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Structure-preserving model
reduction for port-Hamiltonian
systems based on separable
nonlinear approximation ansatzes

Philipp Schulze*

Department of Mathematics, Chemnitz University of Technology, Chemnitz, Germany

We discuss structure-preserving model order reduction for port-Hamiltonian

systems based on a nonlinear approximation ansatz which is linear with respect

to a part of the state variables of the reduced-order model. In recent years, such

nonlinear approximation ansatzes have gainedmore andmore attention especially

due to their e�ectiveness in the context of model reduction for transport-

dominated systems which are challenging for classical linear model reduction

techniques. We demonstrate that port-Hamiltonian reduced-order models can

often be obtained by a residual minimization approach where a suitable weighted

norm is used for the residual. Moreover, we discuss su�cient conditions for the

resulting reduced-ordermodels to be stable. Finally, themethodology is illustrated

by means of two transport-dominated numerical test cases, where the ansatz

functions are determined based on snapshot data of the full-order state.

KEYWORDS

model order reduction (MOR), port-Hamiltonian systems, transport-dominated systems,
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1. Introduction

In applications where multi-query evaluations of a computational model are required,

such as optimization, control, or uncertainty quantification, model order reduction (MOR)

techniques provide a powerful tool for accelerating the overall procedure, while maintaining

an acceptable model accuracy. For a general overview of such methods, we refer to [1–5].

While most MOR techniques are based on a linear approximation of the full-order model

(FOM) state, recently, methods based on nonlinear approximation ansatzes have received

more and more attention, cf. [6–11] and the references therein. One reason for the great

interest in the latter class of methods is that MOR methods based on linear approximation

ansatzes are often inadequate for an effective reduction of transport-dominated systems, see

for instance [12].

While nonlinear MOR techniques may lead to very low-dimensional and still accurate

reduced-order models (ROMs), they do in general not guarantee that the ROM inherits

important system properties of the corresponding FOM, such as stability. This may lead

to unphysical behavior of the ROM or to approximation errors which grow exponentially

with respect to time. In fact, the same issue also applies to most linear MOR methods

and, thus, several MOR techniques have been proposed which preserve certain qualitative

properties of the FOM [cf. [13–20]]. In this paper, we are especially interested in structure-

preserving MOR methods for port-Hamiltonian (pH) systems, since these come with many

desirable properties, cf. [21–23] for a general overview. For instance, a pH structure implies

passivity and often also stability of the dynamical system. In addition, pH structures are
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closed under power-preserving interconnection, whichmakes them

especially attractive for control purposes [24–27] and for modeling

networks [28, 29]. Besides, since the energy plays the central

role in the pH framework, it is suitable for a wide range of

applications [30–41] as well as for the coupling of different physical

domains [42–46].

The literature on structure-preserving MOR techniques

for pH systems is mainly focused on linear time-invariant

systems and using a linear approximation ansatz. Common

techniques are based on balanced truncation [47–50] or transfer

function interpolation [51–55]. Aside from these projection-

based techniques, also direct optimization approaches have been

proposed for obtaining a port-Hamiltonian ROM [cf. [56, 57]]. In

[58], the authors present a structure-preserving MOR approach for

nonlinear pH systems using a linear approximation ansatz based

on the proper orthogonal decomposition (POD) or the iterative

rational Krylov algorithm presented in [59]. In addition, they

propose a structure-preserving variant of the discrete empirical

interpolation method, which has been originally introduced in [60]

and enables an efficient evaluation of the ROM.

While the contributions mentioned in the previous paragraph

are all based on linear approximation ansatzes, we present in this

paper a structure-preserving MOR approach for a special class of

nonlinear pH systems based on suitable nonlinear approximation

ansatzes, cf. section 2 for the details. The main contributions are

listed in the following.

• We present a structure-preserving MOR approach using

suitable nonlinear approximation ansatzes which are

especially relevant in the context of transport-dominated

systems. Especially, this approach is not limited to linear

systems, but may be applied to a special class of nonlinear pH

systems [cf. Theorem 4.3 (1)].

• We demonstrate that, in a special case which includes linear

port-Hamiltonian FOMs with non-degenerate Hamiltonian,

the approach allows to obtain ROMs which are at the same

time pH and optimal in terms of residual minimization

[cf. Theorem 4.3 (2)].

• We provide sufficient conditions which ensure that the

state equations of the port-Hamiltonian ROMs with

vanishing input signal are stable in the sense that the

first block component of the ROM state as well as the

resulting approximation of the FOM state are bounded

[cf. Theorem 4.5].

• We present a new pH representation of a wildland fire

model which has been considered for example in [61, 62] [cf.

section 5.3].

The remainder of this manuscript is structured as follows. In

section 2, we briefly introduce the mathematical setting considered

in this paper by introducing the treated classes of pH systems

and approximation ansatzes. We proceed by providing some

preliminary definitions and results in section 3 with particular focus

on differential equations, pH systems, and MOR. The main results

are presented in section 4 where we especially demonstrate how

to achieve structure-preserving MOR for pH systems based on

special nonlinear approximation ansatzes. Finally, we illustrate the

theoretical results by means of two numerical test cases in section 5

and provide a summary and an outlook in section 6.

1.1. Notation

The set of real numbers is denoted with R and we use Rm,n for

the set of m × n matrices with real-valued entries. In particular,

the n × n identity matrix is denoted by In and the transpose of a

matrix A by A⊤. Furthermore, to indicate that a matrix A ∈ R
m,m

is positive (semi-)definite, we use the notation A > 0 (A ≥ 0). In

addition, colsp(A), σmax(A), and σmin(A) denote the column space,

the maximum, and the minimum singular value of a matrix A,

respectively. For column vectors, we abbreviate R
m,1 as Rm and

we write ‖·‖ for the Euclidean norm on R
m. Given an interval

� := (a, b) with a ∈ R and b ∈ R>a, we denote the Hilbert space

of square-integrable functions over � as L2 (�) and use 〈·, ·〉L2(�)
for the corresponding inner product. The spaces of continuous and

continuously differentiable functions from a suitable subset U ⊆
R
m to R

n are denoted with C(U,Rn) and C1(U,Rn), respectively.

Finally, for a function f depending onmultiple variables x1, . . . , xm,

we use the short-hand notation ∂xi f :=
∂f
∂xi

for the partial derivative

of f with respect to xi for i ∈ {1, . . . ,m}.

2. Problem setting

In this paper, we consider the problem of structure-preserving

MOR for pH systems of the form

E(t, x(t))ẋ(t)+ r(t, x(t)) = (J(t, x(t))− R(t, x(t)))Q(t, x(t))x(t)

+ B(t, x(t))u(t), (1a)

y(t) = B(t, x(t))⊤Q(t, x(t))x(t) (1b)

for all t ∈ I := [t0, tend], with t0 ∈ R≥0, tend ∈ R>t0 , state

x : I → R
n, input port u : R≥0 → R

m, output port y : I → R
m, and

coefficients E, J,R,Q ∈ C(R≥0 × R
n,Rn,n), r ∈ C(R≥0 × R

n,Rn),

and B ∈ C(R≥0 × R
n,Rn,m). Associated with (1) we consider a

Hamiltonian H ∈ C1(R≥0 × R
n) and the coefficient functions are

required to satisfy

J(t, x) = −J(t, x)⊤, ∇xH(t, x) = E(t, x)⊤Q(t, x)x,

R(t, x) = R(t, x)⊤ ≥ 0, ∂tH(t, x) = r(t, x)⊤Q(t, x)x
(2)

for all (t, x) ∈ R≥0 × R
n. The pH structure given by (1)–(2) is

a special case of the one introduced in [63], where the authors

consider in addition a feedthrough term, a possibly non-square

E matrix, and a general function z ∈ C(R≥0 × R
n,Rn) instead

of z being defined as z(t, x) := Q(t, x)x. While the framework

presented in section 4 may be extended to systems with non-

vanishing feedthrough term and some of the results also to the

case of a non-square E matrix, the assumption on the particular

structure of z is essential.

In [63], it is illustrated that the temporal change of the

Hamiltonian along solution trajectories of (1a) is bounded from

above by the supplied power y⊤u. Under additional assumptions
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on the Hamiltonian, this results in a stability result for the unforced

system (1a) with u = 0 [cf. section 3.2]. In order to obtain ROMs

which inherit these properties, it is desirable to develop MOR

schemes which preserve the structure (1)–(2).

While structure-preserving MOR based on linear

approximation ansatzes has been investigated since at least a

decade, the aim of this paper is to present structure-preserving

MOR schemes based on nonlinear approximation ansatzes. While

we do not address the most general class of nonlinear ansatzes in

this paper, we consider ansatzes of the form

x(t) ≈ Vs(p(t))α(t), (3)

with given mapping Vs : R
rp → R

n,rα and ROM state

x̃ =
[
α

p

]
(4)

consisting of p : I → R
rp and α : I → R

rα with r := rα + rp.

Such ansatzes are especially relevant in the context of MOR for

transport-dominated systems, see Sections 4, 5 for some examples.

Based on the considered class of approximation ansatzes, the

task considered in this work is to introduce a projection-based

MOR framework for constructing port-Hamiltonian ROMs of the

form

Ẽ(t, x̃(t)) ˙̃x(t)+ r̃(t, x̃(t)) = (J̃(t, x̃(t))− R̃(t, x̃(t)))Q̃(t, x̃(t))x̃(t)

+ B̃(t, x̃(t))u(t), (5a)

ỹ(t) = B̃(t, x̃(t))⊤Q̃(t, x̃(t))x̃(t) (5b)

for all t ∈ I, with Ẽ, J̃, R̃, Q̃ : R≥0 ×R
r → R

r,r , r̃ : R≥0 ×R
r → R

r ,

B̃ : R≥0 × R
r → R

r,m, and ỹ : I → R
m. Here, the ROM coefficient

functions are assumed to satisfy conditions analogous to (2) with

ROMHamiltonian H̃ : R≥0 × R
r → R defined via

H̃(t, x̃) := H(t,Vs(p)α). (6)

In addition to the structure preservation itself, we are also

interested in deriving conditions which ensure that the state

equation of the unforced ROM with u = 0 is stable in the sense

that the resulting FOM state approximation Vs(p)α is bounded.

Remark 2.1 (Preservation of algebraic constraints). We emphasize

that the general pH structure (1)–(2) includes the case of a singular

E matrix. In this context one is often also interested in preserving

the algebraic constraints of the system, see for instance [14] and

the references therein. However, in the following we only focus

on preserving the pH structure, while we refer to [22, 51, 64, 65]

for contributions focusing on structure-preserving MOR for port-

Hamiltonian differential–algebraic equation (DAE) systems.

3. Preliminaries

In this section, we present some preliminary definitions and

results needed for the following sections. We start by addressing

general differential equation systems and stability of equilibrium

points in section 3.1. port-Hamiltonian systems and some of their

properties are treated in section 3.2, while section 3.3 is devoted to

MOR schemes based on different projection techniques.

3.1. Di�erential equations and stability

Throughout this paper, we consider finite-dimensional systems

of the form

E(t, x(t))ẋ(t) = F(t, x(t)) for all t ∈ I, (7a)

x(t0) = x0 (7b)

with time interval I = [t0,∞) or I = [t0, tend] with t0 ∈ R≥0 and

tend ∈ R>t0 , mass matrix E : R≥0 × R
n → R

n,n, right-hand side

F : R≥0 × R
n → R

n, and initial value x0 ∈ R
n. In the following

we consider mainly the case where E is pointwise invertible, while

we refer to the DAE literature for the more general case, see for

instance [66].

We call x ∈ C(I,Rn) a solution of (7a) if x is differentiable in I

and satisfies (7a). If in addition (7b) holds, then we call x a solution

of the initial value problem (7). In the following, we introduce the

notion of equilibrium points in general and of uniformly stable

equilibrium points in particular.

Definition 3.1 (Equilibrium point). For given F : R≥0 ×R
n → R

n

and pointwise invertible E : R≥0 × R
n → R

n,n, we call x∗ ∈ R
n an

equilibrium point of (7a) if F(t, x∗) = 0 holds for all t ∈ R≥0.

Definition 3.2 (Uniform stability). Consider (7a) with

F ∈ C(R≥0 ×R
n,Rn), pointwise invertible E ∈ C(R≥0 ×R

n,Rn,n),

and equilibrium point 0 ∈ R
n. Besides, for any (t0, x0) ∈ R≥0×R

n,

let the initial value problem (7) be uniquely solvable on [t0,∞).

We denote the evaluation of this solution at t ∈ R≥t0 by s(t, t0, x0).

Then, we call the equilibrium point 0 uniformly stable, if for each

ǫ ∈ R>0 there exists a δ ∈ R>0 such that

∥∥s(t, t0, x0)
∥∥ < ǫ (8)

holds for all t0 ∈ R≥0, t ∈ R≥t0 , and x0 ∈ R
n with ‖x0‖ < δ.

In section 4, the main tool used for investigating the uniform

stability as in Theorem 3.2 is given by globally quadratic Lyapunov

functions as introduced in the following definition. We emphasize

that this definition is inspired by standard Lyapunov theory for

ordinary differential equation (ODE) systems with E = In, see

for instance [[67], Theorem 4.10] and by the port-Hamiltonian

formulation introduced in [63].

Definition 3.3 (Globally quadratic Lyapunov function). We

consider the system (7a) with E and F as in Theorem 3.1. The

mapping G : R≥0×R
n → R is called a globally quadratic Lyapunov

function of (7a) if the following conditions are satisfied.

1. The function G is continuously differentiable. Moreover, there

exist a function z : R≥0 × R
n → R

n and a constant c1 ∈ R≥0

such that for all (t, x) ∈ R≥0 × R
n we have

∇xG(t, x) = E(t, x)⊤z(t, x) (9)

and ∂tG(t, x)+ z(t, x)⊤F(t, x) ≤ −c1 ‖x‖2 . (10)

2. There exist constants c2, c3 ∈ R>0 with

c2‖x‖2 ≤ G(t, x) ≤ c3‖x‖2 for all (t, x) ∈ R≥0 × R
n.
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Similarly as in the standard case E = In, the following theorem

provides a relation between the existence of a Lyapunov function

as defined in Theorem 3.3 and stability of the equilibrium point

0. It follows from standard ODE theory [cf. [67], Theorem 4.10],

and from the observation that G as in Theorem 3.3 is also a

globally quadratic Lyapunov function of the equivalent standard

ODE system given by ẋ(t) = E[t, x(t)]−1F[t, x(t)] for all t ∈ I.

Theorem 3.4 (Lyapunov’s theorem for (7a)). Consider the system

(7a) with E and F as in Theorem 3.2. If there exists a globally

quadratic Lyapunov function of (7a), then the equilibrium point 0

is uniformly stable.

3.2. Port-Hamiltonian systems

In the following, we only focus on finite-dimensional pH

systems without a feedthrough term. For an overview of infinite-

dimensional pH systems, we refer to the recent survey article [68].

port-Hamiltonian formulations including a feedthrough term are

for instance presented in [22, 63, 69].

We start by considering linear time-invariant pH systems of the

form

Eẋ(t) =
(
(J − R)Q− K

)
x(t)+ Bu(t), (11a)

y(t) = B⊤Qx(t) (11b)

for all t ∈ I, with B ∈ R
n,m and E, J,R,Q,K ∈ R

n,n satisfying

J = −J⊤, R = R⊤ ≥ 0, E⊤Q = Q⊤E ≥ 0, Q⊤K = −K⊤Q.
(12)

We note that the structure (11)–(12) is a linear special case of

(1)–(2) with time-invariant coefficients and quadratic Hamiltonian

H : R
n → R defined via H(x) := 1

2x
⊤E⊤Qx. Moreover, we

emphasize that the matrix K may be removed if Q is invertible, via

replacing J by J̃ := J − KQ−1.

The properties (12) imply that the Hamiltonian H is a non-

negative function, which in particular may only increase along

solutions of (11a) if the input u and the output y do not vanish.

To see this, let u be such that (11a) has a solution x in C1(I,Rn).

Then, exploiting (12) we obtain the so-called dissipation inequality

d

dt
(H ◦ x)(t) = −x(t)⊤Q⊤RQx(t)+ y(t)⊤u(t) ≤ y⊤(t)u(t) (13)

for all t ∈ I. Usually, the Hamiltonian represents the stored energy

of the system and (13) corresponds to a power balance, where the

term x⊤Q⊤RQx describes the internal energy dissipation and the

supply rate y⊤u the energy exchange with the environment or with

other subsystems, see for instance [23]. Furthermore, systems for

which a dissipation inequality of the form (13) holds are typically

called passive, see for instance [70].

Using similar arguments as in the linear time-invariant case,

one may also derive a dissipation inequality for the nonlinear class

of pH systems given by (1)–(2). More precisely, for a given solution

x ∈ C1(I,Rn) of (1a), the functionHs : I → R defined viaHs(t) :=
H[t, x(t)] satisfies

dHs

dt
(t) = −x(t)⊤Q(t, x(t))⊤R(t, x(t))Q(t, x(t))x(t)

+ y(t)⊤u(t) ≤ y(t)⊤u(t)
(14)

for all t ∈ I [cf. [63]]. This dissipation inequality is an important

property for the investigation of stability as well as the existence

and uniqueness of solutions of the state equation (1a) with u = 0

and pointwise invertible E.

Theorem 3.5 (Stability of (1a)). Consider the system (1a) with

vanishing input u = 0, J,R,Q ∈ C1(R≥0 × R
n,Rn,n), r ∈

C1(R≥0×R
n,Rn), and pointwise invertible E ∈ C1(R≥0×R

n,Rn,n).

Furthermore, let (2) be satisfied for all (t, x) ∈ R≥0 × R
n for

some Hamiltonian H ∈ C1(R≥0 × R
n), which additionally fulfills

condition (2) in Theorem 3.3 with H = G. Then, the following

assertions hold.

1. For each initial value x0 ∈ R
n and for any time interval I =

[t0, tend] with t0 ∈ R≥0 and tend ∈ R>t0 , the initial value

problem associated with (1a), u = 0, and x(t0) = x0 has a

unique solution on I.

2. If r(t, 0) = 0 holds for all t ∈ R≥0, then (1a) with u = 0 has a

uniformly stable equilibrium point at the origin.

Proof. 1. Based on standard ODE theory [cf. [71], section 2.4] we

conclude that, for a given initial value x0 ∈ R
n and initial time

t0 ∈ R≥0, the corresponding initial value problem associated

with (1a) and u = 0 is either uniquely solvable on any time

interval I = [t0, tend] with tend ∈ R>t0 or there is a maximal

existence interval [t0, δmax) with δmax ∈ R>t0 and

lim
tրδmax

∥∥x(t)
∥∥ = ∞. (15)

Let us assume that for some (t0, x0) ∈ R≥0 × R
n the

latter statement is true. Then, since the Hamiltonian satisfies

condition (2) in Theorem 3.3, (15) implies

lim
tրδmax

H(t, x(t)) = ∞.

However, this contradicts the inequalityH[t, x(t)] ≤ H(t0, x0),

which holds for any t ≥ t0 and follows from the dissipation

inequality (14) in the case u = 0. Thus, assertion (1) holds.

2. First, we note that the equation r(·, 0) = 0 implies that 0 ∈ R
n

is an equilibrium point of (1a) with u = 0. Furthermore, using

(2) we infer that the Hamiltonian satisfies not only condition

(2) in Theorem 3.3, but also condition (1) with c1 = 0. Thus,

the Hamiltonian is a globally quadratic Lyapunov function of

(1a) with u = 0 and, hence, the claim follows by applying

Theorem 3.4.

3.3. Projection-based model reduction

Classical MOR methods typically involve a projection of the

FOM onto a low-dimensional linear subspace. In the following, we

consider a FOM of the form

ẋ(t) = F
(
t, x(t)

)
for all t ∈ I, x(0) = x0, (16)

with F : R≥0 × R
n → R

n, x0 ∈ R
n, and x : I → R

n. For instance,

(1a) may be written in this form with

F(t, x) := E(t, x)−1
(
(J(t, x)− R(t, x))Q(t, x)x+ B(t, x)u(t)− r(t, x)

)
,
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provided that E is pointwise invertible. For the following

considerations, we assume that we have given a suitable r-

dimensional linear subspace V ⊂ R
n which is parameterized via

a matrix Vr ∈ R
n,r via V = colsp(Vr). A common approach

for deriving a ROM is a Galerkin projection. For this purpose, we

substitute the linear approximation ansatz

x(t) ≈ Vrx̃(t) (17)

into the FOM (16) and obtain the residual

Vr
˙̃x(t)− F

(
t,Vrx̃(t)

)
(18)

at t ∈ I. An evolution equation for x̃ is then obtained by enforcing

the residual to be orthogonal to V = colsp(Vr). In addition, the

initial value of x̃ may be derived via an orthogonal projection of x0
onto V. The resulting ROM reads

M ˙̃x(t) = F̃(t, x̃(t)), x̃(0) = x̃0 for all t ∈ I (19)

with ROM state x̃ : I → R
r , mass matrixM ∈ R

r,r , right-hand side

F̃ : R≥0 × R
r → R

r , and initial value x̃0 ∈ R
r defined via

M := V⊤
r Vr, F̃(t, x̃) := V⊤

r F (t,Vrx̃) , Mx̃0 := V⊤
r x0. (20)

Usually, Vr is chosen such that its columns form an orthonormal

basis, which leads toM = Ir .

An important property is that, for given t ∈ I and given

x̃(t) ∈ R
r , the corresponding time derivative ˙̃x(t) determined by

the Galerkin ROM (19) is optimal in the sense that it minimizes

the norm of the residual (18). Since the continuous-time residual

is minimized, this property is called continuous optimality in [72]

to distinguish it from an alternative approach which minimizes the

residual after time discretization.

We note that the Galerkin method is a special case of a

Petrov–Galerkin scheme. In general, the Petrov–Galerkin method

is based on enforcing the residual to be orthogonal to another r-

dimensional subspace W which is parametrized by a matrix Wr ∈
R
n,r via W = colsp(Wr). Here, V and W are chosen such that the

compatibility condition

W⊥ ∩ V = {0} (21)

is met. This condition is in particular satisfied in the case Vr = Wr

of the Galerkin method. In general, a Petrov–Galerkin projection

yields a ROM of the form (19) where the mass matrix, right-hand

side, and initial value are given by

M := W⊤
r Vr, F̃(t, x̃) := W⊤

r F (t,Vrx̃) , Mx̃0 := W⊤
r x0.

In particular, the invertibility of the mass matrix M is guaranteed

due to the compatibility condition (21). In fact, condition (21)

is also necessary for the invertibility of M, see for instance

Theorem 2.4.3 and Fact 2.10.14 in [73].

Due to the shortcomings of linear projection methods, for

instance, in the context of transport-dominated systems, nonlinear

projection methods have received increasing attention in recent

years. In contrast to the linear ansatz (17), these methods are based

on general ansatzes of the form

x(t) ≈ gr(x̃(t)), (22)

with gr ∈ C1(Rr ,Rn). A method for constructing a ROM based on

such a general ansatz has, for example, been proposed in [11] and

is based on residual minimization. It is inspired by the optimality

property of the Galerkin ROM mentioned after (20) and leads to a

ROM of the form

M(x̃(t)) ˙̃x(t) = F̃(t, x̃(t)), x̃(0) = x̃0 for all t ∈ I

with mass matrix M : R
r → R

r,r and right-hand side F̃ : R≥0 ×
R
r → R

r defined via

M(x̃) := (g′r(x̃))
⊤g′r(x̃), F̃(t, x̃) := (g′r(x̃))

⊤F
(
t, gr(x̃)

)
.

Here, g′r : R
r → R

n,r denotes the derivative of gr. The choice of the

initial value is more involved than in the linear case, since it is in

general not clear if there exists an optimal x̃0 ∈ R
r which solves

minx̃∈Rr

∥∥gr(x̃)− x0
∥∥. For instance, there exists no minimizer in

the special case

n = 2, r = 1, x0 =
[
0

0

]
, g(x̃) := ex̃

[
1

1

]
.

To avoid such problems, in [[11], Rem. 3.1] the authors propose to

add a suitable shift to the ansatz (22), which ensures that the FOM

initial value is approximated without any error. This is possible for

any choice of x̃0.

So far, we have only discussed the construction of the ROM,

once suitable subspaces or manifolds have been determined. On

the other hand, the determination of these subspaces or manifolds

is not in the main focus of this paper. For identifying suitable

linear subspaces, there are numerous techniques provided in the

MOR literature, for instance, balanced truncation [74, 75], transfer

function interpolation [76, 77], POD [78, 79], and reduced basis

methods [3, 4]. Approaches for determining suitable nonlinear

manifolds are, for example, proposed in [6, 7, 11, 80].

Even though the ROMs obtained via projection have much

fewer equations and unknowns than the corresponding FOM,

the evaluation of the ROM often still scales with the dimension

of the FOM. The reason for this is that the definitions of the

ROM coefficient matrices and right-hand sides formally involve the

corresponding FOM quantities. If a linear approximation ansatz

is used and the FOM is linear, then this issue may be usually

circumvented by precomputing the ROM coefficient matrices. A

similar approach may also be applied to certain classes of FOM

nonlinearities, see for instance [81] and the references therein.

Furthermore, so-called hyperreduction methods may be used to

further approximate the ROM in order to render its evaluation

fast [cf. [60, 82–86]]. While structure-preserving hyperreduction

methods for port-Hamiltonian systems are not within the scope of

this paper, we refer to [58] for a structure-preserving variant of the

discrete empirical interpolation method proposed in [60].

The literature on structure-preserving model reduction for

port-Hamiltonian systems has so far mainly focused on linear time-

invariant full-order models of the form (11)–(12) with K = 0,

see for instance [22] and the references therein. In this context,

many projection-based schemes are based on a Petrov–Galerkin
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projection withWr = QVr. This is also possible for the case K 6= 0

and results in a ROM of the form

Ẽ ˙̃x(t) = (J̃ − R̃)Q̃x̃(t)+ B̃u(t), (23a)

ỹ(t) = B̃⊤Q̃x̃(t) (23b)

with

Ẽ : = V⊤
r Q⊤EVr, J̃ := V⊤

r Q⊤ (JQ− K)Vr,

R̃ : = V⊤
r Q⊤RQVr, Q̃ := Ir , B̃ := V⊤

r Q⊤B. (24)

Here, Vr may be chosen in different ways depending on the

MOR method of choice. While it is straightforward to show that

(23) inherits indeed the pH structure of the FOM, one is often

also interested in preserving the algebraic constraints in the case

where E is singular [cf. [22]]. Furthermore, we emphasize that

in the special case Q = In, the Petrov–Galerkin scheme reduces

to a simple Galerkin projection. On the other hand, in the case

E = In, authors often enforce also Ẽ to equal the identity matrix,

for example, by usingWr = QVr(V
⊤
r QVr)

−1 instead ofWr = QVr,

see for instance [53]. A similar Petrov–Galerkin approach has been

employed in [58] to obtain a structure-preserving MOR scheme for

nonlinear port-Hamiltonian systems.

If the Hessian E⊤Q of the Hamiltonian is positive definite, then

the ROM state Equation (23a) may be shown to be optimal in the

sense that the ROM state satisfies

˙̃x(t) ∈ argmin
η1∈Rr

1

2

∥∥R(η1, x̃(t), u(t))
∥∥2
E−⊤Q⊤ for all t ∈ I, (25)

cf. Theorem 4.1 of the preprint version [87] of this manuscript.

Here, R : R
r × R

r × R
m → R

n is defined via

R(η1, η2, η3) := EVrη1 −
(
(J − R)Q− K

)
Vrη2 − Bη3,

i.e., R( ˙̃x(t), x̃(t), u(t)) coincides with the residual at t ∈ I.

This residual minimization property may be also motivated by

a corresponding residual-based bound for the error in the E⊤Q-
norm [cf. [87], Rem. 4.2].

4. Structure-preserving model
reduction

In this section we derive a structure-preserving MOR scheme

based on an approximation ansatz of the form x(t) ≈ Vs[p(t)]α(t)

as mentioned in section 2. Since this ansatz is linear in α and

possibly nonlinear in p, we call this a separable approximation

ansatz, since it is the same kind of nonlinearity as in separable

nonlinear least-squares problems, see for instance [88] and the

references therein. Separable ansatzes are for instance used by some

MOR approaches for transport-dominated systems, where the state

is approximated by a linear combination of transformed modes

and the transformations are parametrized by time-dependent path

variables, here p, see for instance [7, 8, 89–92] as well as section 5.

As a first step, we consider the case where the path variables p

are known a priori. In the context of transport-dominated systems,

this may, e.g., correspond to the case where the advection speed is

known beforehand, see for instance [93]. Especially, this leads to a

linear time-varying approximation ansatz, which may be written in

general as

x(t) ≈ Vr(t)x̃(t), (26)

with given Vr : R≥0 → R
n,r . In the special case of the separable

ansatz (3) with known paths, we would have in particular Vr(t) :=
Vs[p(t)] and x̃ = α. In the following theorem, it is demonstrated

that a structure-preserving model reduction scheme for port-

Hamiltonian FOMs of the form (1) may be obtained in a similar

way as in the linear-time invariant case addressed at the end

of section 3.3. Moreover, if E⊤Q is pointwise symmetric and

positive definite, then the ROM is even optimal in the sense of

weighted residual minimization.We note that in the case of a linear

port-Hamiltonian FOM, E⊤Q corresponds to the Hessian of the

Hamiltonian.

Theorem 4.1. (Structure-preserving MOR for (1) using a linear

time-varying approximation ansatz) Consider the pH system (1)

with E, r, J,R,Q, and the associated Hamiltonian H satisfying (2).

Furthermore, let Vr ∈ C1(R≥0,R
n,r) with r ∈ N≤n have pointwise

full column rank and let (5) be a corresponding ROM with

coefficients

Ẽ(t, x̃) := Vr(t)
⊤Q(t,Vr(t)x̃)

⊤E(t,Vr(t)x̃)Vr(t),

r̃(t, x̃) := Vr(t)
⊤Q(t,Vr(t)x̃)

⊤ (
r(t,Vr(t)x̃)+ E(t,Vr(t)x̃)V̇r(t)x̃

)
,

J̃(t, x̃) := Vr(t)
⊤Q(t,Vr(t)x̃)

⊤J(t,Vr(t)x̃)Q(t,Vr(t)x̃)Vr(t),

R̃(t, x̃) := Vr(t)
⊤Q(t,Vr(t)x̃)

⊤R(t,Vr(t)x̃)Q(t,Vr(t)x̃)Vr(t),

Q̃(t, x̃) := Ir , B̃(t, x̃) := Vr(t)
⊤Q(t,Vr(t)x̃)

⊤B(t,Vr(t)x̃).

(27)

Besides, we introduce the residual mapping R : R≥0 × R
r ×

R
r × R

m → R
n via

R(t, η1, η2, η3) : = E(t,Vr(t)η2)Vr(t)η1 + E(t,Vr(t)η2)V̇r(t)η2

+ r(t,Vr(t)η2)− (J(t,Vr(t)η2)

− R(t,Vr(t)η2))Q(t,Vr(t)η2)Vr(t)η2

− B(t,Vr(t)η2)η3.

Then, the following assertions hold.

1. The ROM Hamiltonian H̃ : R≥0 × R
r → R defined via

H̃(t, x̃) := H[t,Vr(t)x̃] is continuously differentiable and the

ROM coefficients satisfy

J̃(t, x) = −J(t, x)⊤, ∇x̃H̃(t, x̃) = Ẽ(t, x̃)⊤Q̃(t, x̃)x̃,

R̃(t, x̃) = R̃(t, x̃)⊤ ≥ 0, ∂tH̃(t, x̃) = r̃(t, x̃)⊤Q̃(t, x̃)x̃
(28)

for all (t, x̃) ∈ R≥0 × R
r , i.e., the ROM given by (5) and (27)

inherits the pH structure from the FOM (1).

2. If E⊤Q is pointwise symmetric and positive definite, then the

ROM given by (5) and (27) is optimal in the sense that any

solution x̃ of (5a) satisfies

˙̃x(t) ∈ argmin
η1∈Rr

1

2

∥∥R(t, η1, x̃(t), u(t))
∥∥2
E(t,Vr x̃(t))−⊤Q(t,Vr x̃(t))⊤

(29)

for all t ∈ I and for any input signal u : R≥0 → R
m which

admits a solution of the ROM state equation (5a).
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Proof. 1. The pointwise symmetry and definiteness properties of

J̃ and R̃ follow from the corresponding properties of J and R,

respectively. Furthermore, H̃ is continuously differentiable due

to the continuous differentiability of H and Vr. Moreover, the

relations concerning the partial derivatives of H̃ follow from

∂tH̃(t, x̃) = ∂tH(t,Vr(t)x̃)+ ∂xH(t,Vr(t)x̃)V̇r(t)x̃

= r(t,Vr(t)x̃)
⊤Q(t,Vr(t)x̃)Vr(t)x̃

+ x̃⊤Vr(t)
⊤Q(t,Vr(t)x̃)

⊤E(t,Vr(t)x̃)V̇r(t)x̃

= r̃(t, x̃)⊤Q̃(t, x̃)x̃

and

∂x̃H̃(t, x̃) = ∂xH(t,Vr(t)x̃)Vr(t)

= x̃⊤Vr(t)
⊤Q(t,Vr(t)x̃)

⊤E(t,Vr(t)x̃)Vr(t)

=
(
Ẽ(t, x̃)⊤Q̃(t, x̃)x̃

)⊤

for all (t, x̃) ∈ R≥0 × R
r .

2. First, we note that E−⊤Q⊤ = E−⊤(Q⊤E)E−1 is pointwise

symmetric and positive definite since Q⊤E is, and, thus,

‖·‖E[t,Vr x̃(t)]−⊤Q[t,Vr x̃(t)]⊤ is indeed a norm for each

t ∈ I. Furthermore, the first-order necessary optimality

condition reads

Vr(t)
⊤Q(t,Vr(t)x̃(t))

⊤ (E(t,Vr(t)x̃(t))Vr(t)η1

+E(t,Vr(t)x̃(t))V̇r(t)x̃(t)+ r(t,Vr(t)x̃(t))
)

= Vr(t)
⊤Q(t,Vr(t)x̃(t))

⊤(J(t,Vr(t)x̃(t))

− R(t,Vr(t)x̃(t)))Q(t,Vr(t)x̃(t))Vr(t)x̃(t)

+ Vr(t)
⊤Q(t,Vr(t)x̃(t))

⊤B(t,Vr(t)x̃(t))u(t)

and this condition is even sufficient since the Hessian

Vr(t)
⊤Q[t,Vr(t)x̃(t)]

⊤E[t,Vr(t)x̃(t)]Vr(t) does not depend on

η1 and is positive definite. Finally, the comparison of the

first-order optimality condition with (5a) yields the claim.

While the subject of Theorem 4.1 is the pH structure and

the optimality of the ROM given by (5) and (27), this theorem

does not address the stability of the state equation (5a). Based on

Theorem 3.5, the following corollary provides sufficient conditions

for the ROM state equation to have a uniformly stable equilibrium

point at the origin.

Corollary 4.2 (Stability of the ROM from Theorem 4.1). Let the

assumptions of Theorem 4.1 be satisfied and let E⊤Q be pointwise

symmetric and positive definite. In addition, let E, J, R, Q, and

r be continuously differentiable and Vr be twice continuously

differentiable. Furthermore, let the FOM Hamiltonian H satisfy

condition (2) in Theorem 3.3 with G = H and let there exist

constants ĉ1, ĉ2 ∈ R>0 such that the singular values of Vr satisfy

σmax(Vr(t)) ≤ ĉ1 and σmin(Vr(t)) ≥ ĉ2 for all t ∈ R≥0. (30)

Besides, let 0 ∈ R
n be an equilibrium point of the FOM state

equation (1a) with u = 0. Then, the ROM state equation (5a) with

u = 0 and coefficients as in (27) has a uniformly stable equilibrium

point at 0 ∈ R
r .

Proof. First, we note that the differentiability assumptions

on the FOM coefficient functions and on Vr imply that

Ẽ, J̃, R̃, and r̃ are continuously differentiable. Moreover,

since E⊤Q is pointwise symmetric and positive definite and

Vr has pointwise full column rank, we conclude that Ẽ is

pointwise symmetric and positive definite. Furthermore, since

H satisfies condition (2) in Theorem 3.3 with constants

c2, c3 ∈ R>0 and since the singular values of Vr are

bounded as in (30), we infer that also the ROM Hamiltonian

H̃ satisfies condition (2) in Theorem 3.3, which follows from

the calculation

H̃(t, x̃) = H(t,Vr(t)x̃) ≤ c3
∥∥Vr(t)x̃

∥∥2 ≤ c3σmax(Vr(t))
2 ‖x̃‖2

≤ c3ĉ
2
1 ‖x̃‖2

and

H̃(t, x̃) ≥ c2
∥∥Vr(t)x̃

∥∥2 ≥ c2σmin(Vr(t))
2 ‖x̃‖2 ≥ c2ĉ

2
2 ‖x̃‖2

for all (t, x̃) ∈ R≥0 × R
r . In addition, the fact that 0 ∈ R

n is an

equilibrium point of (1a) with u = 0 implies r(t, 0) = 0 for all

t ∈ R≥0. Consequently, we also have r̃(t, 0) = 0 for all t ∈ R≥0 and

the claim follows from Theorem 3.5.

Theorem 4.1 is formulated for a general linear time-varying

approximation ansatz and, thus, applies in particular to the

case x̃ = α and Vr(t) := Vs[p(t)] with given Vs ∈
C1(Rrp ,Rn,rα ) and p ∈ C1(R≥0,R

rp ) as mentioned before

Theorem 4.1. Next, we consider the case where p is not

known a priori, but instead a part of the ROM state, which

corresponds to the nonlinear separable approximation ansatz (3).

Also in this case, we may use a weighted residual minimization

approach analogously as in Theorem 4.1 to obtain a port-

Hamiltonian ROM. The resulting ROM coefficients are given by

Ẽ(t, x̃) :=
[
Ẽ11(t, x̃) Ẽ12(t, x̃)

Ẽ21(t, x̃) Ẽ22(t, x̃)

]
,

Ẽ11(t, x̃) := Vs(p)
⊤Q(t,Vs(p)α)

⊤E(t,Vs(p)α)Vs(p) ∈ R
rα ,rα ,

Ẽ12(t, x̃) := Vs(p)
⊤Q(t,Vs(p)α)

⊤E(t,Vs(p)α)V̂s(p)α ∈ R
rα ,rp ,

Ẽ21(t, x̃) :=
(
V̂s(p)α

)⊤
Q(t,Vs(p)α)

⊤E(t,Vs(p)α)Vs(p) ∈ R
rp ,rα ,

Ẽ22(t, x̃) :=
(
V̂s(p)α

)⊤
Q(t,Vs(p)α)

⊤E(t,Vs(p)α)V̂s(p)α ∈ R
rp ,rp ,

(31a)

J̃(t, x̃) :=
[
J̃11(t, x̃) −J̃21(t, x̃)

⊤

J̃21(t, x̃) 0

]
,

J̃11(t, x̃) := Vs(p)
⊤Q(t,Vs(p)α)

⊤J(t,Vs(p)α)Q(t,Vs(p)α)Vs(p)

∈ R
rα ,rα ,

J̃21(t, x̃) :=
(
V̂s(p)α

)⊤
Q(t,Vs(p)α)

⊤J(t,Vs(p)α)Q(t,Vs(p)α)Vs(p)

∈ R
rp ,rα ,

(31b)
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R̃(t, x̃) :=
[
R̃11(t, x̃) R̃21(t, x̃)

⊤

R̃21(t, x̃) R̃22(t, x̃)

]
,

R̃11(t, x̃) := Vs(p)
⊤Q(t,Vs(p)α)

⊤R(t,Vs(p)α)Q(t,Vs(p)α)Vs(p)

∈ R
rα ,rα ,

R̃21(t, x̃) :=
(
V̂s(p)α

)⊤
Q(t,Vs(p)α)

⊤R(t,Vs(p)α)Q(t,Vs(p)α)Vs(p)

∈ R
rp ,rα ,

R̃22(t, x̃) :=
(
V̂s(p)α

)⊤
Q(t,Vs(p)α)

⊤R(t,Vs(p)α)Q(t,Vs(p)α)V̂s(p)α

∈ R
rp ,rp ,

(31c)

r̃(t, x̃) :=
[
r̃1(t, x̃)

r̃2(t, x̃)

]
,

r̃1(t, x̃) := Vs(p)
⊤Q(t,Vs(p)α)

⊤
r(t,Vs(p)α) ∈ R

rα ,

r̃2(t, x̃) :=
(
V̂s(p)α

)⊤
Q(t,Vs(p)α)

⊤
r(t,Vs(p)α) ∈ R

rp ,

(31d)

Q̃(t, x̃) :=
[
Irα 0

0 0

]
,

(31e)

B̃(t, x̃) :=
[
B̃1(t, x̃)

B̃2(t, x̃)

]
,

B̃1(t, x̃) := Vs(p)
⊤Q(t,Vs(p)α)

⊤B(t,Vs(p)α) ∈ R
rα ,m,

B̃2(t, x̃) :=
(
V̂s(p)α

)⊤
Q(t,Vs(p)α)

⊤B(t,Vs(p)α) ∈ R
rp ,m.

(31f)

Here, we use the notation from (4) for the block components of

x̃ and V̂s : R
rp → L(Rrα ,Rn,rp ) is defined via

V̂s(η1)(η2)η3 := V ′
s(η1)(η3)η2 for all (η1, η2, η3) ∈ R

rp×R
rα×R

rp ,

(32)

where V ′
s denotes the derivative of Vs. The structure preservation

as well as the residual minimization property are stated in the

following theorem. Its proof follows along the lines of the proof of

Theorem 4.1 and is therefore omitted.

Theorem 4.3. (Structure-preservingMOR for (1) using a separable

approximation ansatz) Consider the pH system (1) with E, r, J,R,Q

and the associated Hamiltonian H satisfying (2). Furthermore, let

Vs : R
rp → R

n,rα with rα , rp ∈ N and r := rα + rp ≤ n be

continuously differentiable and consider the corresponding ROM

(5) with coefficients Ẽ, J̃, R̃, Q̃, r̃, B̃ as defined in (31). Besides, we

introduce the residual mappingR : R≥0×R
rα ×R

rp ×R
rα ×R

rp ×
R
m → R

n via

R(t, η1, η2, η3, η4, η5) := E(t,Vs(η4)η3)Vs(η4)η1

+E(t,Vs(η4)η3)V
′
s(η4)(η2)η3 + r(t,Vs(η4)η3)

−(J(t,Vs(η4)η3)− R(t,Vs(η4)η3))Q(t,Vs(η4)η3)Vs(η4)η3

−B(t,Vs(η4)η3)η5.

Then, the following assertions hold.

1. The ROM Hamiltonian H̃ : R≥0 × R
r → R defined via (6)

is continuously differentiable and the ROM coefficients satisfy

(28) for all (t, x̃) ∈ R≥0 × R
r , i.e., the ROM given by (5) and

(31) inherits the pH structure from the FOM (1).

2. If E⊤Q is pointwise symmetric and positive definite, then the

ROM given by (5) and (31) is optimal in the sense that any

solution x̃ of (5a) satisfies

˙̃x(t) =
[
α̇(t)

ṗ(t)

]
∈ argmin[

η1
η2

]
∈Rrα+rp

1

2

∥∥R(t, η1, η2,α(t), p(t), u(t))
∥∥2
E(t,Vs(p(t))α(t))−⊤Q(t,Vs(p(t))α(t))⊤

(33)

for all t ∈ I and for any input signal u : R≥0 → R
m which

admits a solution of the ROM state equation (5a).

Remark 4.4 (Factorizable approximation ansatz). Similar to

Theorem 4.3 (1), one may also achieve structure-preserving MOR

based on a more general approximation ansatz of the form

x(t) ≈ Vr(t, x̃(t))x̃(t) (34)

with Vr : R≥0 × R
r → R

n,r , see the preprint version [87] of this

manuscript for more details. An example for such an ansatz is given

by polynomial ansatzes with vanishing constant term, i.e.,

xk(t) ≈
q∑

i1=0

q∑

i2=0

· · ·
q∑

ir=0

ck,i1 ,i2 ,...,ir

r∏

j=1

x̃j(t)
ij for k = 1, . . . , n

with q ∈ N, ck,i1 ,i2 ,...,ir ∈ R for ij = 0, . . . , q, j = 1, . . . , r with
ck,0,0,...,0 = 0 for k = 1, . . . , n. Here, the entries ofVr may be chosen
for instance via

[Vr(t, x̃)]k,ℓ :=
q∑

iℓ=1

q∑

iℓ+1=0

q∑

iℓ+2=0

· · ·
q∑

ir=0

ck,0,0,...,0,iℓ ,iℓ+1 ,...,ir x̃
iℓ−1
ℓ

r∏

j=ℓ+1

x̃
ij
j

for k = 1, . . . , n and ℓ = 1, . . . , r. Polynomial ansatzes in the

context of MOR have been, for example, recently investigated in

[6] with particular focus on quadratic ansatzes.

We close this section by discussing the stability of the ROM

state equation (5a) with u = 0 and coefficients as in (31). To this

end, we first note that it is in general not possible to obtain a stability

result for the ROM state as in Theorem 4.2. This is due to the

fact that the proof of Theorem 4.2 exploits that the approximation

of the FOM state Vrx̃ is linear with respect to the ROM state x̃.

While this is in general not true when using a separable nonlinear

approximation ansatz of the form (3), we observe that Vs(p)α

is at least linear with respect to the α block component of the

ROM state. Consequently, we may use similar arguments as in the

proof of Theorem 4.2 to derive at least a bound for the FOM state

approximation Vs(p)α as well as for α, see the preprint version [87]

of this manuscript for more details. The bounds are summarized in

the following.

Corollary 4.5 (Boundedness of part of the state in (5a) with (31)).

Let the assumptions of Theorem 4.3 be satisfied and let the FOM
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Hamiltonian H satisfy condition (2) in Theorem 3.3 with G = H

and c2, c3 ∈ R>0. Besides, let x̃ = [α⊤ p⊤]⊤ ∈ C1(I,Rrα+rp ) be a

solution of the ROM state equation (5a) with u = 0 and coefficients

as in (31) on the time interval I = [t0, tend] with t0 ∈ R≥0 and

tend ∈ R>t0 . Then, the following assertions hold.

1. The resulting approximation of the FOM state is bounded via

∥∥Vs(p(t))α(t)
∥∥ ≤

√
c3

c2

∥∥Vs(p(t0))α(t0)
∥∥ for all t ∈ I.

2. If there exist constants č1, č2 ∈ R>0 with

σmax(Vs(η)) ≤ č1 and σmin(Vs(η)) ≥ č2 for all η ∈ R
rp ,

(35)

then α is bounded via

∥∥α(t)
∥∥ ≤ č1

č2

√
c3

c2

∥∥α(t0)
∥∥ for all t ∈ I.

5. Numerical examples

In this section, we demonstrate the structure-preserving MOR

framework presented in section 4 by means of two numerical

test cases. A linear advection–diffusion equation with non-

periodic boundary conditions is considered in section 5.1 and

we demonstrate the pH structure of the FOM as well as the

energy consistency of the ROM. In section 5.2, we consider a

wildland fire model which is given by a coupled nonlinear system

of a partial differential equation (PDE) and an ODE. Assuming

periodic boundary conditions, we demonstrate that the FOM may

be written as a dissipative Hamiltonian system, i.e., a pH system

without external ports. Moreover, we compare a ROM based on

the structure-preserving technique from section 4 with a ROM

obtained via a non-structure-preserving approach.

The time integration of the ROMs is performed using the

implicit midpoint rule and the nonlinear systems occurring in

each time step are solved using the MATLAB function fsolve

with default settings. Furthermore, all relative error values reported

in the following correspond to the relative error in a discretized

L2(I × �) norm, where I denotes the time interval and � the

spatial domain. The discretization of the time integral is performed

using the composite trapezoidal rule, whereas the spatial L2 norm

is approximated via ‖·‖Eh . Here, Eh denotes the leading matrix of

the left-hand side of the FOM, cf. (37)–(38) and (42).

5.1. Code availability

The MATLAB source code for the numerical examples can be

obtained from the doi 10.5281/zenodo.7613302.

5.2. Advection–di�usion equation

The first test case is given by a linear advection–diffusion

equation on the spatial domain � = (0, 1) with mixed Robin–

Neumann boundary conditions. The corresponding governing

equations read





∂tx(t, ξ ) = −c∂ξx(t, ξ )+ d∂ξξx (t, ξ) for all (t, ξ ) ∈ I×�,

cx(t, 0)− d∂ξx(t, 0) = cg(t) for all t ∈ I,

∂ξx(t, 1) = 0 for all t ∈ I,

x(0, ξ ) = x0(ξ ) for all ξ ∈ �
(36)

with unknown x : I× � → R, advection speed c ∈ R>0, diffusion

coefficient d ∈ R>0, Robin boundary value g : R≥0 → R, and

initial value x0 : �→ R. The combination of Robin and Neumann

boundary conditions as used in (36) is sometimes referred to as

Danckwerts boundary conditions [cf. [94, 95]].

In order to discretize the initial-boundary value problem (36) in

space, we use a finite element scheme. To this end, we first consider

the following weak formulation: Find x : I×�→ R such that

1. for all t ∈ I, x(t, ·) is in H1(�) and satisfies

〈
ψ , ∂tx(t, ·)

〉
L2(�)

= cψ(0)g(t)− c

2

(〈
ψ , ∂ξx(t, ·)

〉
L2(�)

−
〈
ψ ′, x(t, ·)

〉
L2(�)

)
− d

〈
ψ ′, ∂ξx(t, ·)

〉
L2(�)

− c

2

(
ψ(1)x(t, 1)+ ψ(0)x(t, 0)

)

for all ψ ∈ H1(�),

2. for all ξ ∈ �, we have x(0, ξ ) = x0(ξ ).

Based on this weak formulation, we use a standard Galerkin finite

element scheme based on an equidistant mesh with mesh size h =
1

N+1 , N ∈ N, and piecewise linear ansatz and test functions. The

resulting semi-discretized system takes the form

Ehẋh(t) = (Jh − Rh)xh(t)+ Bhu(t) for all t ∈ I, (37)

where xh : I → R
N+2 contains the coefficients corresponding

to the finite element method (FEM) ansatz functions, the input

u : R≥0 → R is given by u = g, and Eh, Jh,Rh ∈ R
N+2,N+2,

Bh ∈ R
N+2 are defined as

Eh := h

6




2 1 0 · · · 0 0

1 4 1
. . .

...
...

0 1 4
. . . 0 0

...
. . .

. . .
. . . 1 0

0 · · · 0 1 4 1

0 · · · 0 0 1 2




, Bh := c




1

0

0
...

0



, (38a)

Jh := − c

2
tridiagN+2(−1, 0, 1), (38b)

Rh := d

h




1 −1 0 · · · 0 0

−1 2 −1
. . .

...
...

0 −1 2
. . . 0 0

...
. . .

. . .
. . . −1 0

0 · · · 0 −1 2 −1

0 · · · 0 0 −1 1




+ c

2
diag(1, 0, . . . , 0, 1).

(38c)

Here, diag(1, 0, . . . , 0, 1) denotes the diagonal matrix of size

(N + 2) × (N + 2) with diagonal entries 1, 0, 0, . . . , 0, 1 and
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FIGURE 1

Linear advection–di�usion equation: pseudocolor plot of the FOM

solution.

tridiagN+2(−1, 0, 1) the tridiagonal Toeplitz matrix of size (N +
2) × (N + 2) with −1, 0, and 1 as subdiagonal, diagonal, and

superdiagonal entries, respectively. We note that Eh is symmetric

and positive definite, Jh is skew-symmetric, and Rh is symmetric

and positive semi-definite. Consequently, (37) represents the state

equation of a port-Hamiltonian system of the form (11) with

HamiltonianHh(xh) = 1
2x

⊤
h
Ehxh.

For the following numerical experiments, we choose the PDE
parameters as c = 1 and d = 10−3, the final time as tend = 1.2, and
the boundary and initial values as

g(t) = u(t) =
{

1
2 exp

(
1− 1

1−(20(t−0.225))2

)
, if t ∈ (0.175, 0.275),

0, otherwise,

x0(ξ ) =




exp

(
1− 1

1−(20(ξ− 1
2 ))

2

)
, if ξ ∈ (0.45, 0.55),

0, otherwise

(39)

for all t ∈ R≥0 and ξ ∈ �, respectively. Moreover, we divide

the spatial domain into N + 1 = 1000 equidistant intervals, which

corresponds to a mesh size of h = 10−3. For the time discretization,

we use the implicit midpoint rule with step size 10−3. Figure 1

depicts the numerical solution by means of a pseudocolor plot. We

observe that the initial wave profile is transported to the right, while

its shape and amplitude change due to the diffusion. After a certain

time, a second wave enters the computational domain via the left

boundary and is also transported to the right.

In the following, we proceed similarly as in [7] and approximate

the FOM state by a linear combination of transformed modes using

an extended domain shift operator as transformation operator

[cf. [7], section 7.2 for the details]. On the space-discrete level,

the shift operation requires an interpolation scheme for obtaining

values of the underlying continuous function in between the spatial

grid points. To this end, we employ cubic spline interpolation. The

resulting approximation ansatz takes the form

xh(t) ≈
r−1∑

i=1

αi(t)Text(p(t))φi for all t ∈ I, (40)

where Text : R → R
n,dφ with n := N + 2 is the discretized

analog of the extended domain shift operator, p : I → R

corresponds to the shift amount, φ1, . . . ,φr−1 ∈ R
dφ are themodes,

FIGURE 2

Linear advection–di�usion equation: comparison of the temporal

change of the ROM Hamiltonian H̃ and the corresponding

dissipation D̃ and supply rate S̃.

α1, . . . ,αr−1 : I → R the corresponding amplitudes, and dφ the

number of spatial grid points of the extended domain.We note that

(40) may be written as a separable ansatz of the form (3) by defining

Vs : R → R
n,r−1 via

Vs(p) := Text(p)
[
φ1 · · · φr−1

]
.

Based on the snapshot data depicted in Figure 1, we determine

r − 1 = 3 modes via the residual minimization approach

presented in [7, 96]. The resulting relative offline error is 0.71%. In

comparison, the classical POD approach requires around 30 modes

to achieve the same accuracy. Afterwards, we use the structure-

preserving projection framework detailed in section 4 to obtain

a corresponding port-Hamiltonian ROM of the form (5) with

coefficients as in (31). The resulting online error is 1.2%. To

demonstrate the energy consistency of the ROM, Figure 2 depicts

the (discretized) time derivative of the ROMHamiltonian H̃ as well

as the corresponding dissipation and supply rate at the midpoints

of the discrete time intervals [cf. section 3.2]. Especially, we observe

that the power balance (14) is approximately satisfied, as the graphs

corresponding to dH̃
dt

and S̃ − D̃ lie on top of each other. The fact

that the power balance is only approximately satisfied is illustrated

in Table 1, where the corresponding mean and maximum errors

are summarized for three different values of the time step size.

Especially, the results indicate that the error is mainly due to the

time discretization, as the errors decrease with decreasing time

step size. We note that the implicit midpoint rule would yield a

time-discrete system where the power balance is satisfied without

any error, if the ROM Hamiltonian were a quadratic function

of the ROM state [cf. [63, 97]]. However, due to the nonlinear

approximation ansatz this is not the case here [cf. (6)].
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TABLE 1 Linear advection–di�usion equation: comparison of the

maximum and mean errors in the ROM power balance for di�erent time

step sizes.

Time step size Maximum error Mean error

10−3 1.7 · 10−5 1.4 · 10−6

5 · 10−4 3.9 · 10−6 4.1 · 10−7

2 · 10−4 6.9 · 10−7 6.3 · 10−8

5.3. Wildland fire model

As second example, we consider a model which describes the

dynamics of a wildland fire [cf. [61, 62]]. The governing equations

on a one-dimensional spatial domain� = (a, b) are given by

∂tT = k∂ξξT − w∂ξT + α(Sθ(T,β)− γT),
∂tS = −ζSθ(T,β),

(41)

where the unknowns are the relative temperature T : I × � → R

and the supply mass fraction S : I × � → R. Furthermore, the

constants k,α,β , γ , ζ ∈ R>0 and w ∈ R are assumed to be given

and θ : R× R → R is defined via

θ(T,β) :=




exp

(
− β

T

)
, if T > 0,

0, otherwise.

For the physical meaning of these coefficients, we refer to [61,

62]. Moreover, the system (41) is closed via appropriate initial

conditions and periodic boundary conditions [cf. [61]].

In contrast to the previous section, we follow [61] for the spatial

semi-discretization of (41) and perform a central finite difference

scheme based on an equidistant grid with grid size h = b−a
N+1 ,

N ∈ N. The resulting finite-dimensional system reads

[
ẋ1(t)

ẋ2(t)

]
=
[
kD2 − wD1 − αγ IN+1 α2(x1(t),β)

0 −ζ2(x1(t),β)

][
x1(t)

x2(t)

]
,

(42)

where x1, x2 : I → R
N+1 correspond to approximations of T and S

at the spatial grid points ih for i = 1, . . . ,N + 1. Moreover, D1 =
−D⊤

1 and D2 = D⊤
2 ≤ 0 are finite difference approximations of

the first and second spatial derivative, respectively, and the function

2 : R
N+1 × R → R

N+1,N+1 is given by

2(x1,β) := diag
(
θ([x1]1,β), . . . , θ([x1]N+1,β)

)
.

In the following, we demonstrate that the semi-discretized

wildland fire model (42) may be formulated as a dissipative

Hamiltonian system. To this end, we introduce η := α
4γ ζ and

observe that (42) may be written as

[
ẋ1(t)

ẋ2(t)

]
=
([

−wD1 0

0 0

]

︸ ︷︷ ︸
=:J1

+ α

2η

[
0 2(x1(t),β)

−2(x1(t),β) 0

]

︸ ︷︷ ︸
=:J2(x1(t))

)[
IN+1 0

0 ηIN+1

]

︸ ︷︷ ︸
=:Q

[
x1(t)

x2(t)

]

−
(
k

[
−D2 0

0 0

]

︸ ︷︷ ︸
=:R1

+
[

αγ IN+1 − α
2η2(x1(t),β)

− α
2η2(x1(t),β)

ζ
η
2(x1(t),β)

]

︸ ︷︷ ︸
=:R2(x1(t))

)[
IN+1 0

0 ηIN+1

]

︸ ︷︷ ︸
=Q

[
x1(t)

x2(t)

]
.

(43)

Here, we note that Q is symmetric and positive definite

since η is positive and that J2 and R2 are pointwise skew-

symmetric and symmetric, respectively. Furthermore, since D1

is skew-symmetric and D2 is symmetric and negative semi-

definite, we infer that J1 is skew-symmetric and that R1 is

symmetric and positive semi-definite. Thus, if we can show

that additionally R2 is pointwise positive semi-definite, we

may conclude that (43) is a dissipative Hamiltonian system.

For this purpose, let z = [p⊤ q⊤]⊤ ∈ R
2(N+1)

with p, q ∈ R
N+1 and u ∈ R

N+1 be arbitrary. Then,

we obtain

z⊤R2(u)z = αγ p⊤p+ 1

η

N+1∑

i=1

(
ζθ(ui,β)q

2
i − αθ(ui,β)piqi

)

= γ

N+1∑

i=1

(
αp2i − 4ζθ(ui,β)piqi +

4ζ 2

α
θ(ui,β)q

2
i

︸ ︷︷ ︸
=:si

)
.

In the case where ui ≤ 0 holds for some i ∈ {1, . . . ,N +
1}, we have θ(ui,β) = 0 and, hence, si ≥ 0. Otherwise, we

obtain

si = αp2i − 4ζ exp

(
− β
ui

)
piqi +

4ζ 2

α
exp

(
− β
ui

)
q2i

≥ αp2i − 4ζ exp

(
− β
ui

)
piqi +

4ζ 2

α
exp

(
−2β

ui

)
q2i

= αp2i − 4ζ exp

(
− β
ui

)
piqi +

4ζ 2

α

(
exp

(
− β
ui

))2

q2i

=
(√

αpi −
2ζ√
α
exp

(
− β
ui

)
qi

)2

≥ 0.

Consequently, R2 is pointwise symmetric and positive

semi-definite and, hence, (43) is a dissipative Hamiltonian

formulation of (42) with J := J1 + J2 and R :=
R1 + R2.

For the following numerical experiments, we choose the

physical and discretization parameters as detailed in [[61],

section 5.4]. The resulting snapshots are depicted in Figure 3.

Especially, we observe two traveling waves propagating through the

computational domain.

For the model reduction, we follow a different approach than

in [61] since our main focus is on demonstrating the structure

preservation rather than on the accuracy and evaluation time of

the ROM. Similar to section 5.1, we approximate the FOM state

by a linear combination of two transformed modes, one for each

traveling wave. However, instead of an extended domain shift

operator we use a periodic shift operator, which is again discretized

using cubic spline interpolation. The corresponding approximation

ansatz reads
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[
x1(t)

x2(t)

]
≈

2∑

i=1

αi(t)

[
Tper(pi(t)) 0

0 Tper(pi(t))

][
φi,T

φi,S

]
, (44)

where Tper : R → R
n,n with n := N + 1 is the discretized

analog of the periodic shift operator and φi,T and φi,S denote the

temperature and supply mass fraction block component of the ith

mode, respectively, for i = 1, 2. Similarly as in section 5.1, this may

be written as a separable ansatz of the form (3).

As in the previous subsection, the modes are determined via

residual minimization yielding a relative offline error of 13%.

As demonstrated in [61], the error may be significantly reduced

by increasing the mode numbers and introducing a suitable

time interval splitting. However, for illustrating the structure

preservation, the relatively coarse approximation based on two

shifted modes is sufficient here. In comparison, the classical POD

approach requires 40 modes to achieve the same accuracy.

In the following, we compare two different ROMs which are

both integrated in time using the implicit midpoint rule. The

first one is based on the nonlinear Galerkin approach from [[7],

section 5] and enforces the residual at t ∈ I to be orthogonal to

the column space of [Vs(p(t)) V̂s(p(t))α(t)]. On the other hand,

the second ROM is based on the structure-preserving projection

framework outlined in section 4, i.e., it enforces the residual at t ∈ I

to be orthogonal to the column space of Q[Vs(p(t)) V̂s(p(t))α(t)]

with Q as in (43). The corresponding online approximations

of the temperature field are compared in Figure 4. The non-

structure-preserving ROM based on the Galerkin approach yields

a solution where the temperature rapidly decreases to zero and

the fire goes out before traveling combustion waves may develop.

On the other-hand, the approximation obtained by the structure-

preserving ROM reveals traveling combustion waves, although the

flame speeds are significantly smaller than the ones obtained by

the corresponding FOM. Furthermore, Figure 5 illustrates that the

unsatisfactory solution obtained by the non-structure-preserving

ROM is accompanied by an energy inconsistency. Especially, at the

beginning of the time interval, the decline of the Hamiltonian is

much greater than the corresponding dissipation, i.e., the power

balance is clearly violated. Since the ROMHamiltonian is a squared

function of the amplitudes α [cf. (6)], this rapid decline is also

reflected in the abrupt temperature decrease observed in Figure 4.

On the other hand, the structure-preserving MOR approach yields

an energy-consistent ROM as illustrated in Figure 5, right.

The results addressed in the previous paragraph demonstrate

that the structure-preserving MOR approach does not only ensure

port-Hamiltonian ROMs, but it may sometimes also lead to a gain

in accuracy. However, at this point we emphasize that there is

in general no guarantee that this is the case and in most of our

numerical experiments the accuracies of the structure-preserving

and the non-structure-preserving ROMs have been comparable.

The theory from section 4 only ensures the energy consistency of

FIGURE 3

Wildland fire model: pseudocolor plot of the temperature (left) and supply mass fraction (right).

FIGURE 4

Wildland fire model: pseudocolor plots of the temperature approximations using the non-structure-preserving ROM (left) and the

structure-preserving one (right).
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FIGURE 5

Wildland fire model: comparison of the temporal change of the ROM Hamiltonian H̃ and the corresponding negative dissipation −D̃ using the

non-structure-preserving ROM (left) and the structure-preserving one (right).

the ROM, but it does not include any statements about the accuracy

in comparison to the FOM.

6. Conclusion

In this paper, we introduce a structure-preserving model order

reduction (MOR) framework for port-Hamiltonian (pH) systems

based on a special class of nonlinear approximation ansatzes. In

particular, we consider so-called separable ansatzes, which are

linear with respect to a part of the reduced-order model (ROM)

state. Such ansatzes are for instance relevant in the context of

transport-dominated systems which are challenging for classical

methods based on linear subspace approximations. Based on the

considered class of ansatzes, we demonstrate how to obtain a port-

Hamiltonian ROM via projection, provided that the corresponding

full-order model (FOM) has a certain pH structure, which includes

linear as well as a wide range of nonlinear pH systems. Moreover,

in a special case, we obtain ROMs which are not only pH, but

also optimal in the sense that the derivative of the ROM state

minimizes a certain weighted norm of the residual. In addition,

we provide sufficient conditions which ensure that the resulting

approximation of the FOM state is bounded. Finally, the theoretical

findings are illustrated by means of a linear advection–diffusion

problem with non-periodic boundary conditions and a nonlinear

reaction–diffusion system modeling the spread of wildland fires.

While we have only considered a special class of nonlinear

approximation ansatzes, an interesting future research direction

is to derive structure-preserving MOR schemes based on more

general nonlinear ansatzes. This would especially allow to

obtain port-Hamiltonian ROMs via projection onto nonlinear

manifolds which are parametrized by artificial neural networks.

Another question not addressed in this manuscript is the

preservation of algebraic constraints in cases where the FOM

is given by a pH system of differential–algebraic equations.

While corresponding approaches already exist in the context

of classical MOR based on linear ansatzes as mentioned in

Theorem 2.1, this is still an open problem in the context of

nonlinear ansatzes.
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