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We provide a short introduction to the devising of a special type of methods

for numerically approximating the solution of Hamiltonian partial di�erential

equations. These methods use Galerkin space-discretizations which result in a

system of ODEs displaying a discrete version of the Hamiltonian structure of the

original system. The resulting system of ODEs is then discretized by a symplectic

time-marching method. This combination results in high-order accurate, fully

discrete methods which can preserve the invariants of the Hamiltonian defining

the ODE system. We restrict our attention to linear Hamiltonian systems, as the

main results can be obtained easily and directly, and are applicable to many

Hamiltonian systems of practical interest including acoustics, elastodynamics, and

electromagnetism. After a brief description of the Hamiltonian systems of our

interest, we provide a brief introduction to symplectic time-marchingmethods for

linear systems of ODEs which does not require any background on the subject. We

describe then the case in which finite-di�erence space-discretizations are used

and focus on the popular Yee scheme (1966) for electromagnetism. Finally, we

consider the case of finite-element space discretizations. The emphasis is placed

on the conservation properties of the fully discrete schemes. We end by describing

ongoing work.

KEYWORDS

symplectic time-marching methods, finite di�erence methods, finite element methods,

Hamiltonian systems, Poisson systems

1. Introduction

We present a short introduction to the devising of a particular type of numerical

methods for linear Hamiltonian systems. The distinctive feature of these methods is that

they are obtained by combining finite element methods for the space-discretization with

symplectic methods for the time-discretization. The finite element space discretization of

the Hamiltonian system is devised in such a way that it results in a system of ODEs which

is also Hamiltonian. This guarantees that, when the system is discretized by a symplectic

method, the resulting fully discrete method can conserve the linear and quadratic time-

invariants of the original system of ODEs. This is a highly-sought property, especially for

long-time simulations.
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For a description of the pioneering work and of the

development of these methods, the reader can see the Introductions

in our papers published in 2017 [1], in 2021 [2], and in

2022 [3] and the references therein. In those papers, other

approaches to achieve energy-conserving schemes are also briefly

reviewed. Particularly impressive are the schemes proposed in

2019 by Fu and Shu [4] in which the authors construct energy-

conserving discontinuous Galerkin (DG) methods for general

linear, symmetric hyperbolic systems.

When we began to study this type of numerical methods for

linear Hamiltonian systems, we were impressed to see that the

methods displayed arbitrary high-order accuracy and preserved

(in time) very well the energy and other quantities of physical

relevance. Although we were familiar with finite element space

discretizations, we were unaware of the relevance and properties

of the symplectic time-marching methods. In a way, the paper we

present here is the paper we would have liked to read as we plunged

into this topic. It is written as an introduction to the subject for

numerical analysts of PDEs which, like us, were not familiar with

symplectic methods.

We restrict ourselves to the linear case for two reasons. The first

is that we have studied those numerical methods for Hamiltonian

formulations of acoustic wave propagation, elastodynamics and the

Maxwell’s equations. So, we do have some experience to share for

those systems. The second is that the theory of symplectic time-

marching can be covered quite easily and that most of its results also

hold in the nonlinear case, although they are not that easy to obtain.

Let us sketch a rough table of contents:

• Hamiltonian and Poisson Systems. (Section 2) We define a

general Hamiltonian (and its simple extension, the Poisson)

systems, of ODEs or PDEs. We then restrict ourselves to linear

systems, give several examples, and discuss the conservation

laws associated to them. For the Hamiltonian and Poisson

systems, we took material from the books that appeared in

1993 by Olver [5], in 1999 by Marsden and Ratiu [6], in

2004 by Leimkuhler and Reich [7], and in 2010 by Feng and

Qin [8]. For the conservation laws, we took the information

gathered in our papers on the acoustic wave equation in 2017

[1] elastodynamics in 2021 [2], and electromagnetism in 2022

[3, 9].

• Symplectic and Poisson time-marching methods. (Section

3) We describe the symplectic (and their simple, but useful,

extensions to the Poisson) methods for linear Hamiltonian

ODEs with special emphasis on how they approximate their

linear and quadratic invariants. We took material from the

pioneering work of the late 1980’s by Feng et al. [10–12], from

the popular 1992 review by Sans-Serna [13], from the 2006

book by Hairer et al. [14], and form the 2010 book by Feng

and Qin [8].

• Finite Difference space discretizations. (Section 4) We show

how to discretize in space the linear Hamiltonian systems by

using finite difference methods. In particular, we recast as one

of such schemes the popular Yee scheme for electromagnetism

proposed in 1966 [15], that is, more than 17 years before the

appearance of the first symplectic method. We took material

from the work done in 1988 by Ge and Feng [10] and in 1993

by McLachlan [16].

• Finite Element space discretizations. (Section 5)We describe

space discretizations based on finite element methods and

combine them with symplectic time-marching schemes. We

discuss the corresponding conservation properties and show

a numerical experiment validating a couple of them. We took

material from the work done in 2005 by Groß et al. [17], in

2008 by Xu et al. [18], and by Kirby and Kieu [19], as well as

from our own work in 2017 [1], 2021 [2], and 2022 [3, 9].

• Ongoing work. (Section 6) We end by briefly commenting on

some ongoing work.

2. Hamiltonian and Poisson systems

2.1. Canonical Hamiltonian systems and
their generalization

2.1.1. The canonical nonlinear Hamiltonian
systems

A canonicalHamiltonian system is defined on (the phase-space)

R
2n in terms of the smooth Hamiltonian functional H :R

2n → R

and a structurematrix J by the system of equations

d

dt
u = J∇uH(u), where1 J : =

[
0 −Id

Id 0

]
. (1)

The Hamiltonian has the remarkable property of remaining

constant on the orbits of the system, t 7→ u(t). Indeed,

d

dt
H(u) =

(
∇uH(u)

)⊤ d

dt
u =

(
∇uH(u)

)⊤
J
(
∇uH(u)

)
= 0,

since the matrix J is anti-symmetric. This computation suggests

an immediate extension of this Property to other functionals. If

u 7→ F(u) is any differentiable functional, we have that

d

dt
F(u) =

(
∇uF(u)

)⊤ d

dt
u =

(
∇uF(u)

)⊤
J
(
∇uH(u)

)
= :{F ,H},

and we can see that F(u) remains constant on the orbits of the

system, t 7→ u(t), if and only if the Poisson bracket, {F ,H}, is zero.

Such quantities are usually called first integrals of the system. They

are also called invariants or conserved quantities.2

2.1.2. A generalization
This definition can be generalized by taking a phase space of

arbitrary dimension, by allowing J to be an arbitrary anti-symmetric

1 What we are denoting by J was originally denoted by J−1. We decided

not to keep such notation because it suggests the invertibility of J and

this property does not hold in many interesting cases. For example, when

extending these definitions from ODEs to PDEs, J−1 naturally becomes a

non-invertible di�erential operator, as already noted in the pioneering 1988

work by Ge and Feng [10, Section 3]. This prompted them to simply drop the

notation J−1. No wonder most authors dealing with Hamiltonian PDEs, see,

for example, the 1993 book by Olver [5], automatically replace the original

J−1 by J, just as we are doing it here.

2 This holds when the functional F only depends on the phase variable u.

If the functional F depends also on time, that is, if F = F(u, t), the above

calculation must be modified to read d
dt
F = {F ,H} + ∂tF .
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matrix, or by letting it depend on the phase-space variable u, that

is, by using J : = J(u). In these cases, the system is called a

Poisson system.

A Poisson dynamical system is, see the 1993 books [5, 16],

the triplet (M,H, {·, ·}), where M is the phase-space, H is the

Hamiltonian functional, and {·, ·} is the Poisson bracket. The

system can then be expressed as

d

dt
u = {u,H}.

The Poisson bracket {·, ·} is a general operator with which

we can describe the time-evolution of any given smooth function

F :R
d → R. This operation is defined for a pair of real-smooth

functions on the phase-space satisfying: (i) bilinearity, (ii) anti-

symmetry, (iii) Jacobi identity:

{{F ,G},H} + {{H,F},G} + {{G,H},F} = 0,

and, (iv) the Leibniz’ rule:

{F ,G ·H} = {F ,G} ·H+ G · {F ,H},

for F , G, H :R
d → R. For a constant anti-symmetric matrix J,

usually called the structurematrix, these four properties are trivially

satisfied by the induced Poisson bracket, see the 1993 book by Olver

[5, Corollary 7.5].

2.2. Definition of linear Hamiltonian and
Poisson systems

As we restrict ourselves to linear Hamiltonian and Poisson

systems, let us formally define them. All the definitions are in terms

of the structure matrix J (which is anti-symmetric), but, to alleviate

the notation, we omit its mention.

Definition 2.1 (Hamiltonian systems) We say that the linear

system

d

dt
u = J∇uH(u)

is Hamiltonian if the structure matrix J (which is anti-symmetric)

is invertible and the Hamiltonian is a quadratic form H(v) : =
1
2v
⊤Hv for some symmetric matrix H.

Definition 2.2 (Poisson systems) We say that the linear system

d

dt
u = J∇uH(u)

is a Poisson system if J is a structure matrix (which is anti-

symmetric) and the Hamiltonian is a quadratic form H(v) : =
1
2v
⊤Hv for some symmetric matrix H.

We see that a Poisson system is the straightforward

generalization of a Hamiltonian system,3 to the case in which the

structure matrix is not invertible.4

3 This generalization is so simple that, in our first reading, the di�erence

between a “Hamiltonian” and a “Poisson” dynamical system completely

escaped us.

2.3. Examples of linear Hamiltonian systems
of ODEs

Let us illustrate and discuss examples of linear Hamiltonian

systems and their respective symplectic structure.

Example 1. A textbook example of a linear canonical

Hamiltonian system is the system modeling the harmonic

oscillator. Its Hamiltonian and structure matrix are

H(p, q) =
p2

2
+

q2

2
, J =

[
0 −1

1 0

]
.

This gives rise to the Hamiltonian system of equations

ṗ = −q, q̇ = p.

We know that the restriction of the Hamiltonian to the orbits of

this system is constant in time, or, in other words, that the quadratic

formH(p, q) =
p2

2 +
q2

2 is a first integral of the system. This implies

that the orbits lie on circles. No interesting property can be drawn

from a linear first integral of the system since the only one it has is

the trivial one.

Example 2. The following is a simple example in which the

structure matrix J is not invertible. We work in a three-dimensional

space (we take u : = (p, q, r)⊤) and consider the system associated

with the following Hamiltonian and structure matrix:

H(u) =
p2

2
+

q2

2
+

r2

2
, J =




0 −1 1

1 0 0

−1 0 0


 .

This gives rise to the Poisson system

d

dt



p

q

r


 =



−q+ r

p

−p


 .

Let us examine the conserved quantities of the system. Again,

we know that the restriction of the Hamiltonian to the orbits of this

system is constant in time, or, in other words, that the quadratic

form H(p, q, r) =
p2

2 +
q2

2 +
r2

2 is a first integral of the system.

This implies that the orbits lie on spheres. Unlike the previous

case, this system has one linear first integral,5 namely, C(p, q, r) : =

(0, 1, 1)·(p, q, r), as this reflects the fact that q+r is a constant on the

4 A small remark on the matrix A : = JH is in order. For the canonical

structure matrix J, it is standard to say that the matrix A is Hamiltonian if

J⊤A = H is symmetric. If J is only required to be invertible, one could say

that A is a Hamiltonian matrix if J−1A = H is symmetric. Finally, if J is not

invertible, one is tempted to say that A is a “Poissonian” matrix if A J = J H J is

symmetric. We did not find this terminology in the current literature and so

dissuaded ourselves to introduce it here, especially because we do not need

it in a significant way.

5 This is an example of a Casimir: a function C whose gradient ∇C lies in

the kernel of J. The functional C is then conserved for any Poisson system

with structure matrix J. A Casimir is also called a distinguished function in the

1993 book by Olver [5]. The history of the term Casimir can be found in the

notes to Chapter 6 of that book.

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1165371
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cockburn et al. 10.3389/fams.2023.1165371

FIGURE 1

Two views of the orbits (orange solid line) of the Poisson system on the phase-space (q,p, r). The orbits are circles (right) lying on planes (left) with

normal (0, 1, 1) so that q+ r is a constant. The blue sphere represents the constant Hamiltonian value corresponding to H = 32/2.

orbits of the system. This has an interesting geometric consequence

since it means that the orbits of the system lie on the intersection of

a sphere and a plane of normal (0, 1, 1), see Figure 1.

2.4. Hamiltonian PDEs: Definition and
examples

To extend the definition of finite-dimensional Hamiltonian and

Poisson systems, the triplet (M,H, {·, ·}), to systems of partial

differential equations, we need to introduce a phase-space M of

smooth functions with suitable boundary conditions (periodic for

simplicity), a Hamiltonian functional H, and a Poisson bracket

{·, ·}. The definition of the bracket is induced by an anti-symmetric

structure operator J, for functionals F ,G on the phase-space M

defined by

{F ,G}(u) : =

∫

�

δF

δu
J
δG

δu
dx.

It satisfies bilinearity, anti-symmetry, and the Jacobi identity

(Leibniz’s rule is dropped). In the definition the operation δ/δu

denotes the functional derivative defined for functionals F on M

by

δF

δu
:

∫

�

δF[u]

δu
δu dx = lim

ε→0

F[u+ εδu]− F[u]

ε

=
d

dε

∣∣∣
ε=0

F[u+ εδu],

for any smooth test function δv inM. Thus, a Hamiltonian partial

differential equation system is given by

u̇ : =
d

dt
u = {u,H}(u).

An important simplification occurs in the case when the structure

operator J is a constant, anti-symmetric operator whose definition

might include spatial differential operators. In this case, the Jacobi

identity is automatically satisfied. See Olver [5, Corollary 7.5].

Let us define and illustrate the Hamiltonian6 systems of PDEs

we are going to be working with.

Definition 2.3 (Linear Hamiltonian PDE system) We say that the

linear system of partial differential equations

u̇ = {u,H}(u) = J
δH

δu
.

is a Hamiltonian system for any constant structure operator J

(which is anti-symmetric), inducing the Poisson bracket {·, ·}, and

the Hamiltonian functional is a quadratic form (meaning that

∂H/∂v is linear in v).

2.4.1. The scalar wave equation
Let us consider the linear scalar wave equation on a bounded,

connected domain� ⊂ R
d with smooth boundary ∂�

ρ ü−∇ · (κ∇u) = f , in�, t ≥ 0, u = 0 on ∂�, (2)

6 In the framework of PDEs, the fine distinction made between

“Hamiltonian” and “Poisson” dynamical systems of ODEs does not seem too

popular. In the 2006 book by Harier et al. [14, Section VII.2], a “Poisson”

dynamical system is defined as the dynamical system obtained when (in

our notation) the structure matrix J is a non-constant matrix which depends

on the unknown u, J = J(u). We were perplexed by the explicit absence of

the case in which J is constant but not necessarily invertible. However, later

we understood that the “constant” case was trivially contained in the more

interesting “non-constant” one.
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TABLE 1 Glossary of scalar wave equation quantities.

Name Symbol Definition

Linear momentum p ρ v

Kinetic energy K 1
2
ρ v2

Elastic energy Ŵ 1
2
κ−1q · q

Lagrange density L Ŵ − K

Total energy E Ŵ + K

TABLE 2 Conservation laws for the scalar quantity η, η̇ + ∇ · fη = 0,

deduced from the scalar wave equation.

η fη

p −q

E −vq

ρ qv −q⊗ q+ L κ

ρ x× qv x× (−q⊗ q+ L κ)

ρ ((d − 1)u/2+ (x · ∇ + t ∂t)u)v+ t L −((d − 1)u/2+ (x · ∇ + t ∂t)u) q+ x L

The flux of η is denoted by fη . We assume that external force f is zero and that the

medium is homogeneous. The linear momentum is associated with a linear functional of the

unknowns whereas all the remaining quantities are associated to quadratic ones. Inspired by

the 1976 work by Fletcher [20] and by the 1993 book by Olver [5, Example 4.36] for the

two-dimensional (d = 2) case. Here, d denotes the dimension of the space.

Where ρ is a scalar-valued function and κ a symmetric, positive

definite matrix-valued function. Here the unknown u can be

a variety of physical quantities. For example, in acoustics, it

represents the deviation from a constant pressure of the medium.

In water waves, it represents the distance to the position of rest of

the surface of a liquid. Here, we take advantage of its closeness to

the vector equations of elastodynamics,7 and we formally assume

that u has the dimensions of a length. We can then introduce the

velocity variable v, and rewrite the equation as a first-order system

of equations as follows:

ρ u̇ = ρ v, ρ v̇ = ∇ · (κ∇u)+ f , in�, t ≥ 0. (3)

This system can be written in a Hamiltonian form with

Hamiltonian functional, and the canonical structure operator J

defined by

H[u, v] =

∫

�

(
1

2
ρ v2 +

1

2
κ ∇u · ∇u− fu

)
, J = ρ−1

[
0 Id

−Id 0

]
.

Indeed, observe that the variational derivatives of the

Hamiltonian functional are

d

dε

∣∣∣
ε=0

H[u+ εδu, v+ εδv] =

∫

�

(
ρ v δv− (f + ∇ · (κ∇u)) δu

)
,

for δu, δv smooth test functions with compact support on�.

7 Everything done for the scalar wave equation can be extended to the

equations of elastodynamics very easily. See, for example, the Hamiltonian

formulations in our recent work [2] and the six independent conservation

laws in the 1976 work by Fletcher [20].

A second and equivalent Hamiltonian form can be found as

follows.We rewrite the scalar wave equations as a first-order system

introducing the vector-valued function q = κ∇u and removing u

from the equations, this is known as the mixed formulation

ρ v̇ = ∇ ·q+ f , q̇ = κ∇v, in�, ∀t ≥ 0, v = 0 on ∂�.

(4)

This system can also be written in a Hamiltonian form with an

equivalent Hamiltonian functional, now in terms of v and q, and

the structure operator J defined by

H[v, q] =

∫

�

(
1

2
ρ v2 +

1

2
κ−1 |q|2 + F · q

)
,

J =

[
0 (ρ−1∇·) ◦ κ

(κ∇) ◦ ρ−1 0

]
.

The Poisson bracket is then induced by the operator, for functionals

F,G

{F,G} =

∫

�

(
δF

δq
κ∇(ρ−1

δG

δv
)+

δF

δv
ρ−1∇ · (κ

δG

δq
)

)
dx.

Thus,

d

dε

∣∣∣
ε=0

H[v+ εδv, q+ εδq] =

∫

�

(
ρ v δv+ (κ−1q− F) · δq

)
,

where f = ∇ · (κF).

In Tables 1, 2, we describe the conservation laws associated with

the linear scalar wave equation. See Example 4.36 in Olver [5], and

in Walter [32].

2.4.2. Electromagnetics
Our last example is the Maxwell’s equations for the electric and

magnetic fields,

ǫĖ = ∇ ×H − J, µḢ = −∇ × E.

The Hamiltonian form of these equations corresponds to the
Hamiltonian functional and anti-symmetric operator given by

H[E,H] =

∫

�

( ǫ
2
|E|2 +

µ

2
|H|2 − J× · µH

)
,

J =

[
0 (ǫ−1∇×) ◦ (µ−1)

−(µ−1∇×) ◦ (ǫ−1) 0

]
,

Where J× satisfies ∇ × J× = J. A second Hamiltonian formulation

can be derived by introducing the magnetic vector potential

variables A, by µH = ∇ × A, and writing the system as follows

Ȧ = −E, ǫĖ = ∇ × (µ−1∇ × A)− J

with corresponding Hamiltonian functional and anti-symmetric

operator given by

H[E,A] =

∫

�

(
1

2
ǫ|E|2 +

1

2
µ−1|∇ × A|2 − A · J

)
,

J = ǫ−1

[
0 Id

−Id 0

]
.
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TABLE 3 Glossary of electromagnetic quantities, see Sánchez et al. [3].

Name Symbol Definition

Energy E
1
2
(ǫE · E + µH ·H)

Energy flux,

Poynting vector

S E×H

Linear momentum P ǫ E× µH

Lorentz force F ρ E+ J × µH

Angular

momentum

L x× P

Maxwell’s stress σ −E I + ǫ E⊗ E + µH ⊗H

Quantities associated to the Lipkin’s zilch tensor [21]

Optical chirality

[22]

χ 1
2
(ǫ E · ∇ × E+ µH · ∇ ×H)

Optical chirality

flux

X 1
2
(E× (∇ ×H)+ (∇ × E)×H)

Flux of the X χ I − 1
2
( 1
µ
E⊗ (∇ × E)+ 1

ǫ
H ⊗ (∇ ×H)

Optical chirality

flux

+(∇ × E)⊗ 1
µ
E+ (∇ ×H)⊗ 1

ǫ
H)

In Tables 3, 4, we describe the rich set of conservation laws

associated to the Maxwell’s equations. The first two are associated

with the conservation of charge, magnetic and electric. The next

three are the classic conservation laws of energy and momenta.

Less standard are the last three, which were obtained back in 1964

by Lipkin [21]. See the 2001 paper [33] for a recent update on the

classification of conservation laws of Maxwell’s equations.

3. Symplectic and Poisson
time-marching methods

As pointed out in the 1992 review by Sanz-Serna [13], the

symplectic time-marching methods were devised specifically for

the time-discretization of Hamiltonian systems. In this section, we

present a simple and direct introduction to the topic, with emphasis

on Poisson linear systems, which seems to be new. The approach

we take reflects our own path into the subject and is intended

for readers that, like us, were utterly and completely oblivious

to the relevance of symplectic and Poisson matrices, and were

only interested in devising numerical methods for Hamiltonian

systems which would capture well their conservation properties.

The main objective of this section is to overcome this terrible,

terrible shortcoming.

3.1. Symplectic and Poisson matrices

Here, we introduce the symplectic (and their simple extension,

the Poisson) matrices which are, as we are soon going to see, deeply

related to Hamiltonian (and their simple extension, the Poisson)

systems. We use the definitions from the 2006 book by Hairer et al.

[14, p. 254].

TABLE 4 Conservation laws for the (scalar or vectorial) electromagnetic

quantity η, η̇+ ∇ · fη = Sη , deduced from the first two Maxwell’s equations.

Conservation of η fη Sη

Magnetic charge ∇ · (µH) 0 0

Electric charge ∇ · (ǫE) J 0

Energy E S −E · J

Linear momentum P −σ −F + 1
2
( E · E∇ǫ

truecm+H ·H∇µ)

Angular momentum L −x× σ x× SP

for ρ = 0, J = 0 and homogeneous media

Optical chirality χ X 0

Optical chirality flux X X 0

Flux of the ij-th entry Xij c2 δij X 0

of the + c2

2
(−Ei∇Hj +Hj∇Ei

Optical chirality flux −Ej∇Hi +Hi∇Ej)

The flux of η is denoted by fη , and the corresponding sources and sinks, by Sη . The magnetic

and electric charges are associated with linear functionals of the unknowns whereas all the

remaining quantities are associated to quadratic ones. Taken from Sánchez et al. [3].

Definition 3.1 (Symplectic matrices) We say that the invertible

matrix E is a symplectic matrix for the structure matrix J (which

is anti-symmetric) if J is invertible and if E⊤ J−1 E = J−1.

Definition 3.2 (Poissonmatrices)We say that the invertiblematrix

E is a Poisson matrix for the structure matrix J (which is anti-

symmetric) if it satisfies E J E⊤ = J. If, in addition, E⊤ = Id on

the kernel of J, we say that E is a Poisson integrator matrix.

Note that, since

E⊤ J−1 E = J−1 H⇒ J = E−1 J E−⊤ H⇒ E J E⊤ = J,

the definition of a Poisson matrix is a straightforward

generalization of the definition of a symplectic matrix to the

case in which the structure matrix is not necessarily invertible.

Note also that the difference between Poisson matrices and Poisson

integrator matrices is that the behavior of the transpose of the latter

on the kernel of the structure matrix is explicitly specified.

3.1.1. The geometry of Poisson matrices
We next gather what we could call the geometric properties of

the Poisson matrices. To state it, we introduce some notation. The

kernel of a matrix M is denoted by M−1{0}. Its range is denoted

by MR
d. Although we do not assume the structure matrix J to be

invertible, we can always define its inverse on part of the space Rd.

Indeed, since the restriction of J to JRd is a one-to-one mapping, we

can define J−1 as the inverse of J on JRd.

Proposition 3.1 (The geometry of Poisson matrices) Let E be a

Poisson matrix. Then

(a) EJRd = JRd,

(b) E⊤J−1E = J−1 on JRd,

(c) E⊤J−1{0} = J−1{0}.
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Moreover, if E is also a Poisson integrator matrix, then

(d) E− Id = JB on R
d,

for some matrix B :R
d → JRd.

This result states that a Poisson matrix E is one-to-one on the

range of J and behaves as a symplectic matrix8 therein, see property

(b). Moreover, its transpose is also one-to-one on the kernel of J. If

the matrix is also a Poisson integrator, that is, its transpose is the

identity on the kernel of J, then E coincides with the identity plus a

matrix whose range is included by the range of J.

Proof of Proposition 3.1. Let us prove (a). Since E is a Poisson

matrix, we have that E J = J E−⊤, and so EJRd ⊂ JRd. We also have

that E−1 J = J E⊤, and so E−1JRd ⊂ JRd. This proves Property (a).

Let us prove (b). Since the restriction of J to JRd is a one-to-one

mapping, we can define J−1 as the inverse of J on JRd. Then, since

E is a Poisson matrix, on JRd, we have that J = E−1 J E−⊤ and so,

that J−1 = E⊤ J−1 E, because EJRd = JRd by Property (a). This

proves Property (b).

Let us now prove (c). Since E is a Poisson matrix, we have

that JE⊤ = E−1J, and so E⊤J−1{0} ⊂ J−1{0}. We also have that

E−⊤J−1{0} ⊂ J−1{0}. This proves Property (c).

It remains to prove (d). Since E is a Poisson integrator, the

kernel of E⊤ − Id includes the kernel of J. As a consequence,

the range of E − Id is included in the range of J. This proves

Property (d).

The proof is now complete.

3.1.2. The evolution operator
Our first result states that Hamiltonian (Poisson) systems and

symplectic (Poisson) matrix integrators are deeply related in an

essential manner.9

Proposition 3.2 (The evolution matrix is a Poisson integrator

matrix which commutes with A) Consider the Poisson system
d
dt
u = Au, where A = JH. Then,

(i) The evolution matrix E(t) : = eA t is a Poisson integrator matrix,

(ii) [E(t), A] : = E(t)A− AE(t) = 0.

8 For a geometric interpretation of the symplecticity of an operator, see the

1992 review by Sanz-Serna [13], the 2006 book by Hairer et al. [14] and the

2010 book by Feng and Qin [8]. In the many discussions with our dynamical

systemcolleagues, we always got the impression that symplecticity enhances

the numerical schemes in much better ways than the simple conservation of

energy can. We admit that we are more ready to believe their statements

than to really understand their arguments. Perhaps because it is di�cult to

visualize orbits of infinite-dimensional dynamical systems. To be pragmatic,

we restrict ourselves to the operational definition of symplecticity given by

equality (b).

9 To us, the intuition of what is a Poisson integrator matrix can be extracted

directly from Proposition 3.2: If the matrix A is of the form JH, with J anti-

symmetric andH symmetric, then thematrix etA is a Poisson integratormatrix.

We have the impression that the properties defining Poisson integrator

matrices can be formulated precisely to match this remarkable relation.

Proof. Let us prove that E(t) is a Poisson matrix. We have that

d

dt
(E(t) J E⊤(t)) =

d

dt
(E(t)) J E⊤(t)+ E(t) J

d

dt
(E⊤(t))

= E(t) (AJ+ JA⊤) E⊤(t)

= E(t) (JHJ+ JHJ⊤) E⊤(t)

= 0,

because J⊤ = −J. As a consequence, we get that E(t) J E⊤(t) =

E(0) J E⊤(0) = J. This proves that E(t) J E⊤(t) = J for all t ∈ R.

Let us now complete the proof of Property (i) by showing that

E⊤(t)v = v for all v in the kernel of J. Observe that

d

dt
E⊤(t)v = A⊤E⊤v = E⊤A⊤v = 0.

Thus, E⊤(t)v = E⊤(0)v = v.

Property (ii) clearly holds. This completes the proof.

3.1.3. Conserved quantities
Next, we characterize all possible linear and quadratic

functionals which remain constant on the orbits of any linear

system. It does not have to be a Hamiltonian system.

Proposition 3.3 (Characterization of linear and quadratic first

integrals) Let t 7→ u(t) be any of the orbits of the linear system
d
dt
u = Au. Then,

(i) The mapping t 7→ v⊤u(t) is constant if and only if A⊤v = 0,

(ii) If the matrix S is symmetric, the mapping t 7→ u⊤(t) S u(t)

is constant if and only if S A+ A⊤S = 0.

For Poisson systems, a couple of simple consequences can be

readily obtained. The first is that, in (i), the linear functional t 7→

v⊤u(t) is constant in time if and only if A⊤v = −H J v = 0. In

other words, the system has linear first integrals if only and only if

either J or H is not invertible. If they are, then so is A⊤ and the only

linear first integral of the system is the trivial one.

The second consequence is that, in (ii), we can take S : =

H. Indeed, S A + A⊤S = H JH + HJ⊤H = 0, because J is

anti-symmetric. This shows that, for any Hamiltonian system, the

HamiltonianH(u) : = 1
2u
⊤Hu is always a quadratic first integral.

Proof. Let us prove Property (i). We have

d

dt
(v⊤u) = v⊤

d

dt
u = v⊤ A u.

This implies Property(i).

Let us now prove Property (ii). We have

d

dt

(
u⊤ S u

)
=

( d
dt
u⊤

)
S u+ u⊤ S

( d
dt
u
)
= u⊤

(
A⊤S+ SA

)
u,

and we see that, for the last quantity to be equal to zero, the

matrix A⊤S+ SA has to be anti-symmetric. Since this matrix is also

symmetric, because S is symmetric, it must be identically zero. This

implies Property (ii) and completes the proof.

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2023.1165371
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cockburn et al. 10.3389/fams.2023.1165371

3.2. Approximate Poisson evolution
operators commuting with A

From now on, we focus on finding out when it is possible

to guarantee that the linear and quadratic first integrals of the

original Hamiltonian system are also maintained constant after

discretization. We give a characterization of the Poisson Runge-

Kutta methods and show that these methods do conserve the

linear and quadratic first integrals of the original Hamiltonian.

This exact conservation property is the first main result of this

section. It justifies the relevance of Poisson numerical methods for

the time-discretizations of Hamiltonian ODEs.

So, consider now the approximation un to u(1t n) given by the

one-step numerical scheme

un+1 : = E1tun.

If E1t is a symplectic matrix, we say that the scheme is

symplectic. If E1t is a Poisson matrix, we say that the scheme is

a Poisson scheme.

Clearly, the discrete evolution matrix E1t is an approximation

to the exact evolution matrix E(1t) = eA1t . Since, by Proposition

3.2, the exact evolution matrix is a Poisson integrator matrix, one

wonders what do we gain by requiring that the discrete evolution

matrix E1t to be also a Poisson integrator matrix.

It is possible to answer that question in a very satisfactory

manner if we additionally require that the discrete evolution matrix

E1t commute with A. As we see next, if this is the case, the

original Hamiltonian remains constant on the discrete orbits of the

numerical scheme.

Proposition 3.4. Assume that

(i) The discrete evolution matrix E1t is a Poisson integrator matrix,

(ii) [E1t , A] : = E1tA− AE1t = 0.

Then the mapping n 7→ 1
2u
⊤
n Hun is constant.

Proof. Since

1

2
u⊤n+1H un+1 =

1

2
u⊤n E

⊤
1tHE1tun =

1

2
u⊤n H un +

1

2
2,

Where 2 : = u⊤n (E
⊤
1tHE1t − H)un, we only have to show that

2 = 0.

We know that JRd⊕ J−1{0} = R
d so we can write un = Jw+ v,

for some w ∈ R
d and v ∈ J−1{0}. Then, we insert this expression

into the definition of2 to obtain

2 = 2w,w + 22v,w +2v,v,

where

2w,w = w⊤J⊤(E⊤1tHE1t −H) Jw,

2v,w = v⊤ (E⊤1tHE1t −H) Jw,

2v,v = v⊤ (E⊤1tHE1t −H) v

= v⊤ (E⊤1tH−HE−11t ) E1tv.

= v⊤ (E⊤1tH−HE−11t ) (v + JBv),

by Property (d) of Proposition 3.1. We can rewrite these quantities

in a more convenient manner with the help of the following matrix:

8 : = E⊤1tH−HE−11t .

Indeed, we can now write that

2w,w = w⊤J⊤ 8 E1t Jw, 2v,w = v⊤ 8 E1t Jw and

2v,v = v⊤ 8 (v + JBv).

But

8 E1t J = (E⊤1tH−HE−11t )E1t J

= E⊤1tHE1tJ+ A⊤

= (E⊤1tHE1tJE
⊤
1t + A⊤E⊤1t) E

−⊤
1t

= (E⊤1tH(E1tJE
⊤
1t − J)+ E⊤1tHJ+ A⊤E⊤1t) E

−⊤
1t

= (E⊤1tH(E1tJE
⊤
1t − J)+ [E1t , A]

⊤) E−⊤1t .

Since E1t is a Poisson matrix and commutes with A, we have

that8 = 0 on the range of E1tJ, and, by Property (a) of Proposition

3.1, on the range of J. As a consequence, we get that2 = v⊤8 v.

It remains to prove that v⊤8 v equals to zero. Since JRd ⊕

J−1{0} = R
d, we can write that Hv = y + h where y is in the range

of J and h in kernel of J. Since we can consider that J−1 is defined

on the range of J, we can write that y = J−1x for some element x of

the range of J. Then

v⊤8 v = v⊤(E⊤1tH−HE−11t ) v

= v⊤(E⊤1tHv)− (E−⊤1t Hv)⊤v

= v⊤(E⊤1t(J
−1x+ h))− (E−⊤1t (J

−1x+ h))⊤v

= v⊤(E⊤1tJ
−1x)− (E−⊤1t J

−1x)⊤v

since E⊤ = Id on J−1{0},

= v⊤(J−1E−11t x)− (J−1E1tx)
⊤v

by (b) of Proposition 3.1,

= 0,

because of the orthogonality of the kernel of J with its range. This

completes the proof.

3.2.1. Evolution matrices which are rational
functions of hA

Next, we consider an important example of evolution matrix

E1t satisfying the assumptions of the previous result, that is, E1t is

a Poisson integrator matrix and commutes with A.

Proposition 3.5. Set A : = JH where J is antisymmetric and H is

symmetric. Set also E1t : = R(1tA), where z 7→ R(z) is a rational

function. Then, E1t is a Poisson integrator matrix if and only if

R(z)R(−z) = 1 and R(0) = 1.

This result has a simple and remarkable geometric interpretation. It

states that the Poisson numerical methods whose evolution matrix

is a rational function of hA are those for which we can recover the
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point we were evolving from by just applying the same scheme with

time reversed, that is, the schemes for which,

if un+1 : = E1tun then un = E−1tun+1.

Let us now prove the result.

Proof. Set Z : = 1tA. By definition, the discrete evolution

operator E1t : = R(1tA) is a Poisson integrator matrix if

(i) R(Z) JR(Z)⊤ = J,

(ii) R(Z)⊤ = Id on the kernel of J.

We want to show that these two properties are equivalent to

(1) R(z)R(−z) = 1,

(2) R(0) = 1.

Since R is a rational function, there are polynomials P and Q such

that R(z) = (Q(z))−1P(z). In terms of these polynomials, the above

conditions read

(a) P(z) P(−z) = Q(z)Q(−z),

(b) P(0) = Q(0).

We only prove that (a) and (b) imply (i) and (ii), as the converse is

equally easy.

Let v be an arbitrary element of the kernel of J. So (1tHJ)ℓv =

0, for ℓ > 0, and since P is a polynomial matrix we have

P(Z)⊤v = P(−1tHJ)v = P(0)v.

By (b), we get

P(0)v = Q(0)v = Q(−1tHJ)v = Q(Z)⊤v,

and then Property (ii) follows.

Let us prove Property (i). Take u : = Jw, where w is an arbitrary

element of Rd. By (a),

0 = Q(Z)Q(−Z)u− P(Z)P(−Z)u =

Q(Z)Q(−Z)Jw − P(Z)P(−Z)Jw,

and since

(−A)iJ = (−A)i−1 (−J H) J = (−A)i−1 J (A⊤) = J (A⊤)i,

because J is anti-symmetric, we get that

0 = Q(Z)Q(−Z)Jw − P(Z)P(−Z)Jw

= Q(Z)JQ(Z⊤)w − P(Z)JP(Z⊤)w.

As this holds for all elements w of Rd, we obtain that

Q(Z)JQ(Z⊤) = P(Z)JP(Z⊤),

and Property (i) follows. This completes the proof.

3.2.2. Symplectic Runge-Kutta methods
Perhaps the main example of numerical methods whose

discrete evolution operator E1t is a rational function of 1tA is

the Runge-Kutta methods. In fact, if the Butcher array of the

Runge-Kutta method is

c
∣∣ A∣∣∣∣ b⊤

then

R(z) : = 1+ zb⊤(Id − z A)−111 = Q(z)−1 P(z),

Where 11 is the s-dimensional column vector whose components

are one, and, see [31],

P(z) = det(Id − zA+ z11b⊤) and Q(z)= det(Id − zA).

This means that the previous result characterizes all the

symplectic Runge-Kutta methods. Two important conclusions can

be immediately drawn:

(i) No explicit Runge-Kutta method (that is,Q is not a constant)

is symplectic.

(ii) Any Runge-Kutta method for which Q(z) = P(−z) is

symplectic. Two notable examples are:

(α) The s-stage Gauss-Legendre Runge-Kutta method, which

is of order 2s. The function R(z) is the s-th diagonal Padé

approximation to ez .

(β) Any diagonally implicit Runge-Kutta method for which

A =




1
2b1 0 0 ... 0

b1
1
2b2 0 ... 0

b1 b2
1
2b3 ... 0

... ... ... ... 0

b1 b2 b3 ... 1
2bs



.

The function R(z) is given by5s
i=1

1+z bi/2
1−z bi/2

.

3.2.3. Conserved quantities
The Poisson integrator Runge-Kutta methods also maintain

constant all the linear and quadratic first integrals of the original

Poisson system. As pointed out above, this result unveils the

importance of these methods for reaching our objective, namely,

the conservation of the first integrals of the original Poisson system.

Theorem 3.1 (Exact conservation of linear and quadratic first

integrals) All linear and quadratic first integrals of the original

Poisson system d
dt
u = Au remain constant on the orbits n 7→ un

provided by a Poisson integrator Runge-Kutta method. That is,

(i) The mapping n 7→ v⊤un is constant if A
⊤v = 0,

(ii) The mapping n 7→ u⊤n S un is constant if SA+ A⊤S = 0.

Proof. Let us prove Property (i). We have

v⊤un+1 = v⊤ R(1tA) un

= v⊤ R(0) un because A⊤v = 0,

= v⊤ un,
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because the evolution matrix for 1t = 0 must be the identity,

that is, R(0) = Id. This proves Property (i). Note we did not use

that the numerical scheme is Poisson, we only used the form of the

evolution operator.

Now, let us prove Property (ii). We have

u⊤n+1 S un+1 = u⊤n R(1tA)⊤ SR(1tA) un

Since SA = −A⊤ S, we have that SP(1tA) = P(−1tA⊤) S, and, as

a consequence, that

Q(−1tA⊤)−1S = SQ(1tA)−1.

We can then write that

u⊤n+1 S un+1 = u⊤n R(1tA)⊤ P(−1tA⊤) SQ(1tA)−1 un

= u⊤n R(1tA)⊤ P(−1tA⊤)Q(−1tA⊤)−1 S un

= u⊤n R(1tA)⊤ R(−1tA⊤) S un

= u⊤n S un,

since the scheme is a Poisson integrator. This proves Property (ii)

and completes the proof.

3.3. Poisson integrator matrices which do
not commute with A

Now, we turn our attention to discrete Poisson methods

whose evolution matrix E1t does not commute with the matrix

A defining the original system. The loss of this commutativity

property has dire consequences, as the exact conservation of the

original Hamiltonian cannot be guaranteed anymore. Indeed, as we

saw in the proof of Proposition 3.4, when the structure matrix J is

invertible and E1t is symplectic, we have that

1

2
u⊤n+1H un+1 =

1

2
u⊤n H un −

1

2
un+1J

−1 [E1t , A]un,

Which means that the original Hamiltonian is not maintained

constant, as claimed.

Nevertheless, because the matrix evolution E1t is a Poisson

integrator matrix, we can still get

(i) the existence of a matrix A1t such that AJ is symmetric and

that E1t = e1tA1t ,

(ii) the non-drifting property of quadratic first integrals (on

bounded orbits) of the original Hamiltonian.

The property (i) states that the discrete dynamics of the numerical

scheme is exactly that of a dynamical system (Hamiltonian if E1t is

symplectic) defined by a matrix A1t which we expect to converge

to A as the discretization parameter1t tends to zero. This property

will allow us to obtain the non-drifting property (ii).

The non-drifting property (ii) states that, provided that the

orbits are bounded, the original quadratic first integrals oscillate

around the correct value for all times and are away from it a

number proportional to the size of the truncation error of the

numerical scheme. This remarkable, non-drifting property is the

second main result of this section. This is why we are interested in

working with Poisson integrators of this type.

3.3.1. The approximate Poisson system
We begin by showing that there is a Poisson system whose

continuous orbits contain the discrete orbits generated by the

evolution matrix E1t .

Proposition 3.6. Let the mapping 1t → E1t , where the discrete

evolution matrix E1t is a Poisson matrix, be continuous on (0,T)

and such that E1t=0 = Id. Then, for1t small enough,

(i) The matrix A1t : =
1
1t log E1t is such that A1tJ is

symmetric.

(ii) The orbits n 7→ un generated by the discrete evolution

operator E1t lie on the orbits t 7→ u(t) of the Poisson system
d
dt
u = A1tu.

Proof. Let us prove Property (i). We have to show that A1tJ is

symmetric. But, for1t small enough, we can write

A1tJ =
1

1t
log E1tJ =

1

1t

∞∑

ℓ=1

(−1)ℓ+1

ℓ
(E1t − Id)ℓJ.

Using the fact that E1t is Poisson, we get that

(E1t − Id)J = (E1tJ− J) = (JE−⊤1t − J) = J(E−⊤1t − Id),

and so, we can write that

A1tJ =
1

1t

∑∞

ℓ=1

(−1)ℓ+1

ℓ
J (E−⊤1t − Id)ℓ

= J
1

1t
log E−⊤1t = J

1

1t
log E−⊤1t = J⊤A⊤1t .

This proves Property (i).

It remains to prove Property (ii). But the discrete orbits are

made of the points

un = (E1t)
nu0 = (e1tA1t )nu0 = en1tA1tu0,

Which lie on the orbit t 7→ etA1tu0. This proves Property (ii)

and completes the proof.

3.3.2. Closeness of the approximate system
Although Proposition 3.3, with A replaced by A1t , gives

information about the linear and quadratic first integrals of the

new system d
dt
u = A1tu, we are more interested in knowing

how close are those invariants to those of the original system. We

have then to relate the matrices A and A1t in order to estimate

howwell the numerical scheme approximates the original quadratic

first integrals.

We show that those matrices are as close as the order of

accuracy of the numerical scheme. We say that the order of

accuracy of the numerical scheme un+1 = E1tun is p if

‖E(1t)− E1t‖ ≤ C (1t)p+1,

for some constant C independent of1t.

Proposition 3.7. Assume that 1t ≤ ln(3/2)/max{‖A‖, ‖A1t‖}.

Then

‖A− A1t‖ ≤
2

1t
‖E(1t)− E1t‖.
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Proof. We have that

A− A1t =
1

1t
(log E(1t)− log E1t)

=
1

1t

∞∑

ℓ=1

(−1)ℓ+1

ℓ

(
(E(1t)− Id)ℓ − (E1t − Id)ℓ

)

=
1

1t

∞∑

ℓ=1

(−1)ℓ+1

ℓ

ℓ∑

m=1

(E1t − Id)m−1

(E(1t)− E1t)(E(1t)− Id)ℓ−m,

because Rℓ − Sℓ =
∑ℓ

m=1 S
m−1(R− S)Rℓ−m. This implies that

‖A− A1t‖ ≤
1

1t

∞∑

ℓ=1

1

ℓ

[ ℓ∑

m=1

‖E1t − Id‖m−1‖E(1t)− Id‖ℓ−m
]

‖E(1t)− E1t‖

≤
1

1t

∞∑

ℓ=1

max
1≤m≤ℓ

{‖E1t − Id‖m−1‖E(1t)− Id‖ℓ−m}

‖E(1t)− E1t‖

Since ‖etB − Id‖ ≤ et‖B‖ − 1, we get that

‖A− A1t‖ ≤
1

1t

∞∑

ℓ=1

max
1≤m≤ℓ

{(eh‖A1t‖ − 1)m−1(eh‖A‖ − 1)ℓ−m}

‖E(1t)− E1t‖

≤
1

1t

∞∑

ℓ=1

(1/2)ℓ−1 ‖E(1t)− E1t‖

=
2

1t
‖E(1t)− E1t‖,

because e1tmax{‖A‖,‖A1t‖} ≤ 3/2. This completes the proof.

3.3.3. Non-drifting of quadratic first integrals
We end by noting that the quadratic first integrals of the

original Hamiltonian system do not drift on the discrete orbits

generated by the numerical scheme.

Theorem 3.2 (Non-drifting property of the quadratic first

integrals) Let the discrete evolution matrix E1t be a Poisson

matrix, and let n 7→ un denote any of its orbits. Assume that

λmin : = infv 6=0
∣∣ v⊤S1tv

v⊤v

∣∣ > 0. Then

∣∣u⊤n Sun − u⊤n S1tun
∣∣ ≤ 1

λmin
‖S− S1t‖

∣∣u⊤n S1tun
∣∣ ∀ n.

Proof. Since u⊤n Sun − u⊤n S1tun = u⊤n (S− S1t)un, we have that

∣∣u⊤n Sun − u⊤n S1tun
∣∣ ≤ sup

v 6=0

∣∣v
⊤(S− S1t)v

v⊤S1tv

∣∣ ∣∣u⊤n S1tun
∣∣

≤ sup
v 6=0

∣∣ v⊤v

v⊤S1tv

∣∣ ‖S− S1t‖
∣∣u⊤n S1tun

∣∣

≤
1

λmin
‖S− S1t‖

∣∣u⊤n S1tun
∣∣.

This completes the proof.

In the case in which S = H = J−1A, we can take S1t = J−1A1t

to get that

∣∣u⊤n Sun − u⊤n S1tun
∣∣ ≤‖J

−1‖

λmin
‖A− A1t‖

∣∣u⊤n S1tun
∣∣

≤
2‖J−1‖

1t λmin
‖E− E1t‖

∣∣u⊤n S1tun
∣∣,

and, if the scheme is of order p, we immediately get that

∣∣u⊤n Sun − u⊤n S1tun
∣∣ ≤C 2‖J−1‖

λmin

∣∣u⊤n S1tun
∣∣ 1tp,

for 1t small enough. Since n 7→ u⊤n S1tun is constant, we see that

u⊤n Sun does not drift in time, as claimed. Of course, for this to take

place, λmin has to be strictly positive, which happens when v⊤S1tv

is never equal to zero on the unit sphere v⊤v = 1.

3.4. Separable Hamiltonians and partitioned
Runge-Kutta methods

Since there are no explicit symplectic Runge-Kutta methods

for general Hamiltonians, one wonders if the situation changes for

some subclass of Hamiltonians. It turns out that this is the case for

the so-called separable Hamiltonians. Indeed, there are explicit,

partitioned Runge-Kutta which are symplectic when applied to

separable Hamiltonian systems. This is the third main result of

this short introduction.

3.4.1. Separable Hamiltonians
If the Hamiltonian is separable, that is, if

H =
1

2

(
p⊤Hppp+ q⊤Hqqq

)

and if the corresponding Hamiltonian system is of the form

d

dt

[
p

q

]

︸︷︷︸
u

=

[
0 Jpq
Jqp 0

]

︸ ︷︷ ︸
J

[
Hpp 0

0 Hqq

]

︸ ︷︷ ︸
H

[
p

q

]
=

[
0 Apq

Aqp 0

]

︸ ︷︷ ︸
A

[
p

q

]
,

it is interesting to explore schemes which treat the q- and p-

components of the unknown u in different ways.

3.4.2. Partitioned Runge-Kutta methods
The so-called partitioned Runge-Kutta methods are of the form

E1tu = u+ 1t

s∑

j=1

[
0 bjApq

bjAqp 0

]
U j and

U i = u+ 1t

s∑

j=1

[
0 aijApq

aijAqp 0

]
U j,

and can be thought as associated to two Butcher arrays,

c
∣∣ A∣∣∣∣ b⊤

and
c

∣∣ A∣∣∣∣ b
⊤.
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To emphasize its relation with the standard RK methods, we can

rewrite them as

E1tu = u+ 1tA

s∑

j=1

BjU j where

U i = u+ 1tA

s∑

j=1

Aij U j i = 1, . . . , s,

where Bℓ : =

[
bℓ Idpp 0

0 bℓ Idqq

]
and Aℓm : =

[
aℓm Idpp 0

0 aℓm Idqq

]
.

We can see that we recover the standard RK methods whenever

bℓ = bℓ and aij = aij.

3.4.3. Conservation of the original linear first
integrals

It is clear that these methods have an evolution matrix which

does not commute with A. Because of this, all the results in the

previous subsection apply to them when they are symplectic. In

addition, they maintain constant all the linear first integrals of

the original Hamiltonian, not because of their symplecticity but

because of the structure of their evolution matrix.

Theorem 3.3 (Exact conservation of linear first integrals) Suppose

that the original Hamiltonian is separable. Then, all linear first

integrals of the original Hamiltonian are also first integrals of any

partitioned Runge-Kutta method.

Proof. We have that v⊤E1tu = v⊤(u + 1tA
∑s

j=1 BjU j) = v⊤u,

whenever A⊤v = 0. This completes the proof.

3.4.4. Symplecticity
We end this section by providing a characterization of

the partitioned Runge-Kutta methods which are Poisson (or

symplectic), see a detailed proof in Appendix A, and by showing

that they can be explicit.

Proposition 3.8. Suppose that the original Hamiltonian is

separable. A partitioned Runge-Kutta method is Poisson (or

symplectic) if an only if

biaij + bjaji − bibj = 0 i, j = 1, . . . , s.

When the partitioned Runge-Kutta methods becomes

a standard Runge-Kutta method, this result is equivalent

to Proposition 3.5, as it can be seen after performing a

simple computation.

3.4.5. Explicit methods
An important example symplectic partitioned Runge-Kutta

methods have the A-matrices of the Butcher arrays of the

following form:

A =




b1 0 0 ... 0

b1 b2 0 ... 0

b1 b2 b3 ... 0

... ... ... ... 0

b1 b2 b3 ... bs




and A =




0 0 0 ... 0

b1 0 0 ... 0

b1 b2 0 ... 0

... ... ... ... 0

b1 b2 b3 ... 0



.

These methods are charaterized by the two vectors b and b, with the

obvious notation, and can be efficiently implemented as follows:

[
P

Q

]
← u, for i = 1, . . . , s :

P← P + h biApqQ

Q← Q+ h biAqpP
,

E1tu←

[
P

Q

]
.

There are two, low accuracy methods which, nevertheless, deserve

to be mentioned as they are considered as classic. The first is the so-

called the Symplectic Euler method. It is associated with the vectors

b = 1, b = 1, and is first-order accurate. It reads:

Pn+1 =Pn + 1tApqQn,

Qn+1 =Qn + 1tAqpPn+1.

The second is the Störmer-Verlet method. It is associated to

the vectors b = [0, 1]⊤ and b = [1/2, 1/2]⊤ and is second-

order accurate. It can be obtained by applying the Symplectic Euler

method twice by using the Strang splitting, that is,

Pn+1/2 = Pn +
1t
2 ApqQn,

Qn+1/2 = Qn +
1t
2 AqpPn+1/2,

Qn+1 = Qn+1/2 +
1t
2 AqpPn+1/2

Pn+1,= Pn+1/2 +
1t
2 ApqQn+1.

We can also write the method as follows:

Qn+1 = Qn + 1tAqpPn+1/2,

Pn+3/2 =Pn+1/2 + 1tApqQn+1,
for n = 0, . . . ,N − 1, (5)

Where P1/2 = P0 +
1t
2 ApqQ0 and PN = PN+1/2 −

1t
2 ApqQN .

This is precisely the time-marching scheme used in the well known

Yee’s scheme [15] for Maxwell’s equations.

We end this section by noting that explicit partitioned Runge-

Kutta methods of any (even) order of accuracy can be obtained, as

was shown in 1990 by Yoshida [23].

3.5. Illustration

We end this section by illustrating the application of the

implicit midpoint method (the lowest order, symplectic Runge-

Kutta method) and the symplectic Euler method (the lowest

order, symplectic partitioned Runge-Kutta method). We consider

Example 2, introduced in Section 2.3. Both methods preserve

the linear first integral exactly (see Theorem 3.1 for the implicit

midpoint method and Theorem 3.3 for the symplectic Euler

method), this is observed in Figure 2 where the approximate orbits

lie on planes perpendicular to the kernel of J, the vector (0, 1, 1).

The implicit midpoint preserves the Hamiltonian exactly (see

Theorem 3.1) and the symplectic Euler computes a non-drifting

approximation of it (see Theorem 3.2).

4. Symplectic finite di�erence
methods

The idea of combining symplectic time integrators with finite

difference spatial discretizations can be traced back to the late 1980’s
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FIGURE 2

Two views of the approximate orbits of the Poisson system in Example 2 on the phase-space (p,q, r). The approximate orbits lie on planes with

normal vector (0, 1, 1) so that q+ r is a constant. The orbits in the dashed-green line were computed using the symplectic Euler method are ellipses

and the ones in solid-red were computed using the implicit midpoint method and are circles. The blue sphere represents the constant Hamiltonian

value corresponding to H = 32/2.

with the work of Feng and his collaborators [10, 11]. For instance,

in 1987, Feng and Qi [11] applied symplectic integrators to the

discretization in space by central difference schemes of the linear

wave equation. In 1988, Ge and Feng [10] combined symplectic

time-marching methods with finite difference schemes for a linear

hyperbolic system. In 1993, McLachlan [16] incorporated the

Poisson structure from Olver [5] to the design of symplectic

finite difference schemes, and applied it to the non-linear waves,

the Schrödinger, and the KdV equations. This effort continues.

See, for example, the study of multisymplectic finite difference

methods [24].

On the other hand, numerical methods (which are essentially

symplectic time-marching methods applied to finite difference

space discretizations) had been proposedmuch earlier (than 1980’s)

when the concept of symplectic time-integrators did not exist

or was not systematically studied. A prominent example is Yee’s

scheme proposed in 1966 [15]. This scheme is also known as

the finite-difference time-domain (FDTD) method, for which the

acronym was first introduced in Taflove [25]. Later on, Yee’s

scheme was studied in the multisymplectic framework [26, 27].

However, to the best of our knowledge, no work exists which

attempts recasting Yee’s scheme as a combination of symplectic

time-marching methods with finite difference space discretizations.

In this section, instead of attempting to reach for maximal

generality, we focus on the Yee’s scheme [15]. We show that the

spatial discretization of the scheme leads to a Hamiltonian ODE

system, while the time-discretization of the scheme is nothing but

the well known, symplectic, second-order accurate Störmer-Verlet

method. As a result, all the conservation properties of Section 3

hold for Yee’s scheme.

4.1. The time-dependent Maxwell
equations

Let us begin by recalling the time-dependent Maxwell’s

equations in the domain� = [0, L1]× [0, L2]× [0, L3]:

ǫĖ = ∇ ×H in�,

µḢ = −∇ × E in�,

With periodic boundary conditions, where E and H represent

the electric and the magnetic fields, respectively. If we set u =

(E,H)T , we can rewrite the above equations into a more compact

form:

u̇ = Au = JHu, (6a)

where

J =

[
0 ǫ−1(∇×)µ−1

−µ−1(∇×)ǫ−1 0

]
and H =

[
ǫ 0

0 µ

]
.

(6b)

Note Equation (6) is a Hamiltonian dynamical system with

the triplet (M,H, {·, ·}), where M is the phase space, H is the

Hamiltonian

H =
1

2
u⊤Hu =

1

2

∫

�

(
ǫ|E|2 + µ|H|2

)
,

and the Poisson bracket is defined by

{F ,G} : =

∫

�

(
δF

δu
)⊤J

δG

δu
.
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4.2. The space discretization of Yee’s
scheme

We next consider the spatial discretization of Yee’s scheme [15],

for which the electric and the magnetic fields are defined on the

following grid points:

E1,i,j+ 1
2 ,k+

1
2
, E2,i+ 1

2 ,j,k+
1
2
, E3,i+ 1

2 ,j+
1
2 ,k

,

H1,i+ 1
2 ,j,k

, H2,i,j+ 1
2 ,k

, H3,i,j,k+ 1
2
.

Namely, the magnetic field is defined on the edges and the

electric field is defined on the faces of the cube element [i1x, (i +

1)1x]× [j1y, (j+ 1)1y]× [k1z, (k+ 1)1z]. Let us denote by

VE = VE1 × VE2 × VE3 , VH = VH1 × VH2 × VH3 ,

the approximation spaces for the electric field E and the magnetic

field H, respectively, and let z ∈ VE × VH be the vector

representing the discretized electric and magnetic fields. Then,

the spatial discretization of Yee’s scheme introduces the following

Hamiltonian system of ODEs:

ż = JHz, (7a)

where

J =
1

(1x1y1z)2

[
0 (Dǫ

h
)−1curlHh (D

µ

h
)−1

−(D
µ

h
)−1curlEh(D

ǫ
h
)−1 0

]
,

(7b)

H = (1x1y1z)

[
Dǫ
h

0

0 D
µ

h

]
. (7c)

In the above equations,

Dǫh :VE → VE, D
µ

h
:VH → VH ,

are the discretizations of the multiplication operation by ǫ and µ,

respectively. Moreover,

curlHh :VH → VE, curlEh :VE → VH ,

are two different finite difference discretizations of the ∇×

operator. These operators will be described in full detail in the last

subsection. Here we want to emphasize the abstract structure of the

scheme as well as the main properties of these operators which are

contained in the following result. A detailed proof is presented in

Section 4.5.

Proposition 4.1. The operators Dǫ
h
and D

µ

h
are symmetric and

semi-positive definite. In addition, we have

(curlHh )
⊤ = curlEh .

Consequently, the operator J defined in Equation (7b) is anti-

symmetric, and the operator H defined in Equation (7c) is semi-

positive definite.

As a consequence of the above proposition, the ODE system

(Equation 7a) is a Poisson dynamical system. In addition, thanks

to the structure of J and H (see Equations 7b, 7c), we know its

Hamiltonian is separable.

4.3. The fully discrete Yee’s scheme

So we can now time-march this system of ODEs by using a

symplectic scheme so that all the results of Section 3.4 hold.

In particular, if in the Equation (5), we replace Q by E, P by H,

Aqp by (D
ǫ
h
)−1curlHh and Apq by (−(D

µ

h
)−1curlEh), we obtain

En+1 = En +1t (Dǫh)
−1curlHh Hn+1/2, (8)

Hn+3/2 = Hn+1/2 −1t (D
µ

h
)−1curlEhEn, (9)

and we recover Yee’s scheme [15].

4.4. Conservation laws

Finally, we identify some conservation quantities associated to

Yee’s scheme. By Proposition 3.3, this task reduces to identify

• The kernel of A⊤. Suppose A⊤v = 0, then v⊤u is conserved in

time.

• Symmetric matrix S such that SA + A⊤S = 0. Then, the

bilinear form u⊤Su is conserved in time.

Before, we can present the main result, let us introduce some

notation. For a given function fi,j,k, we define a shifting operator

as follows:

τ(s1 ,s2 ,s3)(fi,j,k) = fi+s1 ,j+s2 ,k+s3 .

In the above formulation, we allow the indexes i, j, and k to be non-
integers so that the operator τ(s1 ,s2 ,s3) can be applied to fi,j,k on non-

integer grid points. With this notation, we define the discretized
Hamiltonian energy function

H(E1,E2,E3,H1,H2,H3)

: =
1

2
1x1y1z

((
DǫhE,E

)
VE
+

(
D
µ

h
H,H

)
VH

)

: =
1

2
1x1y1z

∑

i,j,k

(
τ
(0, 12 ,

1
2 )
(ǫi,j,kE

2
1,i,j,k)+ τ( 12 ,0,

1
2 )
(ǫi,j,kE

2
2,i,j,k)

+τ
( 12 ,

1
2 ,0)

(ǫi,j,kE
2
3,i,j,k)

)

+
1

2
1x1y1z

∑

i,j,k

(
τ
( 12 ,0,0)

(µi,j,kH
2
1,i,j,k)+ τ(0, 12 ,0)

(µi,j,kH
2
2,i,j,k)

+τ
(0,0, 12 )

(µi,j,kH
2
3,i,j,k)

)
.

We also introduce two gradient operators

(i) ∇h,0 φi,j,k : = Th(φi,j,k),

(ii) ∇h, 12
φi+ 1

2 ,j+
1
2 ,k+

1
2
: = Th(φi+ 1

2 ,j+
1
2 ,k+

1
2
),

Where Th is the differencing operator given by

Th : =

(
τ(1,0,0) − τ(0,0,0)

1x
,
τ(0,1,0) − τ(0,0,0)

1y
,
τ(0,0,1) − τ(0,0,0)

1z

)
.

Note that the two gradients are defined on different grid spaces.

The gradient ∇h,0 is defined for function living on integer-grid

points (i, j, k), while the gradient ∇h, 12
is defined on half-grid points
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(i + 1
2 , j +

1
2 , k +

1
2 ). In addition, we remark that the range of ∇h,0

is VH , and the range of ∇h, 12
is VE.

Proposition 4.2 (Conservation of energy and electric/magnetic

charges) For the Yee’s semi-discrete scheme defined by Equation

(7a), the energyH is conserved in time. In addition, (the weak form

of) the electric and magnetic charges

Cφ(E1,E2,E3,H1,H2,H3) : =
(
DǫhE,∇h,2φ1

)
VE
+

(
D
µ

h
H,∇h,1φ2

)
VH

,

is conserved in time. Here, φi (i = 1, 2) are arbitrary test functions.

4.5. Proof of proposition 4.1 and 4.2

In this subsection, we first define the operators Dǫ
h
, D

µ

h
, curlHh ,

and curlEh . Then we prove Propositions 4.1 and 4.2.

We introduce two types of central difference operators ∂h,0x and

∂
h, 12
x , which are defined as

(∂h,0x f )i+ 1
2 ,j,k
=
τ(1,0,0) − τ(0,0,0)

1x
fi,j,k,

(∂
h, 12
x f )i,j,k =

τ(1/2,0,0) − τ(−1/2,0,0)

1x
fi,j,k.

Similarly, we can define ∂h,0y , ∂
h, 12
y , ∂h,0z , and ∂

h, 12
z . It is easy to

observe that

∂
h,0
y,H1

:VH1 → VE3 , ∂
h,0
z,H1

:VH1 → VE2 ,

∂
h,0
x,H2

:VH2 → VE3 , ∂
h,0
z,H2

:VH2 → VE1 ,

∂
h,0
x,H3

:VH3 → VE2 , ∂
h,0
y,H3

:VH3 → VE1 .

Note that we have added the additional sub-indexes Hi to

indicate the domain of the operators.

Lemma 4.1 (The anti-symmetry of central differences) We have

∂
h, 12
y,E3
= −(∂h,0y,H1

)∗ :VE3 → VH1 , ∂
h, 12
z,E2
= −(∂h,0z,H1

)∗ :VE2 → VH1 ,

∂
h, 12
x,E3
= −(∂h,0x,H2

)∗ :VE3 → VH2 , ∂
h, 12
z,E1
= −(∂h,0z,H2

)∗ :VE1 → VH2 ,

∂
h, 12
x,E2
= −(∂h,0x,H3

)∗ :VE2 → VH3 , ∂
h, 12
y,E1
= −(∂h,0y,H3

)∗ :VE1 → VH3 .

Proof. Wewill only prove that ∂
h, 12
y,E3
= −(∂h,0y,H1

)∗ :VE3 → VH1 . The

rest is similar. Notice that

〈∂
h,0
y,H1

H1,T〉VE3
=

∑

i,j,k

(∂h,0y,H1
H1)i+ 1

2 ,j+
1
2 ,k

Ti+ 1
2 ,j+

1
2 ,k

=
∑

i,j,k

H1,i+ 1
2 ,j+1,k

−H1,i+ 1
2 ,j,k

1x
Ti+ 1

2 ,j+
1
2 ,k

=
∑

i,j,k

H1,i+ 1
2 ,j,k

Ti+ 1
2 ,j−

1
2 ,k
− Ti+ 1

2 ,j+
1
2 ,k

1x

= 〈H1,−∂
h, 12
y,E3

T〉VH1
.

This proves the claim.

Now, we define two discrete curl operators:

curlEh :VE → VH

(E1,E2,E3) 7→




0 −∂
h, 12
z,E2

∂
h, 12
y,E3

∂
h, 12
z,E1

0 −∂
h, 12
x,E3

−∂
h, 12
y,E1

∂
h, 12
x,E2

0






E1
E2
E3


 ,

and

curlHh :VH → VE

(H1,H2,H3) 7→




0 −∂
h,0
z,H2

∂
h,0
y,H3

∂
h,0
z,H1

0 −∂
h,0
x,H3

−∂
h,0
y,H1

∂
h,0
x,H2

0






H1

H2

H3


 .

We also introduce the multiplication operators Dǫ
h
:VE → VE

such that

Dǫh(E1,i,j+ 1
2 ,k+

1
2
, E2,i+ 1

2 ,j,k+
1
2
, E3,i+ 1

2 ,j+
1
2 ,k

)

= (ǫi,j+ 1
2 ,k+

1
2
E1,i,j+ 1

2 ,k+
1
2
, ǫi+ 1

2 ,j,k+
1
2
E2,i+ 1

2 ,j,k+
1
2
,

ǫi+ 1
2 ,j+

1
2 ,k

E3,i+ 1
2 ,j+

1
2 ,k

).

The operator D
µ

h
:VH → VH can be similarly defined.

Proof of Proposition 4.1. As we have seen, Dǫ
h
and D

µ

h
are semi-

positive definite since ǫ and µ are non-negative. Hence, the

matrix H is semi-positive definite by its definition (Equation 7c).

Moreover, by Lemma 4.1, we have that (curlHh )
∗ = curlEh , and so, J

is anti-symmetric. This completes the proof.

We are next going to prove Proposition 4.2. Before that, we will

need a lemma.

Lemma 4.2 (The kernel of the finite difference curlh operators) We

have that

(i) ∇h,1 φi,j,k : = Th(φi,j,k)

belongs to the kernel of curlHh ,

(ii) ∇h,2 φi+ 1
2 ,j+

1
2 ,k+

1
2

: = Th(φi+ 1
2 ,j+

1
2 ,k+

1
2
)

belongs to the kernel of curlEh ,

Where Th is the differencing operator given by

Th : =

(
τ(1,0,0) − τ(0,0,0)

1x
,
τ(0,1,0) − τ(0,0,0)

1y
,
τ(0,0,1) − τ(0,0,0)

1z

)
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Proof. We prove the lemma by a direct computation. Note that

curlHh ◦ ∇h,1φi,j,k =




0 −∂
h,0
z,H2

∂
h,0
y,H3

∂
h,0
z,H1

0 −∂
h,0
x,H3

−∂
h,0
y,H1

∂
h,0
x,H2

0







τ(1,0,0)−τ(0,0,0)
1x

τ(0,1,0)−τ(0,0,0)
1y

τ(0,0,1)−τ(0,0,0)
1z




φi,j,k

=




(τ(0,1,1)−τ(0,1,0))−(τ(0,0,1)−τ(0,0,0))

1z1y −
(τ(0,1,1)−τ(0,0,1))−(τ(0,1,0)−τ(0,0,0))

1y1z

(τ(1,0,1)−τ(0,0,1))−(τ(1,0,0)−τ(0,0,0))

1x1z −
(τ(1,0,1)−τ(1,0,0))−(τ(0,0,1)−τ(0,0,0))

1x1z

(τ(1,1,0)−τ(1,0,0))−(τ(0,1,0)−τ(0,0,0))

1y1x −
(τ(1,1,0)−τ(0,1,0))−(τ(1,0,0)−τ(0,0,0))

1x1y




x

φi,j,k =




0

0

0




.

Hence, Lemma 4.2-(i) holds. Lemma 4.2-(ii) can be proven in a

similar manner. This completes the proof.

Proof of Proposition 4.2. Note that we have

H(z) =
1

2
z⊤Hz.

Hence, to prove thatH is preserved in time, by Proposition 3.3,

we only need to show that HA + A⊤H = 0, which is true since

HA + A⊤H = HJH + H⊤J⊤H, J⊤ = −J, and H⊤ = H. Thus,

the HamiltonianH is preserved in time on the discrete orbits of the

numerical method.

Next, let us prove the conservation of the electric and magnetic

charges. By Proposition 3.3, this task reduces to identify the kernel

of A⊤. Since

A⊤ =

[
0 −curlHh (D

µ

h
)−1

curlEh(D
ǫ
h
)−1 0

]
,

by Lemma 4.2, we have

[
Dǫ
h
∇h,2φ

D
µ

h
∇h,1ψ

]
∈ ker(A⊤).

This completes the proof.

5. Symplectic-Hamiltonian finite
element methods

This section presents the recent development of the so-

called symplectic-Hamiltonian finite element methods for linear

Hamiltonian partial differential equations. First, we discuss our

results on energy-preserving hybridizable discontinuous Galerkin

(HDG) methods for the scalar wave equation [1, 28], and then

describe our further contributions to finite element discretizations

of the linear elastic equation [2] and the Maxwell equations [3,

9]. We analyze in detail four finite element discretizations of

the linear scalar wave (Equation 2) based on standard Galerkin

methods, mixed methods, and HDG methods, and prove their

structure-preserving properties.

5.1. Notation

Let us first introduce some standard finite element notation.

For a given bounded domain � ⊂ R
d, let Th = {K} be a

family of regular triangulations of S�, with mesh-size parameter

h the maximum diameter over the elements. We also assume for

simplicity the elements are only simplices. For a domainD ∈ R
d we

denote by (·, ·)D the L2 inner product for scalar, vector and tensor

valued functions

(w, v)D : =

∫

D
wv, (w, v)D : =

∫

D
w · v, (w, v)D : =

∫

D
w : v,

for (w, v) ∈ L2(D), (w, v) ∈ L2(D)d, and (w, v) ∈ L2(D)d×d.

We extend these definitions for the inner product in (d − 1)-

dimensional domains. For discontinuous Galerkin methods, we

define by ∂Th the set of all element boundaries ∂K, for K ∈ Th,

and by Fh the set of all the faces F of the triangulation Th. Inner

product definitions are extended to these sets by

(w, v)Th
: =

∑

K∈Th

(w, v)K , 〈w, v〉∂Th
: =

∑

K∈Th

〈w, v〉∂K .

for properly defined scalar-valued functions w, v. Similar

definitions are given for vector- and tensor-valued functions.

5.2. The continuous Galerkin method

We now present a standard finite element discretization of the

linear scalar wave equation using H1-conforming approximations

for the displacement and velocity variables. Let Vh be a continuous

piece-wise polynomial subspace of H1
0(�), then the semi-discrete

Galerkin method, corresponding to the primal formulation of the

wave (Equation 3), reads as follows: Find (uh, vh) ∈ Vh × Vh

such that

(ρ u̇h,w)� = (ρ vh,w)� , ∀w ∈ Vh, (10a)

(ρ v̇h,w)� = − (κ∇uh,∇w)� +
(
f ,w

)
�
, ∀w ∈ Vh. (10b)

The system is initialized by projections of the initial conditions

u0 and v0 onto the finite-dimensional space Vh. It is clear that

the semi-discrete method inherits the Hamiltonian structure of the

continuous (Equation 3) with triplet (Mh,Hh, {·, ·}), where the

discrete phase-space is Mh = Vh × Vh, and the Hamiltonian and

Poisson brackets are the respective restrictions to this space, i.e.

Hh[uh, vh] =
1

2
(ρ vh, vh)� +

1

2
(κ∇uh,∇uh)� −

(
f , uh

)
�
,

{F,G} =

(
ρ−1

δF

δ(uh, vh)
, J

δG

δ(uh, vh)

)

�

,
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for linear functionals F = F[uh, vh],G = G[uh, vh], for uh, vh ∈ Vh,

and where denotes the canonical anti-symmetric structure matrix

J ∈ R
2dim(Vh).

Equivalently, we can formulate the method in its matrix form

based on a given ρ-orthonormal basis {φi} of the space Vh and

define the matrix and vector

(Sκ )ij : =
(
κ∇φi,∇φj

)
�

fi =
(
f ,φi

)
�
.

Then, the evolution variables are represented in this basis by

means of the coefficients u, v, i.e., uh(x, t) =
∑

i ui(t)φi(x) and

vh(x, t) =
∑

i vi(t)φi(x). We can write the Hamiltonian functional

as a function of the coefficients y = (u, v)⊤ as

H[uh, vh] =
1

2
v⊤v+

1

2
u⊤Sκu− u⊤f =

1

2
y⊤

[
Sκ 0

0 Id

]
y− y⊤

[
f

0

]
.

Therefore, computing the gradient of the Hamiltonian respect

to the coefficients y = (u, v)⊤, we conclude that the standard

Galerkin method (Equation 10) is equivalent to

[
u̇

v̇

]
=

[
0 Id

−Id 0

] [
Sκu− f

v

]
=

[
0 Id

−Id 0

]
∇H,

from where its Hamiltonian structure is evident. Note that

the resulting system of differential equations is a canonical

Hamiltonian system.

The semi-method is then discretized in time using a symplectic

time-marching scheme. Here we write down the discretization

by an s-stage explicit partitioned Runge-Kutta scheme with

coefficients b andSb. The fully discrete scheme is written in terms

of the variables yn = (un, vn) ≈ (u(tn), v(tn)), for tn = n1t, n ∈ N,

and time-step1t, by the iterations

[P,Q]⊤ ← yn = (un, vn),

P← P + bi1tQ, Q← Q−Sbi1tSκP, for 1 ≤ i ≤ s,

(un+1, vn+1) = yn+1 ← [P,Q]⊤.

5.3. Mixed methods

In Kirby and Kieu [19] the authors introduce a mixed method

for the scalar wave (Equation 4) and prove its Hamiltonian

structure, here we review their results and prove that the resulting

system of differential equations is a Poisson system.

Let Wh ∈ L2(�) and Vh ⊂ H(div;�) be mixed finite element

spaces and define the semi-discrete mixed method as follows: Find

(vh, qh) ∈Wh × Vh solution of

(ρ v̇h,w)� =
(
∇ · qh,w

)
�
+

(
f ,w

)
�
, ∀w ∈Wh, (11a)

(
κ−1q̇h, r

)
�
= − (vh,∇ · r)� , ∀r ∈ Vh. (11b)

The system is initialized by (vh(0), qh(0)), where vh(0) is taken

as the L2-projection of the initial data v0 ontoWh, and qh(0) ∈ Vh

is solution of the problem

(
∇ · qh(0),w

)
�
= (∇ · κ∇u0,w)� , ∀w ∈Wh,(

κ−1qh(0), r
)
�
+

(
uh(0),∇ · r

)
�
= 0, ∀r ∈ Vh.

Moreover, the displacement approximation can be computed

by uh(t) = uh(0) +
∫ t
0 vh(s)ds. The semi-discrete method is

Hamiltonian with triplet (Mh,Hh, {·, ·}) withMh =Wh × Vh,

H[vh, qh] =
1

2
(ρ vh, vh)� +

1

2

(
κ−1qh, qh

)
�
−

(
f div, qh

)
�

{F,G} =

(
δF

δ(vh, qh)
, J

δG

δ(vh, qh)

)

�

,

J =

[
0 −(ρ−1∇·) ◦ κ

(κ∇) ◦ ρ−1 0

]

Let {φi} be a ρ-orthonormal basis of Wh and {ψ i} be a κ−1-

orthonormal basis of Vh, and denote by v and q the coefficients

associated to the solution of system (Equation 11), namely,

vh(x, t) =
∑

i vi(t)φi(x) and qh(x, t) =
∑

i qi(t)ψ i(x), and define

the matrix

Bik : =
(
∇ · ψk,φi

)
�
.

We write the Hamiltonian functional in term of the coefficients

(v, q)⊤ = y by

H[vh, qh] =
1

2
v⊤v+

1

2
q⊤q+ q⊤fdiv =

1

2
y⊤

[
Id 0

0 Id

]
y+ y⊤

[
0

fdiv

]

and thus the matrix system equivalent to the method (Equation 11)

is as follows

[
v̇

q̇

]
=

[
0 B

−B⊤ 0

] [
v

q

]
=

[
0 B

−B⊤ 0

] [
∂H/∂v

∂H/∂q

]
.

Finally, the time-discretization is carried out by a symplectic

time integrator. For instance, consider the Butcher array with

coefficients c, b,A of a symplectic Runge-Kutta method, then the

evolution system for the vector variable yn = (vn, qn)⊤ ≈

(v(tn), q(tn))⊤, for tn = n1t, n ∈ N and time-step1t,

Q(1tA)yn+1 = P(1tA)yn, where A =

[
0 B

−B⊤ 0

]

and where P(z) = det(I − zA+ zeb⊤) and Q(z) = det(I − zA).

5.4. Hybridizable discontinuous Galerkin
methods

Note that both finite element discretizations introduced

above, the continuous Galerkin and the mixed method, inherit

the Hamiltonian structure property of the continuous equations

due to the conformity of their finite element sub-spaces. Non-

conforming finite element discretizations, such as discontinuous

Galerkin methods, present more challenges. Here we discuss

two hybridizable discontinuous Galerkin schemes for the

approximation of solutions of the linear scalar wave equation, the

first one a dissipative scheme and the second one a method that

inherits the Hamiltonian property.
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FIGURE 3

Computational mesh of the rectangular domain � with an obstacle (second row, right) used for all the computation. The first row and second (left

and middle) show snapshots at t = 0, 2, 4, 6, 8 of the velocity variables vh approximated by the Hamiltonian HDG method (Equation 13) with

polynomial approximation spaces of order 3 and the implicit midpoint.

5.4.1. A dissipative HDG scheme
Let us consider hybridizable discontinuous Galerkin methods

for the formulation of velocity-gradient variables [29, 30]. We

define the discontinuous element spaces

Wh = {w ∈ L2(�) : w|K ∈W(K), ∀K ∈ Th},

Vh = {r ∈ L2(�)d : r|K ∈ V(K),

∀K ∈ Th},

Mh = {µ ∈ L2(Fh) : µF ∈ M(F), ∀F ∈ Fh},

Where W(K), V(K), M(F) are local (polynomial) spaces. The

semi-discrete HDG method then is as follows: Find (vh, qh, v̂h) ∈

Wh × Vh ×Mh such that

(ρ v̇h,w)Th
= −(qh,∇w)Th

+ 〈̂qh · n,w〉∂Th
+ (f ,w)Th

, (12a)

∀w ∈Wh, (12b)

(κ−1q̇h, r)Th
= −(vh,∇ · r)Th

+ 〈̂vh, r · n〉∂Th
, ∀r ∈ Vh,

(12c)

〈̂qh · n,µ〉∂Th
= 0, µ ∈ Mh,

(12d)

q̂h · n : = qh · n− τ (vh − v̂h), on ∂Th.

(12e)

The formulation is no longer Hamiltonian, due to the definition

of the numerical traces. In fact, we can prove that the discrete

energy defined by

Eh : =
1

2
(ρvh, vh)Th

+
1

2
(κ−1qh, qh)Th

.

is dissipative,

Ėh = −〈τ (vh − v̂h), vh − v̂h〉∂Th
+ (f , vh)Th

.

5.4.2. A symplectic Hamiltonian HDG scheme
In Sánchez et al. [1] we rewrote the method using the primal

formulation (Equation 3), that is, we reintroduce the displacement

variables and compute a steady-state approximation qh. The semi-

discrete method is find (uh, vh, qh, ûh) ∈Wh×Wh×Vh×Mh such

that

(ρu̇h,w)Th
= (ρvh,w)Th

, ∀w ∈Wh,

(13a)

(ρv̇h,w)Th
= −(q,∇w)Th

+ 〈̂qh · n,w〉∂Th
+ (f ,w)Th

,∀w ∈Wh,

(13b)

(κ−1q, r)Th
= −(uh,∇ · r)Th

+ 〈̂uh, r · n〉∂Th
, ∀r ∈ Vh,

(13c)

〈̂qh · n,µ〉Th\Ŵ = 0, µ ∈ Mh,

(13d)

q̂h · n : = qh · n− τ (uh − ûh), on ∂Th.

(13e)

This system is Hamiltonian with triplet (Mh,Hh, {·, ·}), where

the phase space is Mh = Wh ×Wh, {·, ·} is the canonical Poisson

bracket andHh is the discrete Hamiltonian given by

Hh[uh, vh] =
1

2
(vh, vh)Th

+
1

2
(κ−1qh, qh)Th

+
1

2
〈τ (uh − ûh), uh − ûh〉∂Th

− (f , uh)Th
.

Let {φi} the ρ-orthonormal basis of Wh, {ψk} the κ−1-

orthonormal basis of Vh, and {ηm} a basis of Mh. Define the

matrices

Ckm : = 〈ψk · n, ηm〉∂Th
, Bik : = (∇ · ψk,φi)Th

,

(Sτ )ij : = 〈τφi,φj〉∂Th
, (Eτ )im : = 〈τφi, ηm〉∂Th

,

(Gτ )mn : = 〈τηm, ηn〉∂Th
.

Then, the variables are written in terms of the coefficients

vectors u, v, q, û as follows

uh(x, t) =
∑

i

ui(t)φi(x), vh(x, t) =
∑

i

vi(t)φi(x),

qh(x, t) =
∑

k

qk(t)ψk(x), ûh(x, t) =
∑

m

ûm(t)ηm(x).

Frontiers in AppliedMathematics and Statistics 18 frontiersin.org

https://doi.org/10.3389/fams.2023.1165371
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cockburn et al. 10.3389/fams.2023.1165371

FIGURE 4

Plots of the approximated physical quantities: Energy loss (left), linear momentum loss (middle), and pseudomomentum. The first row shows a

comparison of the continuous Galerkin methods using the implicit midpoint (dot-dashed blue line) and an sDIRK method of order 3 (dashed red line).

The second row shows a comparison of the Mixed method using the Raviart-Thomas element with a polynomial approximation of order 3, using the

Störmer-Verlet scheme and the sDIRK method of order 3. The third row shows a comparison of the Hamiltonian HDG scheme (Equation 13) and the

dissipative HDG scheme (Equation 12), for both we use the implicit midpoint.

The Hamiltonian is then rewritten in terms of the coefficients as

Hh[uh, vh] =
1

2
v⊤v+

1

2
q⊤q+

[
u⊤, û⊤

] [
Sτ −Eτ
−E⊤τ Gτ

] [
u

û

]
− u⊤f ,

and where the coefficients solve

[
u̇

v̇

]
=

[
0 Id

−Id 0

][
Sτu− Bq− Eτ û

v

]
+

[
0

f

]
=

[
0 Id

−Id 0

] [
∂H/∂u

∂H/∂v

]
.

In effect, it is clear that ∂H/∂v = v, and

∂H

∂u
= Sτu+

∂

∂u

(
1

2
q⊤q− û⊤E⊤τ u+

1

2
û⊤Gτ û

)
− f

= Sτu+
∂

∂u

(
1

2
q⊤q− û⊤C⊤q−

1

2
û⊤Gτ û

)
− f .

We rewrite (Equations 13c, 13d) in matrix form, take derivative

with respect to u, and multiply on the left by [q⊤,−û⊤] we obtain

[q⊤,−û⊤]

[
Id −C

C⊤ Gτ

] [
∂q/∂u

∂ û/∂u

]
= [q⊤,−û⊤]

[
−B⊤

E⊤τ

]
,

which can be expressed as a column vector

∂

∂u

(
1

2
q⊤q− û⊤C⊤q−

1

2
û⊤Gτ û

)
= −Bq− Eτ û.

Therefore, this proves that

∂H

∂u
= Sτu− Bq− Eτ û− f

and thus the Hamiltonian form of Equation (13) follows.
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TABLE 5 Butcher array for a singly diagonally implicit Runge-Kutta

method, with γ = (1 +
√
3)/2.

γ γ 0

1− γ 1− 2γ γ

1/2 1/2

The method is of order 3 and non-symplectic.

5.5. A numerical example

We manufacture a numerical example to test the

energy-conserving properties of the schemes presented

in this section. Consider the rectangular domain with

an obstacle � depicted in Figure 3. We solve the scalar

wave equation with Homogeneous Neumann boundary

conditions at all domain boundaries and initial conditions

set as u0(x, y) = exp(−0.5(x − 4)2/(1/5)2) and v0(x, y) =

−25(x− 4) exp(−0.5(x− 4)2/(1/5)2).

In Figure 3, we present the computational mesh of the domain

used in our computations. We compare six numerical schemes:

• CG-symp: Continuous Galerkin with polynomial order 3, and

implicit midpoint scheme (symplectic).

• CG-diss: Continuous Galerkin with polynomial order 3 and

singly DIRK method of order 3 (nonsymplectic), see Table 5.

• Mixed-symp: Mixed method with Raviart-Thomas spaces of

order 3, and Störmer-Verlet scheme (symplectic PRK method

of order 2).

• Mixed-diss: Mixed method with Raviart-Thomas spaces of

order 3 and singly DIRK method of order 3 (nonsymplectic),

see Table 5.

• HDG-symp: Hamiltonian HDG method (Equation 13)

with polynomial order 3, and implicit midpoint scheme

(symplectic).

• HDG-diss: HDG method (Equation 12) (non-Hamiltonian)

with polynomial order 3, and implicit midpoint scheme

(symplectic).

We illustrate the evolution of the numerical

approximation given by the Hamiltonian HDG method

with polynomial approximations of order 3 and implicit

midpoint in Figure 3. Snapshots are presented at times

t = 0, 2, 4, 6, 8.

In Figure 4 we present a comparison of the numerical

schemes computing the physical quantities energy (see Table 1),

linear momentum, and the norm of the pseudomomentum

for the six methods. In the first column, we plot the

energy loss, that is, |Eh(0) − Eh(t
n)|, for the energy Eh(t

n)

computed with each numerical scheme at the time tn. In the

second column, we plot the linear momentum loss and, in

the third column the evolution of the pseudomomentum.

We observe the improved approximation of the energy

and pseudomomentum of the symplectic Hamiltonian

finite element methods. The linear momentum, which is

a first integral of the system, is preserved for each of the

numerical schemes.

6. Ongoing work

As we have seen, the application of a symplectic time-marching

method to a Hamiltonian system of ODEs can guarantee the

preservation of all its linear and quadratic invariants. On the

other hand, to obtain such a system of ODEs, one uses space

discretizations which do not guarantee the preservation of all the

linear and quadratic invariants of the original Hamiltonian PDEs!

Indeed, as far as we can tell, it is not well understood how to obtain

all the discrete versions of those invariants for any given space

discretization, by finite difference or finite elementmethods. In fact,

although it is almost automatic how to find discrete versions of the

energy, the discrete equivalents of other conserved quantities, like

the Lipkin’s invariants for electromagnetism, for example, remain

elusive. This topic constitutes the subject of ongoing work.

Recently, a new class of symplectic Discontinuous Galerkin

methods were found whose distinctive feature is the use of time

operators for defining their numerical traces, see Cockburn et al.

[9]. Work to find how useful this type of methods are is under way.

The combination of Galerkin space discretizations with

symplectic time-marching methods to a variety of systems of

nonlinear Hamiltonian problems, including the Schrödinger and

KdV equations, finite deformation elasticity, water waves and

nonlinear wave equations, is also the subject of ongoing work.
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Appendix

1. Symplectic partitioned Runge-Kutta
methods

Here, we provide a proof of Proposition 3.8 which characterizes

the Symplectic Partitioned Runge-Kutta (PRK) methods for ODEs.

We use the notation of Section 3.4.

We must show that 2 : = u1,⊤
(
E1tJ E

⊤
1t − J

)
u2 is zero for

any u1 and u2 in R
d. By Theorem 3.3, E⊤1tv = v for any element

v of the kernel of J. Thus, we can take u1 and u2 in the range of

J. On that subspace, J is invertible and it is enough to prove that

2 : = u1,⊤
(
E⊤1tJ

−1 E⊤1t − J−1
)
u2 is zero.

Inserting the definition of the PRK numerical method E1t , we

obtain

2 =1t

s∑

j=1

u1,⊤J−1ABjU
2
j +1t

s∑

i=1

U1,⊤
i BiA

⊤J−1u2

+ (1t)2
s∑

i,j=1

U1,⊤
i BiA

⊤J−1ABjU
2
j

=1t

s∑

j=1

u1,⊤HBjU
2
j +1t

s∑

i=1

U1,⊤
i BiHu2

− (1t)2
s∑

i,j=1

U1,⊤
i BiHJHBjU

2
j ,

because A = JH. Since u = Uℓ − 1tA
∑s

m=1 Aℓm Um, we get that

2 = 1t

s∑

j=1

(U1
j − 1t JH

s∑

i=1

Aji U
1
i )
⊤HBjU

2
j

+1t

s∑

i=1

U1,⊤
i BiH(U2

i −1t JH

s∑

j=1

Aij U
2
j )

− (1t)2
s∑

i,j=1

U1,⊤
i BiHJ⊤HBjU

2
j ,

and so

2 = 1t

s∑

ℓ=1

U1,⊤
ℓ HℓU

2
ℓ + (1t)2

s∑

i,j=1

U1,⊤
i SijU

2
j ,

where

Hℓ = HBℓ − BℓH and Sij= AjiHJHBj + BiHJHAij − BiHJHBj.

Next, we incorporate the information of the Hamiltonian being

separable:

H =

[
Hpp 0

0 Hqq

]
and HJH=

[
0 3pq

−3⊤pq 0

]
where

3pq = HppJpqHqq,

and, with ⊤Bℓ : =
⊤

[
bℓ Idpp 0

0 bℓ Idqq

]
=

[
bℓ Idpp 0

0 bℓ Idqq

]
,

conclude that

Hℓ = H(Bℓ − Bℓ) = 0 and

Sij = HJH(⊤AjiBj +
⊤BiAij −

⊤BiBj)

= 0,

by hypothesis. This completes the proof of

Proposition 3.8.
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