2.
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Therefore, using Young’s, Cauchy–Schwarz, and Poincaré’s
inequalities, we get

G′
3(t) ≤− βρ1‖ϕt‖

2 +
βρ1

4
‖ϕt‖

2 +
ρ1

β
‖q‖2+

βρ1

4
‖8t‖

2 + βρ1‖ψt‖
2 + ǫ1‖ϕx + ψ‖

2 +
(ρ3k1)2

4ǫ1
‖θ‖2+

ρ3γ1

2
‖θ‖2 +

ρ3γ1

2
‖ϕxt + ψt‖

2

+ ǫ2‖�(t)‖
2 +

(λρ3)2

4ǫ2
‖θ‖2 + βρ3‖θ‖

2

≤−
βρ1

2
‖ϕt‖

2 + ǫ1‖ϕx + ψ‖
2 + ǫ2‖ϕ − u‖2 + βρ1‖ψxt‖

2+

ρ3γ1

2
‖ϕxt + ψt‖

2 +

(
βρ3 +

(ρ3k1)2

4ǫ1
+

(λρ3)2

4ǫ2

)
‖θ‖2+

ρ1

β
‖q‖2.

Thus, taking c6 = βρ1, c7 =
ρ3γ1
2 , c8 =

max
{
βρ3,

(ρ3k1)2

4 , (λρ3)
2

4

}
, and c9 =

ρ1
β
, we obtain (3.20).

Now, we give the proof of Theorem 3.1.

Proof. Using Lemma 3.1 and Lemmas 3.2−3.4, it follows from
(3.13) that

L′(t) ≤− [γ0N − ρN1] ‖ut‖
2 − ρ1

[
β

2
N3 − N1

]
‖ϕt‖

2−

[γ2N − c1N1 − c6N3] ‖ψxt‖
2

− αN1‖ux‖
2 − [λN1 − ǫ2N3] ‖ϕ − u‖2 −

[
k1

2
N1 − ǫ1N3

]

‖ϕx + ψ‖
2 −

k2

2
N1‖ψx‖

2 − [γ1N − c2N1 − c4N2 − c7N3]

‖ϕxt + ψt‖
2 −

[
ρ3

2
N2 − c3N1 − c8N3

(
1+

1

ǫ1
+

1

ǫ2

)]

‖θ‖2 − [Nσ − c5N2 − c9N3] ‖q‖
2.

(3.21)
By setting

N1 = 1, ǫ1 =
k1

4N3
, ǫ2 =

λ

2N3
,

we obtain

L′(t) ≤− [γ0N − ρ] ‖ut‖
2 − ρ1

[
β

2
N3 − 1

]
‖ϕt‖

2−

[γ2N − c6N3 − c1] ‖ψxt‖
2 − α‖ux‖

2 −
λ

2
‖ϕ − u‖2−

k1

4
‖ϕx + ψ‖

2 −
k2

2
‖ψx‖

2

− [γ1N − c4N2 − c7N3 − c2] ‖ϕxt + ψt‖
2

−

[
ρ3

2
N2 − c8N3

(
1+

4N3

k1
+

2N3

λ

)
− c3

]

‖θ‖2 − [Nσ − c5N2 − c9N3] ‖q‖
2.

(3.22)
Now, we choose N3 large so that

β

2
N3 − 1 > 0.

Next, we select N2 large enough such that

ρ3

2
N2 − c8N3

(
1+

4N3

k1
+

2N3

λ

)
− c3 > 0.

Lastly, we choose N very large enough so that (3.10) remain
valid and

γ0N − ρ > 0, γ2N − c6N3 − c1 > 0, γ1N − c4N2 − c7N3 −

c2 > 0, Nσ − c5N2 − c9N3 > 0.

Thus, we have

L′(t) ≤ −η
(
‖ut‖

2 + ‖ϕt‖
2 + ‖ψxt‖

2 + ‖ux‖
2 + ‖ϕ − u‖2 + ‖ϕx + ψ‖

2)

− η
(
‖ϕxt + ψt‖

2 + ‖ψx‖
2 + ‖θ‖2 + ‖q‖2

)
,

(3.23)
for some η > 0. Using (3.1) and Poincaré’s inequality, we get

L′(t) ≤ −η1L(t), ∀ t ≥ 0, (3.24)

for some positive constant η1. Integrating (3.24) over (0, t) yields
for some̟ > 0

L(t) ≤ L(0)e−̟ t , ∀ t ≥ 0. (3.25)

Hence, the exponential estimate of the energy functional E(t) in
(3.2) follows from (3.25) and the equivalent relation (3.10).
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