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The fields of medicine and neuroscience often face challenges in obtaining

a su�cient amount of diverse data for training machine learning models.

Data augmentation can alleviate this issue by artificially synthesizing new data

from existing data. Generative adversarial networks (GANs) provide a promising

approach for data augmentation in the context of images and biomarkers. GANs

can synthesize high-quality, diverse, and realistic data that can supplement real

data in the training process. This study provides an overview of the use of GANs for

data augmentation in medicine and neuroscience. The strengths and weaknesses

of various GAN models, including deep convolutional GANs (DCGANs) and

Wasserstein GANs (WGANs), are discussed. This study also explores the challenges

and ways to address them when using GANs for data augmentation in the field of

medicine and neuroscience. Future works on this topic are also discussed.
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1. Introduction

Generative adversarial networks (GANs) are a type of generative modeling using deep

learning techniques such as convolutional neural networks. According to Gui et al. [1], GANs

can be divided into two categories: explicit density models and implicit density models.

Explicit density models assume the existence of a distribution and train a model to represent

this distribution or fit its parameters using true data. This allows the model to generate

new examples based on the learned distribution. These models have a clear and defined

distribution. On the other hand, implicit density models do not estimate or fit the data

distribution directly. Instead, they generate instances from the distribution without a clear

hypothesis and use these examples to modify the model.

Data augmentation refers to the generation of additional training data from existing

data by transforming the original data to increase the volume and possibly the diversity

of the training data to help the model learn more robustly. This is particularly useful

when the training data are limited, where overfitting of the existing data may occur.

Data regularization, on the other hand, refers to the reduction of overfitting through the

addition of some constraints or penalties to the model. These techniques include L1 and L2

regularization, dropout, early stopping, and batch normalization with the aim of preventing

the model from memorizing the training data and instead encouraging it to learn the

underlying patterns that will potentially generalize better to previously unseen data. While
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data augmentation and regularization both aim to improve the

performance of a model, they operate at different levels: Data

augmentation operates at the level of the input data, while

regularization operates at the level of the model parameters.

Moreover, data augmentation will increase the amount of data

available for training, whereas regularization will modify the model

to better handle the existing data.

Generative adversarial networks (GANs) have been gaining

interest in the past several years due to their robust applications

which have no doubt made them a palpably popular augmentation

technique for both image and biosignal data. Therefore, in this

study, the application of data augmentation using generative

adversarial networks on images in the medical and neurosciences

fields is studied to summarize the existing applications and the

state-of-the-art models and discuss the conducted experiments as

well as review the results of the data. The structure of the article is

as follows: Section 2 explains the methodology, Section 3 describes

the state-of-the-art, Section 4 represents the discussion, and Section

5 is the conclusion of the article.

2. State-of-the-art

One of the key strengths of GAN models is their ability to

generate high-quality synthetic data that can be used for various

purposes. In recent years, there have been many new developments

in GAN models, including the introduction of new architectures,

such as conditional GANs [2] and CycleGANs [3]. One of the most

important advances in GAN models has been the development of

improved training techniques, such as Wasserstein GANs [4] and

self-attention GANs [5]. These techniques have led to more stable

and efficient training as well as improved generation quality. In

addition, the use of GAN models for semi-supervised learning has

also been explored in recent years [6], providing a new approach

for using limited labeled data to train deep learning models. In this

section, the GAN models utilized in the articles are reviewed.

2.1. Conditional GAN

The conditional generative adversarial network (cGAN),

introduced by Mirza and Osindero [2] in 2014, is a variation of

GANs that enable the creation of data that is conditioned on certain

external information, such as class labels or data from another

source. In the cGAN, both the generator and discriminator receive

extra input, such as a class label or an image, which is used to

influence the generated data. This allows the model to generate

samples with specific characteristics, such as specific object classes

in an image. The generator is trained to create samples that can

deceive the discriminator while also meeting the given conditions.

The discriminator is trained to differentiate between real data and

generated data, taking the given conditions into consideration. The

generator and the discriminator keep updating their parameters

until the generator can produce samples that are indistinguishable

from real data for a given condition [2].

A surge of articles using cGAN in studies has emerged ever

since it was first introduced. A respiratory signal augmentation

using cGAN was experimented with, achieving a high accuracy

of 98.87% in detecting lung disorders [7]. cGAN also proved

to help increase the size of the dataset in classifying chest X-

rays into six different categories (COVID-Mild, COVID-Medium,

COVID-Severe, Normal, Pneumonia, and Tuberculosis) in a study

by Mehta and Mehendale [8] and achieved an accuracy of 93.67%.

In 2022, a study by Lee and Nishikawa developed a cGAN to

simulate mammograms (X-ray images of the breast) to detect

mammographically occult (MO) cancer in women which achieved

a value of 0.77 using the area under curve (AUC) test. The study

observed that cGAN-simulated mammograms can help to detect

MO cancer.

In a more recent publication, Jung et al. [9] synthesized high-

quality 3D MR images at different stages of Alzheimer’s disease,

and the quality of the images generated was then measured

using Fréchet Inception Distance (FDI) and Kernel Inception

Distance (KDI). A proposed improved cGAN model to generate

labeled samples of facial images for facial emotion recognition was

managed to obtain a structural similarity (SSIM) score of 0.929,

which demonstrated the effectiveness of the approach [10].

2.2. CycleGAN

The cycle generative adversarial network (CycleGAN) is used

for image-to-image translation without a paired dataset. Unlike

regular GANs, CycleGANs do not require the same sample to be

present in both domains for the translation to occur. Instead, they

use a cycle consistency loss to guarantee that the generated images

can be converted back to their original domain. A CycleGAN has

two generators and two discriminators, one for each image domain.

The generators are trained to translate images from one domain to

the other, while the discriminators are trained to identify real and

generated images. The cycle consistency loss makes sure that the

generated image, after being converted back to its original domain,

is similar to the original image [3].

A study in 2019 used CycleGAN to generate synthetic MRI

images of a brain tumor, and across three datasets, the highest

sensitivity achieved was 80.93 and the specificity was 80.43. The

study proved that the image classification task gained better results

when the data were augmented using CycleGAN [11]. CycleGAN

was used for the generation of synthetic MRI images of subjects

with glioblastoma to classify high-risk and low-risk groups as

well as for the prediction of whether the subjects can survive for

more than 3 years, and its prediction model reached up to 94%

accuracy [12]. The model was also applied in a semi-supervised

manner for opacity classification of diffuse lung diseases, where

computerized tomography (CT) images were labeled with classes

and the transformed images were then evaluated using the F-

measure, and the proposed method obtained an average score of

0.736 across the source and target domains [13].

Another study demonstrated that the use of CycleGAN

optimized the detection and localization of retinal pathologies on

color fundus photographs, which in turn improved the detection

efficiency of retinal diseases [14]. The study managed to obtain

high scores for all test accuracy, F1 score, and AUC metrics

of 97.3%, 0.946, and 0.992, respectively. CycleGAN was once

again employed to tackle the problem of data scarcity for speech
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emotion recognition where synthetic data were generated and

added to the original dataset. The quality of the generated data

was tested using an emotion classification task and showed an

accuracy of 83.33%, which was significantly higher than the baseline

method [15].

2.3. Wasserstein GAN

The Wasserstein generative adversarial network (WGAN),

introduced in 2017 by Arjovsky et al., is a type of GAN that

solves some of the difficulties in training traditional GANs, such

as instability and mode collapse. WGANs employ the Earth

Mover’s Distance, also known as the Wasserstein distance, as the

loss function for both the generator and the discriminator. The

Wasserstein distance gauges the effort needed to convert one

probability distribution into another, making it a more steady loss

function compared to other options used in traditional GANs.

In a WGAN, the discriminator’s objective was to evaluate the

Wasserstein distance between the actual data distribution and the

generated data distribution. The generator, on the other hand,

is trained to create samples that can mislead the discriminator,

resulting in a convergence in the Wasserstein distance between the

two distributions [16].

A study in 2019 employed WGAN to increase the

sample diversity in an effort to improve automatic epileptic

electroencephalogram (EEG) detection. The WGAN model was

used to multiply multi-channel time-series EEG recordings, and

the now enlarged dataset was used in the classification task,

which yielded an accuracy of 84% [17]. Another study addressed

the challenge of limited labeled training samples in predicting

driver’s cognitive states, thus using WGAN to generate EEG data,

and the proposed solution achieved an average AUC score of

66.49% which was an improvement compared to the baseline

[18]. The implementation of WGAN in generating synthetic

electrocardiogram (ECG) signals was done by Munia et al. [19],

where it was then evaluated using FID and F-measure metrics.

Binary classification of anterior myocardial infarction was then

done using the ECG signals to verify its performance, with the

best FID score of 88.27 and F-measure of 85.12%. Artificial EEG

data were also created using WGAN which was sampled using a

dataset that contains EEG recordings of 20 normal and autistic

subjects, and the highest accuracy for the classification task when

data augmentation was implemented was 87.57%, which was the

training accuracy using the KNN classifier [20].

2.4. Deep convolutional GAN

A deep convolutional generative adversarial network

(DCGAN) is made up of two components: a generator network

and a discriminator network. The generator network takes a

random noise vector as the input and creates an image through

a series of convolutional and normalization layers that have

been transposed. The discriminator network, on the other hand,

inputs an image and predicts whether it is real or fake by using

a series of convolutional and normalization layers, followed by

a dense layer. The generator and discriminator are trained to

work against each other, with the generator trying to produce

images that the discriminator cannot tell are not real, while

the discriminator attempts to identify the generated images as

fake [21].

In 2020, a study by Desai et al. utilized DCGAN in generating

new mammography images for the early detection of breast cancer

and obtained an accuracy of 87% when using the augmented

data, which showed an improvement of 8.77% when compared

to the evaluation of classification task without the DCGAN-

generated images. Another study created synthetic chest X-ray

images using DCGAN to diagnose pneumonia, and when the

augmented data were used in the classification task, it achieved a

high accuracy of 94.5% [22]. DCGAN was also used to generate

dermoscopic images to aid the detection of melanoma, and with

only 200 generated labeled images, the proposed method managed

to classify malignant and benign samples with an accuracy of

75.25% [23].

2.5. Least square GAN

The least square generative adversarial network (LSGAN) is a

different version of GAN that employs a different loss function

than the traditional GAN. Instead of using the binary cross-entropy

loss, which can cause issues such as mode collapse and vanishing

gradients, the LSGAN utilizes a least square loss. The discriminator

is trained to predict the difference between the real and generated

data instead of just classifying it as real or fake. The generator,

in turn, is trained to minimize the mean squared error between

the generated and real data, providing smoother gradients and

reducing the risk of mode collapse compared to the traditional

GAN loss function [24].

A study proposed the use of LSGAN in generating biopotential

signals, electromyography (EMG), skin conductance level (SCL),

and ECG signals to detect pain intensity levels. The generated fake

data were then classified into four levels using the support vector

algorithm and obtained an accuracy of 82.8% across all levels of

pain, which was an increment of 44.2% compared to the original

data [25].

2.6. Hybrid GANs

The advantage of using GAN in augmenting data is that it

is versatile, and while individual models have their limitations,

combinations can be made to overcome them, and many

researchers have proposed combining different GAN models

to create hybrid models. For example, a study proposed the

combination of WGAN with LSGAN named capture network

or CapGAN. The baseline framework of CapGAN is a deep

convolutional network architecture that is utilized in both the

generator and the discriminator, modeled after a publicly available

DCGAN network. To adapt it for medical image synthesis,

the standard convolutions in the DCGAN’s discriminator are
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substituted with capsule layers. CapGAN training employs a

least square loss for both the generator and the discriminator

to improve stability and generate high-quality images. The

method demonstrated exceptional performance in comparison

with only DCGAN and LSGAN, where the synthetic MR

images achieved a classification accuracy of 89.20% for prostate

cancer [26].

In 2021, Zhang et al. conducted a study that introduced the

multiple generator conditional Wasserstein generative adversarial

network (MG-CWGAN). This study used the MG-CWGAN

model for data augmentation of EEG data. By including label-

based constraints in the model, the generators are able to

learn various features and patterns of the real data from

different viewpoints. To reduce computational complexity and

maintain underlying information,most of the generator parameters

are shared. The convergence of the model was improved by

changing the gradient penalty term to a zero-centered gradient

penalty term. As the models learn more patterns from the

real data, they are expected to generate artificial data that

are less noisy and more similar in distribution to the real

data, while also preserving diversity among the same type

of data. The results of this study showed that the proposed

model was efficient, achieving an accuracy of 84.00% with

synthetic data.

A study by Mukherjee et al. [27] highlighted the issue

that standalone GANs may only capture limited features in

an image’s latent representation. To address this, the authors

developed AGGrGAN, which is an aggregation of three base

GANs: two variants of DCGAN and a WGAN. The model

is used to generate synthetic MRI scans of brain tumors,

and the style transfer technique is applied to enhance image

similarity. AGGrGAN effectively addresses the challenge of limited

data availability and effectively captures information variance

in multiple representations of raw images, as evidenced by the

method’s application on two datasets which achieved SSIM scores

of 0.57 and 0.83, respectively.

3. Discussion

One of the strengths of GANs in the fields of medicine and

neuroscience is their ability to overcome the limitations of data

availability. In many cases, obtaining real medical images is time-

consuming and expensive, making it difficult to train machine

learning models. By using GANs to generate synthetic images, the

amount of real data required for training can be reduced, making it

possible to perform data analysis and model training with limited

real data.

Another strength of GANs is their ability to capture complex

patterns and structures in medical and neuroscientific data. GANs

are capable of learning both the local and global features of real

data, making themwell-suited for generating high-quality synthetic

images that closely resemble real medical images. Moreover, by

combining multiple GAN models, it is possible to capture a

broader range of patterns in real data and generate more diverse

synthetic images.

Despite the many strengths of GANs, there are also several

weaknesses to consider. One of the major limitations of GANs

is their instability during the training process, which can result

in mode collapse or other training failures. Mode collapse

occurs when the generator generates only a limited set of

outputs, causing the model to fail to capture the diversity

of the real data. Additionally, GANs are computationally

demanding, requiring large amounts of computing resources and

time to train.

Another thing to consider is that the reliability of generated

data is a challenge in healthcare. The use of GANs to generate

medical images may not be trusted by clinicians because the

mechanism behind the generator and the discriminator, which

are deep neural networks, is not fully understood. In medical

images, the intensities have specific meanings, such as in CT data

where every intensity can be mapped to the Hounsfield scale,

and represents certain tissues. However, GANs currently lack this

mapping and association, leading to a lack of trust in images

synthesized with GANs by healthcare professionals. In contrast, in

computer vision where overall appearance is the primary concern,

GANs are considered more suitable.

In addition, as mentioned in the previous section, individual

GAN models have their own weaknesses. Even cGAN, which

is one of the most popular GAN models, has difficulty in

training, which can be prone to instability and mode collapse

[28]. To address this challenge, various training techniques and

architectures have been developed, such as gradient penalty cGANs

[29] and progressive growing cGANs [30]. Another challenge is

the limited interpretability of cGAN models, which can make

it difficult to understand how the models are generating new

data [31]. Like cGAN, CycleGAN is also weak in terms of

mode collapse and instability. CycleGANs are limited in their

applications and may not work well for all image-to-image

translation tasks. They are best suited for tasks where there

is a clear one-to-one mapping between the input and output

domains [3].

As is the problem with most GAN models, WGAN is prone

to mode collapse. To address this challenge, techniques such

as mini-batch discrimination, weight clipping, and one-sided

label smoothing can be used. For example, Arjovsky et al. [4]

proposed the use of weight clipping to enforce the Lipschitz

constraint in the WGAN. The solution of using hybrid GAN

models is presented in this study, but the studies included are

not without weaknesses either, as Mukherjee et al. [27] stated in

their study, the proposed AGGrGAN is limited to only combining

two images. Table 1 shows the summary of all the articles selected

in this review, which is intended to provide the reader with

a snapshot view of all the main experimental elements of the

articles reviewed.

4. Conclusion

GAN is a robust method of augmenting data and consists

of many variations, each to suit a different purpose. It was

found that the most commonly used GAN models are cGAN

and CycleGAN, nevertheless, there are also numerous studies

that employ WGAN and DCGAN models. However, these

variations have their limitations as is the nature of GAN

models, which are prone to mode collapse and training
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TABLE 1 Articles of data augmentation using GANs for images and biosignals in medicine and neuroscience.

References Study Modality GAN model Data Features Class labels Data splitting
method
(train/test or
train/validate/test)

Performance
before GAN
augmentation

Performance
After GAN
augmentation

Jayalakshmy and

Sudha [7]

Respiratory signal

classification

Audio files

(respiratory

sounds)

cGAN Audio signals Scalogram images

from 3 Intrinsic

Mode Functions

(IMFs)

Normal, crackle,

low pitch, wheeze

70/30 Accuracy= 84.88% Accuracy= 98.87%

Mehta and

Mehendale [8]

Classification of X-ray

images into

COVID-19,

pneumonia, and TB

X-ray images cGAN Images Pre-processed 2D

images

COVID-Mild,

COVID-Medium,

COVID-Severe,

normal,

tuberculosis,

pneumonia

80/20 Accuracy= 92.33% Accuracy= 93.67%

Lee and

Nishikawa [32]

Mammographically-

occult breast cancer

detection

Mammogram cGAN Images Pre-processed 2D

images

Cancer, negative 70/10/20 AUC= 70.00% AUC= 77.00%

Sun et al. [10] Facial emotion

recognition

Facial images cGAN Images (from 4

public datasets)

Pre-processed 2D

images

6–7 emotions

(e.g., anger,

disgust, fear,

happiness,

neutral, sadness

and surprise)

10-fold CV Accuracy=

65.40–98.06%

Accuracy=

93.34–98.30%

Jung et al. [9] Alzheimer’s disease

progression

MR images cGAN Images Pre-processed 2D

images

Alzheimer’s

Disease, Mild

Cognitive

Impairment,

Normal

– FID= 0.37± 0.36

KID= 0.028± 0.03

FID= 0.27± 0.19

KID= 0.029± 0.01

Xu et al. [11] Brain tumor detection MR images CycleGAN Images Pre-processed 2D

images

Tumor, normal 70/20/10 Sensitivity=

69.45%

Specificity

= 71.32%

Sensitivity= 80.93%

Specificity= 80.43%

Fu et al. [12] Survival prediction of

patients suffering from

glioblastoma

MR images CycleGAN Images Pre-processed 2D

images

Tumor, normal – – Accuracy= 94.00%

Mabu et al. [13] Opacity classification

of diffuse lung diseases

CT images CycleGAN Extracted regions

of interest (RoIs)

32 x 32 RoIs Diseased, healthy – – F-measure

(Domain A to B)=

72.70%

(Domain B to A)

= 74.50%

Shilandari et al.

[15]

Speech emotion

recognition

Audio files CycleGAN Acoustic and

speech signals

Paralinguistic

challenge

interspeech 2010

features

Happy, unhappy,

angry, fear,

neutral

– – Accuracy= 83.33%
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TABLE 1 (Continued)

References Study Modality GAN model Data Features Class labels Data splitting
method
(train/test or
train/validate/test)

Performance
before GAN
augmentation

Performance
After GAN
augmentation

Zhang et al. [14] Detection and

localization of retinal

pathologies on color

fundus photographs

Funduscopic

images

CycleGAN Images Pre-processed 2D

images

Positive, negative

cases

400/400/400 and 5-fold CV

for 2 respective datasets

Accuracy= 70.90%

F1 Score= 58.70%

AUC= 76.00%

Accuracy= 97.30%

F1 Score= 94.60%

AUC= 99.20%

Wei et al. [17] Automatic epileptic

detection

EEG

recordings

WGAN Brain waveforms 2D image of 23

EEG channels

Epileptic,

non-epileptic

N-2/1/1 where N is the

number of patient data

Accuracy= 81.49% Accuracy= 84.00%

Panwar et al. [18] Driver fatigue

classification

EEG

recordings

WGAN Brain waveforms Topographic

image of 64 EEG

channels

Alert, drowsy 1,002/502 samples AUC= 63.32% AUC= 66.49%

Munia et al. [19] Anterior myocardial

infarction detection

ECG

recordings

WGAN Heart waveform 64 x 64 binary

image

Abnormal,

normal

80/20, 10-fold CV for

validation

F-measure=

36.00%

F-measure= 81.08%

Bouallegue and

Djemal [20]

Autism detection EEG

recordings

WGAN Brain waveforms Topographic

image of 16 EEG

channels

Autistic, healthy – Accuracy= 76.36% Accuracy= 87.57%

Desai et al. [33] Breast cancer detection Mammogram DCGAN Images Pre-processed 2D

images

Cancerous,

normal

218/47/47 images Accuracy= 78.23% Accuracy= 87.00%

Srivastav et al.

[22]

Pneumonia detection X-ray Images DCGAN Images Pre-processed 2D

images

Pneumonia,

healthy

– Accuracy= 91.30% Accuracy= 94.50%

Agarwal et al. [23] Melanoma detection Dermoscopic

images

DCGAN Images Pre-processed 2D

images

Malignant,

benign

– – Accuracy= 75.25%

Al-Qerem [25] Pain intensity

recognition

EMG, SCL,

ECG

recordings

LSGAN Muscle, skin,

heart signals

159 biosignal

features

5 pain levels 75/25 Accuracy= 38.60% Accuracy= 82.80%

Yu and Zhang

[26]

Prostate cancer

detection

MR images CapGAN

(DCGAN+

LSGAN)

Extracted Regions

of Interest (RoIs)

35 x 35 RoIs Malignant,

benign

80/20 – Accuracy= 89.20%

AUC= 88.50%

Zhang et al. [34] Emotion recognition EEG

recordings

MG-CWGAN

(cGAN+

WGAN)

Brain waveforms 310 features from

62 channels

Positive, negative,

neutral

2010/ 1384 samples - Accuracy= 84.00%

Mukherjee et al.

[27]

Brain tumor
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MR images AGGrGAN

(WGAN+

DCGAN)

Images Pre-processed 2D

images

Dataset 1:

Glioma,

Meningioma,

Pituitary

Dataset 2: T1,

T1ce, T2,

T2-FLAIR

– – SSIM= 0.57, 0.83

F
ro
n
tie

rs
in

A
p
p
lie

d
M
a
th
e
m
a
tic

s
a
n
d
S
ta
tistic

s
0
6

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fams.2023.1162760
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Meor Yahaya and Teo 10.3389/fams.2023.1162760

stability. Thus, recent research has shown a trend in creating

hybrid models, and these models evidently show potential

in addressing the data scarcity issue in the medicine and

neuroscience fields.
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