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Surrogate models are a must-have in a scenario-based safety simulation

framework to design optimally integrated safety systems for new mobility

solutions. The objective of this study is the development of surrogate models

for active human model responses under consideration of multiple sampling

strategies. A Gaussian process regression is chosen for predicting injury values

based on the collision scenario, the occupant’s seating position after a pre-crash

movement and selected restraint system parameters. The trained models are

validated and assessed for each sampling method and the best-performing

surrogate model is selected for restraint system parameter optimization.
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surrogate modeling, active human model, prediction of injury values, restraint system
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1. Introduction

With the invention of the automobile in 1889, Carl Benz ushered in a new age ofmobility.

Since then, vehicle and occupant safety has played an important role, resulting in various

vehicle safety concepts, laws and regulations, each of which has reduced traffic accidents

and fatalities, and today enables the concept Vision Zero [1] with no fatalities on the road.

Nowadays it is much safer to enter a vehicle than it was 30 years ago (see Figure 1). Passive

Safety devices like the belt or airbags decreased the fatalities on the road. Active vehicle safety

functions include, for example, an adaptive cruise control (ACC) [3], a forward collision

warning (FCW) and an autonomous emergency braking (AEB) [4]. In contrast to passive

safety systems, active vehicle safety functions primarily act in the so-called pre-crash phase

and aim to prevent collisions or mitigate collision consequences by reducing the impact

speed, for example. Those systems act prior to an impact and therefore have much more

possibilities to influence the crash outcome.

Integrated vehicle safety systems that combine active and passive safety components,

called integrated vehicle safety–hold great promise for reducing the number and severity

of traffic accidents [5]. Therefore, integrated safety is investigated in detail in various

international research projects, e.g. the OSCCAR [6] and VIRTUAL [7] project. As specified

in the Euro NCAP roadmap, future vehicle safety systems need to fulfill new requirements

and perform robust in existing and future real-world driving scenarios. As a result, virtual
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FIGURE 1

Fatalities on German roads since 1950 [2]. Detailed description of the data-flow in the simulation framework for scenario-based safety performance

assessment, combining scenario, vehicle crash and occupant restraint system simulation. The arrows describe the in- and outputs to the specific

simulator instances.

and simulative test methods [8] will become increasingly important

in the future, as they offer a more efficient and cost-effective

way to evaluate and optimize the performance of these systems.

Often such an approach is called a holistic scenario-based analysis

and safety performance assessment of novel integrated safety

system solutions.

The differences in initial posture in the pre-crash phase can

have an influence on the risk of injury during the in-crash phase [9].

Therefore, the pre-crash phase is so important, to consider for the

design of holistic safety systems. A braking or steering maneuver

may cause the occupant to experience lateral or longitudinal

shifts and may not be seated in the default position when the

collision occurs.

The proposed simulation framework (see Figure 2B) is an

attempt to combine all relevant simulation steps from normal

driving to safety-critical events (see Figures 2A, B) and [10].

The simulations should help accelerate and digitize the currently

separated areas of active and passive vehicle safety system by

using one common framework. The framework consists of three

simulation entities.

The scenario simulation in Carmaker (Figure 2Ba) includes

two vehicles, equipped with active safety systems, and provides

the vehicle trajectory in the pre-crash phase as well as the

resulting collision configuration. Subsequently, a FEM vehicle crash

simulation in LS-Dyna (Figure 2Bb) is performed to calculate the

crash pulse of the interior survival space. Finally, the acceleration

signals from the pre- and in-crash phase are transferred to a

Madymo vehicle interior model, including an active human model

(AHM), which is positioned on the driver seat (Figure 2Bc) and for

a chosen set of restraint system parameters the HIC36 and chest

deflection are computed.

The computational cost of simulating passenger movement and

injury prediction values using FEM and MBS simulations can be

very high. For example, the passenger movement simulation can

take up to 3 h to simulate only 3 s of real-world time, and a single

crash simulation can take up to 20 h on 10 CPUs to simulate

only 180ms of real-world time. Due to the enormous diversity

in collision configurations and occupant behavior in real-world

accidents, the number of considered scenarios and thus, the effort

in simulation significantly increases, e.g., 300 scenarios with 3 active

safety system variants result in 900 FEM and MBS simulations1

900∗20h ≈ 2y CPU time. These time requirements can make it

challenging to perform scenario-based assessments of integrated

vehicle safety systems with conventional simulation mehods, as

many simulations may be required to cover different scenarios and

system configurations.

Since many of the simulation codes used in vehicle safety are

proprietary and closed-source. Non-intrusive, data-based surrogate

models are often the only possible choice. The final framework in

Figure 3 used for an efficient approximation of the human body

model response is then obtained by exchanging the FEM and MBS

simulations for a suitable data-based surrogate model.

As shown in [11] the crash pulse of the FEMmodel of the crash

can be predicted in a cost- and time-efficient manner by Gaussian

Process Regression (GPR).

The paper has three primary foci:

1. The evaluation of the suitability of surrogate models for

the prediction of the human body model response, i.e., the

MBS simulation;

2. The tradeoff between the number of samples in the training and

the accuracy of the data-driven surrogate models.

1 One FE Simulation runs for approx 20h on 10 CPUs to simulate 180ms.
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FIGURE 2

(A) Scenario simulation, in Carmaker the behavior of the colliding vehicles is simulated in the pre-crash phase. The collision configuration at the

crash is input to a LS-Dyna crash simulation. Furthermore the trajectory of the vehicles under test is input to the Madymo simulation to estimate/

simulate the occupant movement. In the final step the crash pulse from the in-crash simulation, the position of the occupant at the crash plus the

parameters of the restraint system are simulated to calculate the injury severity. (B) Detailed description of the data-flow in the simulation framework

for scenario-based safety performance assessment, combining scenario, vehicle crash and occupant restraint system simulation. The arrows

describe the in- and outputs to the specific simulator instances.

3. Can the developed surrogate models be applied for an

efficient optimization of the restraint system parameters for a

given scenario?

Other published studies on surrogate model development for

human body model [12] response prediction in crash situations

performed a variation of the restraint system parameter to predict

the Life Years Lost [13] or varied the crash pulse and safety system

usage [14]. In Berthelson et al. [15] a surrogate model selection

algorithm was applied for HIC36 prediction based on the collision

configuration and found the GPR as best-suited surrogate model.

Similar to [11] a Gaussian process regression (GPR) model is

used to learn the mapping from inputs to outputs. The concrete

data set D :X → y of the learning problem consists of the input

values X ∈ R
9, which are the initial head position dPC

head
∈ R

2,

the collision configuration pCollision ∈ R
3, and selected restraint

system parameters pRestraint ∈ R
4, and the output values y =

{HIC36,CD} ∈ R
2, i.e. the head injury criterion (HIC36) and chest

deflection (CD).

Typically, the accuracy of data-driven surrogate models

increases with the number of samples. As vehicle safety simulations
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FIGURE 3

Surrogate model-enhanced framework for e�cient approximation of human body model response based on the driving and collision scenario.

are rather expensive and time consuming, there exists a tradeoff

between the size of the generated training set and the surrogate

models’ accuracy. The design of experiments addresses that conflict

and provides multiple sampling methods that aim to cover the

entire parameter space while maximizing the information gain. In

this study, three sampling methods–a d-optimal design, a space-

filling design and an adaptive sampling scheme—are compared

and assessed regarding their suitability for surrogate model

development for occupant safety.

In addition to a variation of restraint system parameter and

the collision configuration, this study includes a variation of the

occupant’s posture resulting from the pre-crash scenario, which is

in the simplest case represented by the head position dPC
head

∈ R
2.

The paper is structured in the following way. Section 2 explains the

methods for the simulation framework, the considered sampling

and training methods for data-based surrogate modeling, and

the restraint system optimization process. Results with respect to

surrogatemodel performance and restraint system optimization are

presented in Section 3. The paper concludes with a discussion in

Section 4.

2. Methods

The surrogate modeling process can be divided into three

steps, training data generation, model training and validation.

Since conventional vehicle safety system simulations, such as FEM

and MBS, are computationally expensive, the training set should

be as small as possible while ensuring broad coverage of the

entire parameter space. In order to address this tradeoff, different

sampling methods for selecting the training data are applied.

Subsequently, the surrogate model is trained and validated with

the generated data. Finally, the resulting models are compared with

respect to performance on previously unseen data.

2.1. Simulation framework for training data
generation

The training data generation process involves multiple

simulation steps that are illustrated in Figure 1. The simulation

framework consists of a scenario simulation, a vehicle crash

simulation, and an occupant restraint system simulation that

includes both the pre- and in-crash phase. A more in-depth

explanation of the simulation framework is given in Wimmer et al.

[10] and Hay [16].

The generation process of synthetic driving and collision

scenarios (Figure 2Ba) involves two conflict partners, sampling

of different parameter distributions (e.g. velocity, acceleration,

steering angle), which are constrained to physical limits, and

includes a CarMaker vehicle dynamics model. The generated

scenarios are then filtered so that only the remaining 285 driving

scenarios resulting in the configuration in Figure 4 are considered

as baseline for the restraint system parameter optimization.

The scenario simulation (Figure 2Ba) provides vehicle

trajectories with corresponding accelerations av ∈ [0, t0], that

are transferred to the occupant restraint system simulation. In

addition, the last time step of the scenario simulation describes

the collision configuration in dependence of the initial velocity,

the angle and offset of the target and ego vehicle. The parameters

describing the collision configuration were chosen such that the

results are bound by a subset of all possible configurations in the

scenario simulation results, which are limited to the indicated

configuration ranges in Figure 4. The impact angle is chosen within

the range of common frontal barrier crash tests.

The collision configuration defines the initial condition of

the vehicle to vehicle crash simulation (Figure 2Bb), which is

performed in LS-Dyna (Version 9.2) with two Honda Accord

models [17]. In order to reduce the complexity in this initial

proof of concept only one vehicle type without a variation of

the mass is considered. A vehicle crash FEM simulation however

requires large computational efforts and results in simulation times

of more than 20 h. To be able to consider a broad variation

of loading conditions in very short time frames, the surrogate

model developed in [11] was used to approximate the crash

pulse in an efficient way. The predicted crash pulses ap ∈
[t0, tend] are then appended to the pre-crash time signals av
and applied to a Madymo occupant restraint system simulation

model (Figure 2Bc). The Madymo model consists of a vehicle

interior, defined by multi-bodies and an FE instrument panel.

The Madymo AHM (Version 3.1) is positioned on the driver

seat and a FE three-point-belt with bar elements between d-ring
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FIGURE 4

Definition and parameter range of the collision configuration depending on the initial velocity, angle and o�set. Two mid-size sedan Honda Accords

(model year 2014) are used as ego (blue) and target vehicle (red).

and buckle is attached, see Figure 5. Furthermore, a generic

and scalable driver airbag with a volume of approximately 40 l

is installed.

The model allows a modification of restraint system parameters

pRestraint , such as the airbag time to fire ABTFF , the airbag

vent diameter dVent , the retractor pretensioner load limiter

PTU and the retractor pretensioner time to fire PTTTF . The

occupant restraint system simulation is performed with Madymo

Version 7.8.

During the simulation, the relative head displacement dPC
head

=
{headx, heady} is measured, see Figure 6, and used as representation

of the occupant’s seating position resulting from the pre-crash

scenario. The head position is chosen since a displacement of

the head is likely to result in a variation of the point of

impact on the airbag and potentially in a higher probability of

sliding alongside the airbag, contact with the vehicle interior and

increased injury probability. However, the occupant motion and

head trajectory depend on the pre-crash acceleration av. Since

the generation of acceleration signals that result in specific head

positions is nontrivial, the available pre-crash acceleration signals

were analyzed and nine grid-like samples that cover the range of

motion were selected for training data generation (see Figure 6).

The selected pre-crash scenarios include maximum longitudinal

decelerations of 8.5 m
s2

and maximum lateral accelerations of

4.5 m
s2

and are therefore presumed to enclose the relevant

parameter space. The surrogate model is then assumed to learn

the correlation between the training samples for all head positions

in the defined range in order to predict the respective AHM

response. Although the Madymo simulation provides multiple

injury criteria, this study only focuses on the HIC36 and

chest deflection.

For each sampling methodMadymo simulations are performed

based on the nine selected pre-crash accelerations and crash pulses

resulting from collision configurations in the range of Figure 4.

In addition, a variation of the restraint system parameters is

performed. The retractor pretensioner load limiter, the airbag vent

diameter and the airbag and retractor pretensioner time to fire

(ttf) are each varied around a standard setup without considering

the current technical limitations to a full extent. The training

data set then consists of a combination of the input parameter in

Table 1 and the corresponding HIC36 and chest deflection values

for each simulation.

The prediction framework, including the trained surrogate

model is illustrated in Figure 3. For each scenario, a simulation

of the occupant movement in the pre-crash phase is required

to determine the head position at the time of collision. A

computational efficient approximation of the occupant movement

is achieved by usage of a simplified physics-based occupant model

that is similar to the one described in Cyrén and Johansson [18].

The surrogate model will then predict y = {HIC36,CD} ∈ R
2,

i.e., the head injury criterion (HIC36) and chest deflection (CD)

for given X, i.e., the initial head position dPC
head

, the collision

configuration pCollision, and a chosen set of restraint system

parameters pRestraint . In vehicle safety simulations, injury values can

vary greatly, with very high injury values resulting, for example,

from low airbag pressure or a displaced impact position and

thus contact with the steering wheel or vehicle interior. Since

state-of-the-art restraint systems are only designed and optimized
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FIGURE 5

Sketch of the Madymo vehicle interior with AHM positioned on the

driver seat and attached seatbelt. The local coordinate system for

measurement of the head displacement is located at the initial

position of the center of gravity of the head and moves with the

rigid vehicle.

for standard load-cases, discontinuities and high injury values,

especially in the marginal area, may therefore occur during

scenario-based tests. With the help of the proposed surrogate

modeling method, the limits of current safety technologies can be

demonstrated and new concepts for better protection of vehicle

occupants can be developed.

2.2. Sampling methods

Mathematical surrogate models solely rely on the quality of the

input data X and output data Y. In engineering, the training data

is either available from prior simulation or experimental results

or has to be generated only for surrogate modeling purposes. In

this study, simulation for machine learning is done, i.e., a Madymo

simulation with a computation time of ∼2 his performed for

each sample in the training set. The samples have to be chosen

strategically to minimize the computational expenses for training

data generation.

Design of experiments methods (see e.g., [19, 20]), aim at

maximizing the information extracted from resource-constrained

systems. Therefore, design of experiment methods are well suited

to select the most suitable parameter combination to maximize

the information extraction in the surrogate modeling process. The

design of experiments offers a wide range of statistical sampling

methods, which can be divided into static and adaptivemethods. D-

optimal design and space-filling design are static sampling methods

that determine the sample distribution a-priori; a third sampling

FIGURE 6

Head trajectories in the pre-crash phase measured in the local

coordinate system. Markers indicate the end positions at the time of

collision that are used for training.

method used in this publication, “Adaptive Sampling”, adapts the

samples in an online step. A challenge in occupant simulations is

that not all parameters are continuously adjustable. Thus, sampling

methods that consider constraints and bounds need to be chosen,

or existing methods need to be modified. As learning is new in

occupant simulation the accuracy of the resulting surrogate models

in dependence on the chosen sampling strategy is assessed using a

test dataset.

2.2.1. D-optimal design
The d-optimal is a computer-aided design, which is well

suited for constrained design spaces [21]. The optimization-based

design maximizes the determinant D =
∣

∣XTX
∣

∣, also known as

information matrix, which is equal to minimizing the variance of

the parameter estimates. A d-optimal design is thus not orthogonal,

and correlations of the parameter estimates are possible. The

chosen samples are mostly present at the edges of the parameter

space, with only a few samples in the inner part. In this study, a

d-optimal design with 100 samples was created in the commercial

tool Cornerstone (Version 7.1).2

2.2.2. Space-filling design
Space-filling approaches, such as Latin Hypercubes, provide

better coverage of the inner parameter space than d-optimal designs

[22]. With higher dimensionality of a dataset, the probability of

insignificant parameters is increasing. Thus, a space-filling design

will yield a higher information gain with the same computational

effort. Hence, surrogate models trained with a space-filling dataset

are expected to make predictions with higher accuracy in the inner

part of the parameter space than a model trained on d-optimal

data. However, samples are less represented at the parameter

2 https://www.camline.com/products/cornerstone/,

accessed 2023/01/20.
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TABLE 1 Considered input parameter ranges for human body model response prediction.

Pre-crash occupant position at t0 Collision configuration at t0 Restraint system parameter

Head
Position
x [mm]

Head
Position
y [mm]

Impact
angle
[◦]

O�set
[mm]

Initial
velocity
[km/h]

Airbag
ttf [ms]

Vent
diameter
[mm]

Retractor
pretensioner

ttf [ms]

Retractor
pretensioner

load
limiter [N]

Min −45.7 −67.3 0 −960 27 5 35 5 3,500

Max 8.6 59.9 30 960 56 15 45 15 5,500

FIGURE 7

Visualization of an adaptive sampling process, which determines the next sample based on the maximum variance.

space edges, so the space-filling surrogate model might return

more inaccurate extrapolations. A space-filling design, however,

requires all parameters to be adjustable to all possible values

in the chosen interval. Since only nine head positions are used

for training, see Section 2.1 “Simulation Framework for Training

Data Generation”, the space-filling design has to be modified.

Instead of using the head position calculated by the space-filling

design, the Euclidian-norm measured nearest neighbor in the

available positions in Figure 6 is selected. Two datasets with

100 samples each are generated with the space-filling design

in Cornerstone, one for training and one for validation of the

surrogate models.

2.2.3. Adaptive sampling
In contrast to statistical sampling methods, which determine

the sample size and location in advance, an adaptive sampling

scheme allows to sequentially sample the parameter space and take

the surrogate model accuracy and prediction variance into account

[23]. Surrogate models such as GPRs provide the variance—an

estimate of the model’s accuracy— in addition to the prediction,

so that the input parameter combination with the highest variance

can be determined. Sampling iteratively at the points of maximum

variance, the model accuracy is increased until a termination

criterion is reached, see the example in Figure 7.

Possible termination criteria include the maximum variance

and the change in hyperparameters that are indicators for the

model performance and under- or overfitting. A better choice

for estimating the true model accuracy is the cross-validation

error. Hence, in each iteration, a leave-one-out cross-validation

is performed to approximate the prediction error. The adaptive

sampling algorithm is implemented in python.

2.3. Gaussian process regression

A Gaussian process regression (GPR) is a Bayesian approach

to regression which infers unseen data given a chosen prior

distribution [24]. In comparison to other machine learning

algorithms, Gaussian processes provide a variance in addition to

the mean prediction, which can be thought of as an estimate

of the model’s accuracy. Furthermore, GPRs are well suited for

smaller datasets.

Assuming a zero mean, the joint multivariate prior for the

training outputs y and test outputs f reads as
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[

y

f∗

]

∼ N

([

0

0

]

,

[

K (X,X) + σ 2
n I K (X,X∗)

K (X∗ ,X) K (X∗ ,X∗)

])

, (1)

with the training inputs X, noise σ 2
n , test inputs X∗ and the

covariance function or kernel K. With σ 2
n = 0 the GPR predictions

will pass through all samples. Notice that most of the information

is embedded in the kernel K. Therefore, the selection of the kernel

has major influences on the accuracy of a gaussian process. Two

popular choices of the kernel are the squared exponential (SE) and

Matern kernel

KSE

(

x, x
′
)

= exp



−
d
(

x, x
′
)

2l2



 (2)

KMatern

(

x, x
′
)

=
21−ν

Ŵ (ν)





√
2νd

(

x, x
′
)

l





2

Kν





√
2νd

(

x, x
′
)

l





(3)

with the length scale l, the Euclidean distance d, the gamma

function Ŵ and the modified Bessel function Kν . The parameter

ν controls the function’s smootheness so that for ν → ∞ the

Matern kernel converges to the squared exponential kernel. During

training, the kernel parameters are optimized by minimizing the

negative log-likelihood

log p
(

y
∣

∣X
)

=−
1

2
yT
(

K+σ 2
n I
)−1

y−
1

2
log

∣

∣K+σ 2
n I
∣

∣−
n

2
log 2π ,

(4)

with the number of samples n. Finally, with equation (1) the

conditional joint posterior distribution is then computed as

f∗|X, y,X∗∼ N

(

f∗, cov
(

f∗
))

, (5)

f∗ = K (X∗,X)
[

K (X,X) + σ 2
n I
]−1

y (6)

cov
(

f∗
)

= K (X∗,X∗)
[

K (X,X) + σ 2
n I
]−1

K (X,X∗) (7)

The covariance can later be used to assess the model quality

or generate new training samples in regions with higher model

uncertainty [25].

2.4. Surrogate model training process

In order to develop a surrogate model for occupant safety

system simulations, training data is generated with the Madymo

AHM for all three sampling methods. Subsequently, a GPR is

trained on each of the training datasets consisting of the input data

in Table 1 and the corresponding HIC36 and chest deflection as

output. The chest deflection is assumed to be smoothly distributed

over the entire parameter range and thus, a squared exponential

kernel is chosen for constructing the GPR. The HIC36 response

surface is however believed to have a rougher shape, due to

nonlinearities resulting from airbag and steering wheel contact.

Thus, a Matern kernel is used to model the HIC36 response. After

TABLE 2 Training and joint test data sets.

Training data Joint test data

d-optimal Space filling, adaptive sampling, test set

Space filling d-optimal, adaptive sampling, test set

Adaptive sampling d-optimal, space filling, test set

training, all surrogate models are validated on the test set which

contains 100 space-filling samples. In order to assess the model

quality in a more general and sampling method independent way,

all the samples that were not used for training are added to the test

dataset, which results in the training and joint test sets in Table 2.

The accuracy of the surrogate models is then assessed using the

mean absolute error (MAE) and coefficient of determination (R2

score). By analyzing the kernel hyperparameters and the shape of

the response surface overfitting is evaluated.

2.5. Restraint system optimization

The best performing model is later applied for an optimization

of the restraint system parameters. Since the objective function

should reduce the combined AIS2+ injury risk for HIC36 and chest

deflection, first the individual injury risks [26] are computed as

PHead,AIS2+ = N

(

ln (HIC36) − 6.96352

0.84664

)

, (8)

PThorax,AIS2+ = N

(

1

1+ e(1.8107−0.4439∗Dmax)

)

. (9)

A joint injury risk [27] can then be calculated with

Pjoint,AIS2+ = PHead,AIS2+ + PThorax,AIS2+

−
(

PHead,AIS2+ × PThorax,AIS2+
)

. (10)

To find the optimal restraint system configuration that best

protects the occupant, an optimizer is used to minimize the AIS2+
injury risk for each given collision scenario. Since surrogate model

are used to approximate the injury risk, an optimizer that is not

gradient-based and can handle discontinuities is required. Thus,

the differential evolution algorithm [28], a global optimizer, is used

in this work.

First an objective function f is defined. Then the following

algorithm is performed.

Generate initial population x of size n

While not termination criterion

For j= 1:n

Generate three random integers i1, i2, i3 ∈ (1, n) with

i1 6= i2 6= i3 6=k

Generate random integer irand ∈ (1, n)

For k= 1:n_parameter

x′j,k =

{

xj,i3 + F∗(xj,i3xj,i3 ) if rand(0, 1) < CR or i = irand
xj,k

xj = x′j if f (xj) ≥ f (x′j)
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FIGURE 8

Exemplary response surface of HIC36 and chest deflection in two dimensions for the retractor pretensioner load limiter and the airbag time to fire.

with the crossover probability CR and the differential weight F.

Typical settings are CR = 0.9 and F = 0.8.

3. Results

Before generating the entire training dataset, a two-dimensional

subset of the parameter space, consisting of the retractor

pretensioner load limiter and the airbag time to fire, was densely

sampled to get an understanding of the resulting response surfaces.

In Figure 8 the response surfaces of HIC36 and chest deflection

are shown over the retractor pretensioner load limiter (ll) and the

airbag time to fire. The response surface of the HIC36 is rougher

and nonlinear in comparison to the smooth response surface of

the chest deflection. This justifies the different kernel choice for

modeling the HIC36 and chest deflection distribution.

Subsequently, the sampling methods are used for training data

generation. As expected, the d-optimal design samples mostly at the

edges, whereas the space-filling design covers the entire parameter

space (see Figure 9, Appendix 1).

The adaptive sampling strategy on the other hand, chooses its

next sample based on the variance of the GPR prediction, which

continuously increases with the distance to given samples. Thus,

an adaptive sampling algorithm will start to sample the edges

before covering the inner part of the parameter space. A nine-

dimensional parameter space with 29 vertices will thus cause the

algorithm to sample at the edges almost exclusively for the first

few hundred simulations. The adaptive sampling algorithm was

aborted after 500 simulations, as the ratio of computational effort to

prediction accuracy didn’t significantly improve. The difference in

the response surface of HIC36 and chest deflection is also reflecting

in the error curve in Figure 10. During the first 50 iterations the

chest deflection MAE is already reduced to a low value and is

slightly decreasing in the remaining iterations. The rougher shape

of the HIC36 response surface however requires a more significant

number of samples to reach the desired accuracy.

The three datasets that are generated with a d-optimal, space-

filling and adaptive sampling, result in different distributions of the

HIC36 and chest deflection (see Figure 11).

The majority of the HIC36 values are allocated in a range

below 750. Figure 11 suggests that high HIC36 values only occur

at the edges of the input parameter space, as no HIC36 values

above 500 are observable in the space-filling dataset and only

the d-optimal design shows HIC36 values up to 1,800. As the

adaptive sampling algorithm chooses the first samples primarily

at the edges of the parameter space, the adaptive sampling

dataset also includes a few samples with larger HIC36 values.

The chest deflection on the other hand is well distributed over

the entire domain, where only the d-optimal data set shows very

small values.

3.1. Surrogate model performance

A GPR is trained on each of the d-optimal, space-filling

and adaptive sampling datasets and validated on the test sets in

Table 2. For zero noise the GPR predictions will go through every

given sample in the training set. Therefore, the analysis of the

predicted results focuses on the test data. Overfitting can still be

excluded as the lengthscales of the surrogate model are each in a

moderate range around 1 [24], which results in a smooth response

surface (see Appendix 2). Figure 12 shows the prediction of HIC36

and chest deflection over the test data. The red line represents

identical prediction and simulation results. In general, all surrogate

models are able to predict the chest deflection values in the entire

range with higher accuracy, while the HIC36 predictions are only

accurate in the lower range. Since only the d-optimal design data

incorporates very large HIC36 values and low chest deflections, the

GPR trained on the d-optimal dataset tends to overshoot the HIC36

and underestimate the chest deflection values.

Both the models trained on the space-filling and adaptive

sampling dataset predict HIC36 and chest deflection with higher

accuracy, resulting in smaller MAE and larger R2 score (see
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FIGURE 9

Distribution of vent diameter and impact angle for di�erent sampling methods.

FIGURE 10

HIC36 and chest deflection MAE of the test set at each iteration of the adaptive sampling algorithm.

Tables 3, 4). The model trained on the space-filling set shows a

larger error on the d-optimal and adaptive sampling set, which

contain more samples at the edges of the parameter space and HIC

values in a wider range. However, it performs well on the test set.

The model trained on the adaptive sampling set shows the best and

most robust performance on all test sets (see Appendix 4).

The surrogate model reduces test data computation time from

the order of hours with Madymo to milliseconds for predicting

HIC36 and chest deflection.

3.2. Restraint system optimization

Once efficient surrogate models are available it is possible to

optimize the restraint system parameters individually for all 285

collision scenarios. For a given head position and collision scenario

a differential evolution algorithm uses the injury value predictions

by the GPR to find the optimal restraint system parameter

configuration that minimizes the joint AIS2+ injury risk for the

given load-case. A convergence plot of the differential evolution

algorithm is shown in Figure 12A. On average, 30 iterations are

needed to find the optimal restraint system configuration. Thus,

with a population size of 50, an average of 1,500 evaluations

are performed per load case. This is only possible with the help

of time-efficient surrogate models. Due to the fast prediction of

injury values, an optimization is possible in 0.9973 ± 0.2976 s. The

predicted injury risk distribution before and after the optimization

is illustrated in Figure 13.

For all trajectories and collision scenarios the joint AIS2+
injury risk can be reduced by 4% in average. The analysis of

the optimized restrained system parameter showed no direct

correlation to the input parameter, so a categorical adaptation of the

restraint system for specific parameter regions does not make sense.

As the overall simulation process includes multiple FEM and

MBS simulations the computation of high-fidelity results is rather

expensive. Therefore, only a subset of the available scenarios, which
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FIGURE 11

Histogram of HIC36 and chest deflection for di�erent sampling methods.

showed the largest injury risk reduction, was chosen for validation

of the optimization results. As illustrated in Figure 14 the joint

AIS 2+ injury risk computed with the surrogate model predictions

mostly shows lower values than the simulation. However, the

surrogate model manages to capture the overall relations and is able

to findminima in the predicted response surface that correlate with

the high-fidelity FEM and MBS simulation.

4. Discussion

In this study, a surrogate model for predicting the human

body model response in frontal collisions was developed.

In comparison to [13–15] the developed surrogate model

approximates the HIC36 and chest deflection of the driver

based on the occupant’s head position resulting from pre-crash

movement, the collision configuration and selected restraint system

parameters. Furthermore, the developed surrogate model was used

for a subsequent optimization of the restraint system parameters.

The surrogate model was trained on simulations with a Madymo

AHM, which is considered the baseline. Therefore, the model

accuracy is not expected to surpass the accuracy of the Madymo

simulation model.

The main focus of this study was the assessment of different

sampling strategies to address the tradeoff between computational

effort for training data generation and resulting surrogate model

accuracy. Overall, the models trained on the d-optimal, space-

filling and adaptive sampling dataset performed well in predicting

the chest deflection, which has a smooth response surface (see

Figure 8).

The model trained on the d-optimal dataset shows the lowest

accuracy on all test sets (see Table 3). Due to a large number of

samples at the edges of the parameter space (see Figure 9), the d-

optimal model is not able to accurately interpolate in the inner part

of the parameter space.

The prediction of the HIC36 is less accurate, especially in

the region of high HIC36 values (see Figure 12). These high

HIC36 values occur at the edges of the parameter space, leading

to an extrapolation of the surrogate models. The high injury

values can be explained by the variation of the restraint system

parameters, since, for example, as shown in Figure 8, a low

seat belt load limit (pretensioner ll) causes a severe impact

on the airbag and a direct contact with the steering wheel,

while a too high limit restraints the occupant too tightly to the

seat and thus causes moderate head accelerations and a high

chest deflection.

The model based on the space-filling strategy provides the

chest deflection with an acceptable accuracy but fails to predict

a HIC36 larger than 500 (see Figure 12), as the space-filling

training set does not contain any larger values, as shown in

Figure 11. Since the training set is well distributed in the entire

parameter space, the model is able to accurately interpolate in

the desired range. All large HIC36 values are distributed at the

edges of the parameter space and thus only present in the d-

optimal and partially in the adaptive sampling data set (see

Figure 11).

Therefore, the adaptive sampling model performs better on

the test datasets. However, the prediction of large HIC36 values is

not sufficiently accurate. Furthermore, the creation of the adaptive

sampling data set required five times more simulations than the

d-optimal and space-filling design.

One drawback of the developed surrogate models is the

low accuracy in the higher HIC36 range, which are mostly

occurring at the edges of the parameter space and are

underrepresented in all training sets. By generating more

samples with high HIC36 values, the model accuracy could

be improved in this range. As the correlation between input

parameter and injury values is unknown, this task is expected to

be challenging. One possible solution could be the application of

an adaptive sampling algorithm with the objective of maximizing

the HIC36.
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FIGURE 12

(A) Validation of the developed surrogate models for HIC and chest deflection (cd) prediction on the data sets in Table 2. (B) Convergence plot of the

di�erential evolution algorithm for one exemplary collision scenario.

Without an accurate prediction of the entire HIC36 range,

a valid prediction range in the parameter space must be

defined to apply the model for quantitative safety critical

analysis. An a priori classification of the HIC36 range and

training of a second model for large HIC36 values might

be possible.

For qualitative analyses considering the inner part of the

parameter range the accuracy of the developed surrogate model

appears to be sufficient, so that the model can be applied

for injury value prediction and restraint system optimization.

The developed surrogate model is able to approximate the

HIC36 and chest deflection with a computation time reduction

of roughly 99% compared to a simulation with the Madymo

AHM. With the reduced computation time the surrogate model

enables large scale scenario-based assessment of vehicle safety

systems. In addition, the surrogate model allows an efficient

optimization of the restraint system for a given collision

scenario and thus a reduction of the resulting joint AIS2+
injury risk. The comparison of the predicted and optimized

joint AIS2+ risk with the FEM and Madymo results showed

that the surrogate model manages to capture the basic trends

and reduces the joint AIS2+ injury risk in the validation
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TABLE 3 HIC36 mae of the trained models on the available datasets.

d-optimal set Space-filling set Adaptive sampling set Test set Joint set

d-optimal 0 286.10 136.81 271.97 284.82

Space filling 186.58 0 101.83 23.97 104.57

Adaptive sampling 133.14 34.94 0 39.80 70.63

TABLE 4 Chest deflection mae of the trained models on the available datasets [mm].

d-optimal set Space-filling set Adaptive sampling set Test set Joint set

d-optimal 0 12.52 20.78 12.77 18.49

Space filling 9.60 0 5.85 2.38 5.97

Adaptive sampling 8.53 1.97 0 1.72 4.18

FIGURE 13

Predicted joint AIS2+ injury risk distribution with standard and

optimized restraint system parameters.

simulations, even though the predicted injury values deviate from

the actual values.

4.1. Limitation of the study

One drawback of the developed surrogate models is the

low accuracy in the higher HIC36 range, which are mostly

occurring at the edges of the parameter space and are

underrepresented in all training sets. By generating more

samples with high HIC36 values, the model accuracy could

be improved in this range. As the correlation between input

parameter and injury values is unknown, this task is expected to

be challenging. One possible solution could be the application

of an adaptive sampling algorithm / active learning techniques

with the objective of maximizing the HIC36. For d-optimal

sampling further research is required to assess whether an

increased sample size in a d-optimal sense could improve the

model performance.

If a higher accuracy of the training set is desired, the entire

process can be repeated with a more detailed occupant model,

i.e., a finite element model. Then, however, the computation

time for training data generation would increase tremendously.

In addition, the surrogate model is only valid for the chosen

restraint system, vehicle type and occupant –the training data

and result prediction was on the 50% AHM with a restraint

system consisting of fixed components, i.e., one airbag and

one retractor pretensioner. For a broad-scale application of the

presented method, the sensitivity of the surrogate models to

different occupant sizes (starting from 5% and 95% parameters

should be investigated, in combination with varied restraint

systems components and parameters. So far any change in

the vehicle structure or restraint system configuration, e.g.,

new type of airbag, new training of the surrogate model

is required.

To date, only pairwise evaluations of the forecasted and

optimized combined AIS2+ risk have been conducted. In a further

study the optimization of the safety system should be performed

with a high-fidelity model or a multifidelity method [29]. R2

values for HIC and chest deflection prediction are presented in the

Tables 5, 6 for all available datasets.

5. Conclusion

As driver assistance systems and autonomous vehicles become

more prevalent, the safety systems in vehicles are becoming

increasingly intricate. This complexity offers the potential to

enhance occupant safety by utilizing sensor data from active safety

systems to adjust passive safety components. To effectively evaluate

the performance of these integrated safety systems, it is necessary

to consider all relevant load cases. Scenario-based methods are

required to achieve a comprehensive evaluation. The resulting

insights can inform strategic decisions and enable early product

placement during development.

Overall, reducing the computational cost of simulating

integrated vehicle safety systems will be an important area of

research in the future, as it will enable researchers and engineers

to evaluate all relevant load cases. Crash simulations often involve

large amounts of data, which can be difficult to process and

analyze. Therefore, one challenge and the main topic of this

work was providing the data in such a format that the data-

based MOR method could efficiently work with the data, and we

can compare which sampling strategy is most suited for crash
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FIGURE 14

Comparison of prediction and simulation results with and without optimized restraint system parameter for a selected subset of the available

scenarios.

TABLE 5 HIC36 R2 score of the trained models on the available datasets.

d-optimal set Space-filling set Adaptive sampling set Test set Joint set

d-optimal 1 −8.55 −0.16 −8.74 −1.14

Space filling 0.10 1 0.23 0.89 0.2

Adaptive sampling 0.47 0.83 1 0.75 0.53

TABLE 6 Chest deflection R2 score of the trained models on the available datasets.

d-optimal set Space-filling set Adaptive sampling set Test set Joint set

d-optimal 1 −1.62 −1.79 −1.70 −1.66

Space filling 0.77 1 0.77 0.93 0.79

Adaptive sampling 0.81 0.95 1 0.96 0.87

simulations to gain the maximum out of the minimum amount

of simulation.

In this study, the space-filling design provides the highest

information gain and accuracy in relation to the number of

samples and should be preferred for future applications. The

adaptive sampling method then offers the possibility to further

increase the prediction accuracy if computational resources

are available.

As we have seen, the space-filling design provides the highest

information gain and accuracy to the number of samples and

should be preferred for future applications.

As we have seen, data-based MOR could be challenging for

crash simulation because the model’s response can jump once

we leave the intended mode of operation of the safety system.

Therefore, active learning approaches to find those critical modes

of operation are worth further research.

The developed surrogate models provide only qualitative

insights; if highly accurate results are required, a thorough

assessment or validation with high-fidelity simulations must

be performed. Comprehensive computer-based experiments and

workflows must include surrogates in the development loop. Once

the surrogates are part of the workflow, they should be permanently

monitored and retrained using all available data in the automotive

industry. Hence, it is imperative to invest in efficient workflow

technologies for labeling and accessing vast amounts of information

to ensure a good and effective workflow with surrogate models in

the future.
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