
TYPE Original Research

PUBLISHED 18 May 2023

DOI 10.3389/fams.2023.1191661

OPEN ACCESS

EDITED BY

Zhouchao Wei,

China University of Geosciences Wuhan, China

REVIEWED BY

Savin Treanta,

Polytechnic University of Bucharest, Romania

Omar Abu Arqub,

Al-Balqa Applied University, Jordan

*CORRESPONDENCE

Haihua Wang

wanghoiwan@163.com

RECEIVED 22 March 2023

ACCEPTED 14 April 2023

PUBLISHED 18 May 2023

CITATION

Wang H and Ku J (2023) Controllability of Hilfer

fractional Langevin evolution equations.

Front. Appl. Math. Stat. 9:1191661.

doi: 10.3389/fams.2023.1191661

COPYRIGHT

© 2023 Wang and Ku. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Controllability of Hilfer fractional
Langevin evolution equations

Haihua Wang* and Junhua Ku

College of Science, Qiongtai Normal University, Haikou, China

The existence of fractional evolution equations has attracted a growing interest in

recent years. The mild solution of fractional evolution equations constructed by a

probability density function was first introduced by El-Borai. Inspired by El-Borai,

Zhou and Jiao gave a definition of mild solution for fractional evolution equations

with Caputo fractional derivative. Exact controllability is one of the fundamental

issues in control theory: under some admissible control input, a system can be

steered from an arbitrary given initial state to an arbitrary desired final state.

In this article, using the (α,β) resolvent operator and three di�erent fixed point

theorems, we discuss the control problem for a class of Hilfer fractional Langevin

evolution equations. The exact controllability of Hilfer fractional Langevin systems

is established. An example is also discussed to illustrate the results.
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1. Introduction

The application of fractional differential equations to many engineering and scientific

disciplines is very important, as numerous fractional-order derivatives are used in the

mathematical modeling in the fields of physics, chemistry, electrodynamics of complex

media, and polymer rheology, see [1–10]. Currently, fractional differential equations are

used extensively in every branch of science, for example, the electrical closed loops can be

expressed as fractional equations by Kirchhoff’s law [11]. In 2000, Hilfer introduced the

definition of Hilfer fractional derivativeD
α,β
0+ . Especially,Dα,0

0+ became the famous Riemman–

Liouville fractional derivative whereas Dα,1
0+ coincided with another fractional derivative,

namely, the Caputo fractional derivative.

The study of fractional differential equations in infinite dimensional spaces includes

the theoretical aspects, such as the existence and uniqueness of solutions, the numerical

solutions, and so on. In general, it is interesting to find the existence of mild solutions, to

arrive at the fact that, some technical tools, such as the method of lower and upper solutions

and various fixed point theorems, are usually applied to the proof of existence.

The exact or approximate controllability is important in control theory. With some

control input, a system can be guided from an initial state to any desired ultimate state. There

are various articles with respect to the exact or approximate controllability of fractional

differential equations [12–16]. However, a few articles have been written about the exact

controllability of Hilfer fractional evolution equations.

Langevin first proposed a Brownian motion equation in 1908 and Langevin’s equation

was named so from then on. There have been a remarkably large number of frequently used

theories to explain how physical phenomena evolve in fluctuating environments with respect

to the Langevin equation. For example, if white noise is taken to be the random fluctuation

force, Brownian motion can be well-described by the Langevin equation. More generally,

if white noise is not taken to be the random fluctuation force, the generalized Langevin

equation can be used to describe the particle’s motion [17]. The formulation of Langevin

equation is not unique. Currently, several versions of the conventional Langevin equation

have been used in complex media to describe dynamical processes in a fractal medium, the

reader can consult [18–21].
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In 2012, Ahmad et al. [18] investigated the following fractional

Langevin equation:

{

cDβ (cDα + λ)x(t) = f (t, x(t)), 0 < t < 1, 0 < α ≤ 1, 1 < β ≤ 2,

x(0) = 0, x(η) = 0, x(1) = 0,

where cDα denotes the Caputo fractional derivative, and the

authors obtained the existence of solutions by Krasnoselskii’s

fixed point theorem and the Banach contraction mapping theory,

respectively.

In 2018, Lv et al. [22] considered approximative controllability

of Hilfer fractional differential equations:











D
α,β
0+ x(t)+ Ax(t) = f (t, x(t))+ (Bu)(t), t ∈ (0, b],

lim
t→0+

(

I
(1−β)(2−α)
0+ x

)

(t) = 0, lim
t→0+

d

dt

(

I
(1−β)(2−α)
0+ x

)

(t) = b1,

where D
α,β
0+ denotes the Hilfer fractional derivative, A ∈ Sect(θ),

where θ ∈ ρ(A) ∩ [0, (1 − α
2 )π)], and b1 is an element in

Banach space X. The control term u ∈ Lp(J,U), the approximate

controllability of the above system, was discussed.

Recently, Gou et al. [23] discussed the controllability of an

impulsive evolution equation. They proved that the system is

controllable on J under the Mönch fixed point theorem.

However, controllability of the Hilfer Langevin evolution

equation has received little attention. For the above-mentioned

aspects, we discuss the controllability for a class of Hilfer Langevin

evolution equations of the form:



















D
α1 ,β1
0+ (D

α2 ,β2
0+ + A)x(t) = f (t, x(t))+ Bu(t), t ∈ J = [0, b], b > 0,

lim
t→0+

(

I
(1−α2)(1−β2)
0+ x

)

(t) = 0, lim
t→0+

d

dt

(

I
(1−α1)(1−β1)+(1−α2)
0+ x

)

(t)+ h(x) = x0,

(1.1)

where D
αi ,βi
0+ , i = 1, 2 denotes the Hilfer fractional derivative,

respectively. 0 < αi ≤ 1, 0 ≤ βi ≤ 1, satisfies 1 < α1 + α2 ≤ 2.

A generates a strongly continuous (α2, δ)-resolvent family Sα2 ,δ(t)

(t ≥ 0), where 0 < δ ≤ α1 + α2. The function f : J × E → E, let

U be a Banach space, the control term u ∈ L2(J,U), B :U → E is

linear and bounded.

This article aimed to study the controllability of system 1.1. The

main approach is based on three different fixed point theorems

and the properties of (α2, δ)-resolvent operators. The structure

of this article is given as follows: In Section 2, we list some

notations, definitions, and preliminaries, which will be used in the

next section. In Section 3, Theorem 3.1 is obtained without the

compactness of the resolvent family, and Theorems 3.2 and 3.3 are

obtained via compactness. Section 4 is devoted to illustrating the

application of the results by an example.

2. Preliminaries and Lemmas

Throughout we let E be a Banach space with norm ‖ · ‖. The
space C(J,E) denotes the space of continuous functions on J and

taking values in E, with the norm ‖x‖C = maxt∈J ‖x(t)‖, for
x ∈ C(J,E). We consider the Lp(J,R+) of Lebesgue p-integrable

functions with 1 < p < ∞ on J, and let ‖f ‖Lp denote the norm of

Lp(J,R+). Let B(Y ,X) denote the space of bounded linear operators
from Y to X, B(X) = B(X,X) for short. Let A ∈ B(E), ρ(A) is

defined by the set of
{

λ :(λI − A)−1 exists in B(E)
}

.

Let gγ (γ > 0) denote the function

gγ (t) =
{

tγ−1

Ŵ(γ )
, t > 0,

0, t ≤ 0.

For two given functions f1 and f2, the convolution of them is

expressed in the form (f1 ∗ f2)(t) =
∫ t
0 f1(t − s)f2(s) ds.

Definition 2.1. Li et al. [24] {S(t)}t≥0 ⊂ B(E) is called exponentially

bounded (EB) if there are constants ω ∈ R andM > 0, such that

‖S(t)‖ ≤ Meωt , for all t > 0.

ω or more precisely (M,ω) is called a type of S(t).

Definition 2.2. Kilbas et al. [8] Let γ > 0, the γ -order Riemann–

Liouville fractional integral of function f :[0,∞) → R is given by

I
γ
0+f (t) = (gγ ∗ f )(t), t > 0.

Definition 2.3. Hilfer et al. [25] The Hilfer fractional derivative

D
α1 ,β1
0+ f (t) of order α1 ∈ (n− 1, n] and type β1 ∈ [0, 1] is defined by

D
α1 ,β1
0+ f (t) =

(

I
β1(n−α1)
0+

dn

dtn

(

I
(1−β1)(n−α1)
0+ f

)

)

(t).

If f is taking values in E, then the corresponding integrals of the

above two definitions are given in the sense of Bochner.

Lemma 2.1. Hilfer [6] Let f ∈ L(0, b), n−1 < α1 ≤ n, 0 ≤ β1 ≤ 1,

and I
(1−β1)(n−α1)
0+ f ∈ ACk[0, b], then

(

Iα10+D
α1 ,β1
0+ f

)

(t) = f (t)

−
n−1
∑

k=0

(t − s)k−(n−α1)(1−β1)

Ŵ(k− (n− α1)(1− β1)+ 1)
lim
t→0+

dk

dtk

(

I
(1−β1)(n−α1)
0+ f

)

(t).

Definition 2.4. Chang et al. [26] Let A be a closed linear operator

in Banach space E with domainD(A) ⊂ E. Assume that α,β > 0, A

is called the generator of the resolvent family (α,β), if there exists

an ω ≥ 0 and Sα,β is strongly continuous from [0,∞) to B(E), such

that Sα,β (t) is EB, {λα
:(λαI − A)−1 exists in B(E), Reλ > ω},

λα−β (λαI − A)−1x =
∫ ∞

0
e−λtSα,β (t)x dt, Reλ > ω, x ∈ E. (2.1)

Then
{

Sα,β (t)
}

t≥0
is called the resolvent family (α,β) generated

by operator A. It is simply said that
{

Sα,β (t)
}

t≥0
is generated by

operator A.

Lemma 2.2. Li et al. [24] Let α,β > 0 and
{

Sα,β (t)
}

t≥0
⊂ B(E) is

generated by operator A. Then, the main properties of Sα,β (t) are as

per the following:

(i) For t ≥ 0 and x ∈ D(A), we have Sα,β (t)x ∈ D(A). Moreover,

Sα,β (t)Ax = ASα,β (t)x;
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(ii) For x ∈ E, t ≥ 0, we have
∫ t
0 gα(t − s)Sα,β (s)x ds ∈ D(A), and

Sα,β (t)x = gβ (t)x+ A

∫ t

0
gα(t − s)Sα,β (s)x ds;

moreover, if x ∈ D(A), then the second term on the right-hand

side of the above equality can be replaced by

∫ t

0
gα(t − s)ASα,β (s)x ds.

Theorem 2.1. Ponce [27] Let α > 0, 1 < β ≤ 2. Assume that
{

Sα,β (t)
}

t≥0
is generated by operator A. Then for t > 0, Sα,β (t) is

continuous in B(E).

Lemma 2.3. Ponce [27]
{

Sα,β (t)
}

t≥0
is generated by operator A

and (M,ω) is a type of Sα,β (t). Then for γ > 0,
{

Sα,β+γ (t)
}

t≥0

is generated by operator A and (M/ωγ ,ω) is a type of Sα,β+γ (t).

Definition 2.5. Ponce [27] If Sα,β (t) is a compact operator for all

t > 0, then we call the resolvent family
{

Sα,β (t)
}

t≥0
as compact.

Theorem 2.2. Ponce [27] Let α > 0, 1 < β ≤ 2,
{

Sα,β (t)
}

t≥0
is

generated by operator A and (M,ω) is a type of Sα,β (t), and the

following two conclusions are equivalent:

(i) For t > 0, Sα,β (t) is compact.

(ii) For µ > ω1/α , (µI − A)−1 is compact.

Lemma 2.4. Let α > 0, 0 < β ≤ 1,
{

Sα,β (t)
}

t≥0
is generated

by operator A and (M,ω) is a type of Sα,β (t). For t > 0, Sα,β (t)

is uniform continuous. Then the following two conclusions are

equivalent:

(i) For t > 0, Sα,β (t) is a compact operator.

(ii) For µ > ω1/α , (µI − A)−1 is compact.

Proof. If (i) is true, for λ > ω. Then we obtain

λα−β (λαI − A)−1x =
∫ ∞

0
e−λtSα,β (t)x dt,

from Definition 2.4. However, note that
{

Sα,β (t)
}

t>0
is uniform

continuous by our hypothesis, where we can see that (λαI − A)−1

is compact using Lemma 2.1 in Chang et al. [26].

On the contrary, for every fixed t > 0, let 0 ≤ β ≤ 1. For

g β
2

∈ L1
loc
[0,∞) and therefore, by proposition in Haase [28], we

obtain

lim
N→∞

1

2π i

∫ ω+iN

ω−iN
eλt(L(g β

2
∗ S

α, β2
))(λ)dλ = g β

2
∗ S

α, β2
= Sα,β (t),

in B(E). Hence, for t > 0,

1

2π i

∫

Ŵ

eλtλα−β (λαI − A)−1dλ = Sα,β (t),

where Ŵ is a vertical path lying in Re(z) = ω. By Lemma 2.4 and

hypothesis, we observe for t > 0, Sα,β (t) is compact.

The definition and some Lemmas of Hausdorffmeasure of non-

compactness can be found in Banas andGoebel [29], Deimling [30],

Guo and Sun [31], and Lakshmikantham and Leela [32], so we omit

their details here.

Lemma 2.5. Let α > 0, β > 1,
{

Sα,β (t)
}

t≥0
is generated by

operator A and
{

Sα,β (t)
}

t≥0
is strongly continuous. Then we have

d

dt
Sα,β (t)x = Sα,β−1(t)x, for t ∈ J, x ∈ E. (2.2)

Proof. Using (2.1), we have for t ≥ 0,

λα−β (λαI − A)−1x =
∫ ∞

0
e−λtSα,β (t)x dt, Reλ > ω, (2.3)

λα−β+1(λαI − A)−1x

∫ ∞

0
e−λtSα,β−1(t)x dt, Reλ > ω. (2.4)

(2.3) and (2.4) together imply

∫ ∞

0
e−λtSα,β (t)x dt = λα−β (λαI − A)−1x

= 1

λ
λα−β+1(λαI − A)−1x

= 1

λ

∫ ∞

0
e−λtSα,β−1(t)x dt

=
∫ ∞

0
e−λt(g1 ∗ Sα,β−1)(t)x dt

=
∫ ∞

0
e−λt

(∫ t

0
Sα,β−1(s)ds

)

x dt,

It is easy to see that Sα,β (t) =
∫ t
0 Sα,β−1(s) ds, then we obtain

(2.2) is true.

Remark 2.1. If β = 2 or β = α, the corresponding results can be

found in Gou and Li [23].

Lemma 2.6. Let 0 < δ ≤ α1 + α2,
{

Sα2 ,δ

}

t≥0
is generated by

operator −A. Suppose that x ∈ C(J,E), if for t ∈ J, x(t) ∈ D(−A)

satisfies problem (1.1) and Ax ∈ L1((0, b),E), then we have

x(t) = ((gα1+α2−δ∗Sα2 ,δ)∗(f+Bu))(t)+(gγ1+α2−δ∗Sα2 ,δ)(t)(x0−h(x)),

(2.5)

where f (t) = f (t, x(t)).

Proof. Using Liouville operators with Iα10+ on both sides of the

equation

D
α1 ,β1
0+ (D

α2 ,β2
0+ + A)x(t) = f (t, x(t))+ Bu(t),

in view of Lemma 2.1, we obtain

(D
α2 ,β2
0+ + A)x(t) = Iα10+(f + Bu)(t)+ c0

Ŵ(γ1)
tγ1−1, (2.6)

where γ1 = α1 + β1 − α1β1. Using Liouville operators with Iα20+ on

both sides of equation (2.6) again, we obtain

x(t) = Iα1+α2
0+ (f + Bu)(t)− Iα20+(Ax)(t)+

c0
Ŵ(γ1+α2)

tγ1+α2−1

+ c1
Ŵ(γ2)

tγ2−1, (2.7)

where γ2 = α2 + β2 − α2β2. In view of the condition, we obtain

c0 = x0 − h(x) and c1 = 0. Then we rewrite the representation of

(2.7) as

x(t) = (gα1+α2 ∗ f )(t)+ (gα1+α2 ∗ Bu)(t)− (gα2 ∗ Ax)(t)
+ x0−h(x)

Ŵ(γ1+α2)
tγ1+α2−1. (2.8)
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Applying the Laplace transform to (2.8), we obtain

(Lx)(λ) = 1
λα1+α2

(Lf )(λ)+ 1
λα1+α2

(LBu)(λ)− 1
λα2 A(Lx)(λ)

+(x0 − h(x)) 1
λγ1+α2

.

Thus, we obtain

(Lx)(λ) = 1

λα1
(λα2 I + A)−1(Lf )(λ)+ 1

λα1
(λα2 I + A)−1(LBu)(λ)

+ (x0 − h(x))
1

λγ1
(λα2 I + A)−1.

Currently, by Definition 2.4, we can apply the inverse Laplace

transform to the above equation, therefore

x(t) = ((Sα2 ,α1+α2 ) ∗ (f + Bu))(t)+ Sα2 ,γ1+α2 (t)(x0 − h(x))

= ((gα1+α2−δ ∗ Sα2 ,δ) ∗ (f + Bu))(t)

+ (gγ1+α2−δ ∗ Sα2 ,δ)(t)(x0 − h(x)).

Definition 2.6. Let 0 < δ ≤ α1 + α2,
{

Sα2 ,δ(t)
}

t≥0
is

generated by −A. We say that x(t) is a mild solution of

(1.1) if limt→0+ d
dt

(

I
(1−α1)(1−β1)+(1−α2)
0+ x

)

(t) + h(x) = x0,

limt→0+
(

I
(1−α2)(1−β2)
0+ x

)

(t) = 0, x(·) ∈ C(J,E) satisfies the

equation

x(t) = ((gα1+α2−δ ∗ Sα2 ,δ) ∗ (f + Bu))(t)+ (gγ1+α2−δ ∗ Sα2 ,δ)(t)

(x0 − h(x)).

3. Main results

Let x be an arbitrary function in C(J,E), which we denote by

xb = x(b) during the final stages at time b in E.

Definition 3.1. Let the initial condition x0 ∈ E and final

stages xb ∈ E, if there exists a control term u ∈ L2(J,U),

such that x(t) is the mild solution of (1.1) with respect to u,

which satisfies

lim
t→0+

(

I
(1−α2)(1−β2)
0+ x

)

(t) = 0, lim
t→0+

d

dt

(

I
(1−α1)(1−β1)+(1−α2)
0+ x

)

(t)

+h(x) = x0

and x(b) = xb, then we say that system (1.1) can be controlled

on J.

Theorem 3.1. Let 0 < δ ≤ α1 + α2,
{

Sα2 ,δ(t)
}

t≥0
is generated

by operator −A and (M,ω) is a type of Sα2 ,δ(t). Assume that the

following conditions are satisfied:

(H1) f : J × E → E satisfies the Carathéodory conditions.

(H2) There exist q1 ∈ [0, 1) and two functions m ∈ L
1
q1 (J,R+),

8 ∈ C(R+,R+) which are non-decreasing that satisfy

‖f (t, x)‖ ≤ m(t)8(‖x‖), for x ∈ E, a.e. t ∈ J.

(H3) There exist q2 ∈ [0, 1) and a function n ∈ L
1
q2 (J,R+), such

that for every bounded set D in E,

α
(

f (t,D)
)

≤ n(t)α(D), for a.e. t ∈ J.

(H4) (i) The function h :C(J,E) → E and there exist c1, c2 ≥ 0,

such that

‖h(x)‖ ≤ c1, ‖h(x)− h(y)‖ ≤ c2‖x− y‖, x ∈ C(J,E);

(ii) There exists l > 0, such that for every bounded subset D

in E,

α(h(D)) ≤ lα(D),

(H5) W : L2(J,U) → E is a linear operator, which is given by

Wu =
∫ b

0
Sα2 ,α1+α2 (b− s)Bu(s)ds, u = ux,

where ux is defined in (3.4).

(i) The inverse operator W−1
:E → L2(J,U)\kerW exists,

if there exist M1 > 0, M2 > 0, such that ‖B‖ ≤ M1,

‖W−1‖ ≤ M2;

(ii) There exist q3 ∈ [0, 1) and a function K ∈ L
1
q3 (J,R+),

such that for every bounded subset D in E,

α
(

W−1(D)(t)
)

≤ K(t)α(D), t ∈ J.

Assume that max{31,32} < 1, where

31 = M
ωα1+α2−δ

(

1+ MM1M2

ωα1+α2−δ
1√
2ω

eωb
) (

1−q1
ω

)1−q1

eωb‖m‖
L

1
q1

lim infr→+∞
8(r)
r , (3.1)

32 = Meωb

[

1+ 2MM1

ωα1+α2−δ

(

1− q3

ω

)1−q3

eωb‖K‖
L

1
q3

]

×
[

1

ωγ1+α2−δ
l+ 2

ωα1+α2−δ

(

1− q2

ω

)1−q2

‖n‖
L

1
q2

]

,

(3.2)

then system (1.1) can be controlled on J.

Proof. Let us consider operator T in C(J,E) as follows:

(Tx)(t) = ((gα1+α2−δ ∗ Sα2 ,δ) ∗ (f + Bu))(t)

+(gα2+γ2−δ ∗ Sα2 ,δ)(t)(x0 − h(x)), t ∈ J, (3.3)

where the control term u is given by u(t) = ux(t), x ∈ C(J,E) is

given by

ux(t) = W−1

[

xb − (gα2+γ2−δ ∗ Sα2 ,δ)(b)(x0 − h(x))

− ((gα1+α2−δ ∗ Sα2 ,δ) ∗ f )(b)
]

(t).

(3.4)

Taking the control (3.4) in (3.3), we obtain (Tx)(b) =
xb. Next, we illustrate that the non-linear operator T has a

fixed point.

Step 1: T(Br) ⊂ Br for some positive number r

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1191661
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Wang and Ku 10.3389/fams.2023.1191661

If not, then for every r > 0, there exist xr ∈ Br and tr ∈ J, such

that ‖(Txr)(tr)‖ > r. First, we observe that

‖(Tx)(t)‖ ≤
∫ t

0
‖(gα1+α2−δ ∗ Sα2 ,δ)(t − s)‖B‖f (s, x(s))‖ ds

+ ‖(gγ1+α2−δ ∗ Sα2 ,δ)(t)‖B‖(x0 − h(x))‖

+
∫ t

0
‖(gα1+α2−δ ∗ Sα2 ,δ)(t − s)‖B‖Bux(s)‖ ds

≤
∫ t

0

Meω(t−s)

ωα1+α2−δ
m(s)8(‖x(s)‖) ds

+ Meωt

ωγ1+α2−δ
‖(x0 − h(x))‖

+
∫ t

0

Meω(t−s)

ωα1+α2−δ
M1‖ux(s)‖ ds

≤ M

ωα1+α2−δ

∫ t

0
eω(t−s)m(s)8(‖x(s)‖) ds

+ Meωt

ωγ1+α2−δ
(‖x0‖ + c1)

+ MM1

ωα1+α2−δ

[

1

2ω

(

e2ωt − 1
)

]
1
2

‖ux‖L2 ,

(3.5)

where

‖ux‖L2 ≤ M2

[

‖xb‖ +
Meωb

ωγ1+α2−δ
(‖x0‖ + c1)

+ M

ωα1+α2−δ

∫ b

0
eω(b−s)m(s)8(‖x(s)‖) ds

]

.

(3.6)

From (3.5) and (3.6), we conclude that

‖(Tx)(t)‖ ≤ M

{

1+ MM1M2

ωα1+α2−δ

[

1

2ω

(

e2ωb − 1
)

]
1
2

}

[

eωb

ωγ1+α2−δ
(‖x0‖ + c1)

+ 1

ωα1+α2−δ

∫ b

0
eω(b−s)m(s)8(‖x(s)‖) ds

]

+ MM1M2

ωα1+α2−δ

[

1

2ω

(

e2ωb − 1
)

]
1
2

‖xb‖.

Consequently,

r < ‖(Txr)(tr)‖ ≤ M

{

1+ MM1M2

ωα1+α2−δ

[

1

2ω

(

e2ωb − 1
)

]
1
2

}{

eωb

ωγ1+α2−δ
(‖x0‖ + c1)

+ 8(r)

ωα1+α2−δ

[

1− q1

ω

(

e
ω

1−q1
b − 1

)

]1−q1

‖m‖
L

1
q1

}

+ MM1M2

ωα1+α2−δ

[

1

2ω

(

e2ωb − 1
)

]
1
2

‖xb‖

≤ M

(

1+ MM1M2

ωα1+α2−δ

1√
2ω

eωb
)

[

eωb

ωγ1+α2−δ
(‖x0‖ + c1)

+ 8(r)

ωα1+α2−δ

(

1− q1

ω

)1−q1

eωb‖m‖
L

1
q1

]

+ MM1M2

ωα1+α2−δ

1√
2ω

eωb‖xb‖.

(3.7)

Dividing (3.7) by r and passing to the lower limit as r →
+∞ yield

M
ωα1+α2−δ

(

1+ MM1M2

ωα1+α2−δ
1√
2ω

eωb
) (

1−q1
ω

)1−q1

eωb‖m‖
L

1
q1

lim infr→+∞
8(r)
r ≥ 1,

which contradicts 31 < 1. Hence, T(Br) ⊂ Br for some r > 0.

Step 2: T :Br → Br is continuous.

Assume that {xn} ⊂ Br satisfying xn → x. Let us show that

‖Txn − Tx‖C → 0. For this, we consider the inequality

‖(Txn)(t)− (Tx)(t)‖ ≤
∫ t

0
‖(gα1+α2−δ ∗ Sα2 ,δ)(t − s)‖B‖f n(s)

− f (s)‖ ds+
∫ t

0
‖(gα1+α2−δ

∗ Sα2 ,δ)(t − s)‖B‖Buxn (s)− Bux(s)‖ ds
+ ‖(gγ1+α2−δ ∗ Sα2 ,δ)(t)‖B‖h(xn)− h(x)‖

≤ M

ωα1+α2−δ

∫ t

0
eω(t−s)‖f n(s)− f (s)‖ ds

+ MM1

ωα1+α2−δ

[

1

2ω

(

e2ωt − 1
)

]
1
2

‖uxn − ux‖L2

+ Meωt

ωγ1+α2−δ
c2‖xn − x‖,

(3.8)

where f n(t) = f (t, xn(t)) and

‖uxn − ux‖L2 ≤ M2

[

Meωb

ωγ1+α2−δ
c2‖xn − x‖C

+ M

ωα1+α2−δ

∫ b

0
eω(b−s)‖f n(s)− f (s)‖ ds

]

.

(3.9)

Bymeans of the Lebesgue dominated convergence theorem and

condition (H1), together with (3.8) and (3.9), proves that ‖Txn −
Tx‖C → 0 as n → ∞.

Step 3: T satisfies conditions of the Mönch fixed point theorem.

Let D be a countable subset in Br satisfying D is a subset in the

closed convex hull of {0} ∪ T(D), and we will later prove α(D) = 0.

Assume, without loss of generality, that D = {xn}∞n=1 ⊂ Br , let

0 ≤ t1 < t2 ≤ b, then

‖(Txn)(t1)− (Txn)(t2)‖

≤
∫ t1

0
‖(gα1+α2−δ ∗ Sα2 ,δ)(t2 − s)− (gα1+α2−δ ∗ Sα2 ,δ)(t1 − s)‖B

× ‖f (s)+ Buxn (s)‖ ds

+
∫ t2

t1

‖(gα1+α2−δ ∗ Sα2 ,δ)(t2 − s)‖B‖f (s)+ Buxn (s)‖ ds

+ ‖(gγ1+α2−δ ∗ Sα2 ,δ)(t2)− (gγ1+α2−δ ∗ Sα2 ,δ)(t1)‖B‖(x0 − h(xn))‖.

By Lemma 2.5, (gα1+α2−δ ∗ Sα2 ,δ)(t) = Sα2 ,α1+α2 (t) and

(gγ1+α2−δ ∗ Sα2 ,δ)(t) = Sα2 ,γ1+α2 (t) for t ≥ 0. Furthermore,

by Theorem 2.1, we obtain Sα2 ,α2+α1 (t) and Sα2 ,γ1+α2 (t) which

are norm continuous. Since the right-hand side of the inequality

approaches zero as t2 → t1, T(D) is equicontinuous on J.
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Using the properties of the measure of non-compactness in

Deimling [30], Lakshmikantham and Leela [32],

α
(

Txn(t)
)

≤ α
({

((gα1+α2−δ ∗ Sα2 ,δ) ∗ f (s))(t)
})

+ α
({

((gα1+α2−δ ∗ Sα2 ,δ) ∗ Buxn )(t)
})

+ α
({

(gγ1+α2−δ ∗ Sα2 ,δ)(t)(h(xn))
})

≤ 2M

ωα1+α2−δ

∫ t

0
eω(t−s)n(s) dsα ({xn})

+ 2MM1

ωα1+α2−δ

∫ t

0
eω(t−s)α

(

{uxn (s)}
)

ds

+ Meωt

ωγ1+α2−δ
lα ({xn}) ,

(3.10)

where

α
({

uxn (s)
}∞
n=1

)

≤ K(s)

[

α
({

(gγ1+α2−δ ∗ Sα2 ,δ)(b)h(xn)
})

+ α
({

((gα1+α2−δ ∗ Sα2 ,δ) ∗ f n)(b)
})

]

≤ K(s)α
(

{xn}∞n=1

)

(

Meωb

ωγ1+α2−δ
l

+ 2M

ωα1+α2−δ

∫ b

0
eω(b−s)n(s) ds.

(3.11)

By (3.10) and (3.11), we obtain

α
(

Txn(t)
)

≤ 2M

ωα1+α2−δ
α(D)

[

1− q2

ω

(

e
ω

1−q2
t − 1

)

]1−q2

‖n‖
L

1
q2

+ 2MM1

ωα1+α2−δ
α(D)

(

Meωb

ωγ1+α2−δ
l

+ 2M

ωα1+α2−δ

∫ b

0
eω(b−s)n(s)ds

×
∫ t

0
eω(t−s)K(s)ds+ Meωt

ωγ1+α2−δ
lα(D)

≤ 2M

ωα1+α2−δ
α(D)

(

1− q2

ω

)1−q2

eωt‖n‖
L

1
q2

+ 2M2M1

ωα1+α2−δ
α(D)

[

eωb

ωγ1+α2−δ
l

+ 2

ωα1+α2−δ

(

1− q2

ω

)1−q2

eωb‖n‖
L

1
q2

×
(

1− q3

ω

)1−q3

eωt‖K‖
L

1
q3

+ Meωt

ωγ1+α2−δ
lα(D)

≤ Meωb

[

1+ 2MM1

ωα1+α2−δ

(

1− q3

ω

)1−q3

eωb‖K‖
L

1
q3

]

×
[

1

ωγ1+α2−δ
l+ 2

ωα1+α2−δ

(

1− q2

ω

)1−q2

‖n‖
L

1
q2

]

α(D),

we have

α(TD) ≤ 32α(D).

Thus, by condition of the Mönch fixed point theorem, we

obtain

α(D) ≤ α
(

co({0} ∪ T(D))
)

.

We obtain α(D) = 0 for 32 < 1. Applying the Mönch fixed

point theorem, we know that there exists a fixed point x ∈ Br of T,

which, of course, is a mild solution of 1.1 and satisfies x(b) = xb.

Hence, system 1.1 can be controlled on J.

Theorem 3.2. Let 0 < δ ≤ α1 + α2,
{

Sα2 ,δ(t)
}

t≥0
is generated

by operator −A and (M,ω) is a type of Sα2 ,δ(t). In addition to

assumptions (H1), (H2), (H4)(i), and (H5)(i) of Theorem 3.1, we

suppose that the following assumptions hold:

(H6) (λα2 I + A)−1 is compact for all λ > ω1/α2 .

If max{31,33} < 1, where 33 = Meωb

ωγ1+α1−δ c2, then (1.1) can be

controlled on J.

Proof. We define two operators T1,T2 in C(J,E) as follows:

(T1x)(t) =
∫ t

0
((gα1+α2−δ ∗ Sα2 ,δ) ∗ (f + Bu)(t), t ∈ J, (3.12)

(T2x)(t) = (gγ1+α2−δ ∗ Sα2 ,δ)(t)(x0 − h(x)), t ∈ J. (3.13)

As in Step 1 of Theorem 3.1, we can find r > 0, such that

T1x + T2y ∈ Br for x, y ∈ Br . Moreover, with a similar method

used in Step 2 of Theorem 3.1, it follows that T1 is continuous on

Br andT2 is a contraction on Br . Currently, we are going to illustrate

that {T1x : x ∈ Br} is precompact. The uniformly bounded nature

of {T1x : x ∈ Br} is obvious.
Step 1: {T1x : x ∈ Br} is an equicontinuous family.

For x ∈ Br , without loss of generality, we assume that 0 ≤ t1 <

t2 ≤ b, then

‖(T1x)(t1)− (T1x)(t2)‖

≤
∫ t1

0
‖(gα1+α2−δ ∗ Sα2 ,δ)(t2 − s)− (gα1+α2−δ ∗ Sα2 ,δ)(t1 − s)‖B

× ‖f (s)+ Bux(s)‖ ds

+
∫ t2

t1

‖(gα1+α2−δ ∗ Sα2 ,δ)(t2 − s)‖B‖f (s)+ Bux(s)‖ ds : = I1 + I2.

For I1, we have

I1 ≤
(

8(r)‖m‖
L

1
q1

++M1‖ux‖L2
)

(

∫ t1

0
‖(gα1+α2−δ

∗ Sα2 ,δ)(t2 − s)− (gα1+α2−δ ∗ Sα2 ,δ)(t1 − s)‖
1

1−q1
B ds

)1−q1

.

(3.14)

By Theorem 2.1, we have the norm continuity of Sα2 ,α2+α1 (t)

and therefore if t2 → t1, then Sα2 ,α2+α1 (t2 − s) − Sα2 ,α2+α1 (t1 −
s) → 0 in B(E). We can have that limt2→t1 I1 = 0 using

Lebesgue’s theorem.
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For I2, we have

I2 ≤
M8(r)

ωα1+α2−δ

∫ t2

t1

eω(t2−s)m(s)ds

+ MM1

ωα1+α2−δ

∫ t2

t1

eω(t2−s)ux(s) ds

≤ M8(r)

ωα1+α2−δ
‖m‖

L
1
q1

[

1− q1

ω

(

e
ω(t2−t1)
1−q1 − 1

)]1−q1

+ MM1

ωα1+α2−δ
‖ux‖L2

[

1

2ω

(

e2ω(t2−t1) − 1
)

]
1
2

,

(3.15)

and therefore limt2→t1 I2 = 0. From the above two inequalities, we

find that {T1x : x ∈ Br} is an equicontinuous family.

Step 2: For every t ∈ [0, b], it remains to show that H(t) =
{(T1x)(t) : x ∈ Br} is precompact.

First, it is obvious that H(0) is precompact. Finally, let 0 < t ≤
b be a fixed number. For ∀ǫ ∈ (0, t), we consider the operator Tǫ

1

on Br by the formula

(Tǫ
1x)(t) = ((gα1+α2−δ ∗ Sα2 ,δ) ∗ (f + Bu))(t − ǫ), x ∈ Br .

From (H6) and Theorem 2.2, we know that the compactness of

{(gα1+α2−δ ∗Sα2 ,δ)(t− s)(f (s)+Bu) : 0 ≤ s ≤ t−ǫ} for ǫ > 0. Using

theMazur theorem and themean-value theoremwith respect to the

Bochner integral, we have that for ǫ > 0, Hǫ(t) = {(Tǫ
1x)(t) : x ∈

Br} is precompact in E. In addition, for every x ∈ Br , we obtain

‖(T1x)(t)− (Tǫ
1x)(t)‖ ≤

∫ t

t−ǫ

‖(gα1+α2−δ ∗ Sα2 ,δ)(t − s)[f (s)

+ Bu(s)]‖ds ≤ M8(r)

ωα1+α2−δ
‖m‖

L
1
q1

[

1− q1

ω

(

e
ωǫ

1−q1 − 1
)

]1−q1

+ MM1

ωα1+α2−δ
‖ux‖L2

[

1

2ω

(

e2ωǫ − 1
)

]
1
2

.

Therefore, H(t) = {(T1x)(t) : x ∈ Br} is precompact in E.

According to Ascoli–Arzela’s Theorem and above, we conclude

that {T1x : x ∈ Br} is precompact. Thus, T1 is a completely

continuous operator by the continuity of T1 and the relative

compactness of {T1x : x ∈ Br}. According to Krasnoselskii’s fixed

point theorem, it is natural to obtain that T1 + T2 has a fixed

point on Br . Hence, (1.1) can be controlled on J, and the proof

is complete.

Theorem 3.3. Let 0 < δ ≤ α1 + α2,
{

Sα2 ,δ(t)
}

t≥0
is generated

by operator −A and (M,ω) is a type of Sα2 ,δ(t). In addition to

assumptions (H1), (H2), (H4)(i), (H5)(i), and (H6) of Theorem 3.1,

suppose that

(H7) For 0 < δ ≤ 1,
{

Sα2 ,δ(t)
}

t>0
is uniform continuous.

Then (1.1) can be controlled on J for 31 < 1.

Proof. We consider the operator T in C(J,E), which is the same

as (3.3). Similarly, there exists r > 0, such that T :Br → Br
is continuous. We shall now examine the precompact nature of

{Tx : x ∈ Br}. Furthermore, we can see that {Tx : x ∈ Br} is not
only uniformly bounded, but also equicontinuous.

Next, we verify that for all t ∈ [0, b], {Tx(t) : x ∈ Br} is

precompact. Obviously, {(Tx)(0) : x ∈ Br} is precompact. Let 0 <

t ≤ b be a number, ∀ǫ ∈ (0, t), we consider operator Tǫ on Br as

follows:

(Tǫx)(t) = Sα2 ,δ(ǫ)((gα1+α2−δ ∗ Sα2 ,δ) ∗ (f + Bu))(t − ǫ), x ∈ Br .

If 0 < δ ≤ 1, then (H6), (H7), and Lemma 2.4 show that for

t > 0, Sα2 ,δ(t) is compact, if 1 < δ ≤ α1 + α2, then (H6) and

Theorem 2.2 also illustrate that Sα2 ,δ(t) is compact for t > 0, Finally,

we obtain that {(Tǫx)(t) : x ∈ Br} is precompact in E for ∀ǫ ∈ (0, t).

Furthermore, for every x ∈ Br , we have

∥

∥

∥
Sα2 ,δ(ǫ)((gα1+α2−δ ∗ Sα2 ,δ) ∗ (f + Bu))(t − ǫ)

−
∫ t−ǫ

0
(gα1+α2−δ ∗ Sα2 ,δ)(t − s)[f (s)+ Bu(s)] ds

∥

∥

∥

≤
(

8(r)‖m‖
L

1
q1

+M1‖ux‖L2
)

(

∫ t−ǫ

0
‖Sα2 ,δ(ǫ)(gα1+α2−δ

∗ Sα2 ,δ)(t − s− ǫ)

− (gα1+α2−δ ∗ Sα2 ,δ)(t − s)‖
1

1−q1
B ds

)1−q1

By Theorem 2.1, (gα1+α2−δ ∗Sα2 ,δ)(t) is norm continuous for all

t > 0, using Lebesgue’s theorem, we have

∥

∥

∥
Sα2 ,δ(ǫ)((gα1+α2−δ ∗ Sα2 ,δ) ∗ (f + Bu))(t − ǫ)−

∫ t−ǫ

0
(gα1+α2−δ

∗ Sα2 ,δ)(t − s)[f (s)+ Bu(s)] ds
∥

∥

∥
→ 0, ǫ → 0.

Hence, the set ((gα1+α2−δ ∗ Sα2 ,δ) ∗ (f + Bu))(t) : x ∈
Br}, t > 0 is precompact. The compactness of (gα2+γ2−δ ∗
Sα2 ,δ)(t) is obtained by Theorem 2.2. Hence, we have proved

that for t ∈ (0, b], {Tx(t) : x ∈ Br} is relatively compact in

E. Consequently, by Ascoli–Arzela’s Theorem, the set {Tx : x ∈
Br} is precompact. This further leads to T being compact on Br .

We therefore have, by applying Schauder’s fixed point theorem, a

fixed point on Br of T, which implies that 1.1 can be controlled

on J.

4. An example

Example 4.1. Set E = U = L2([0,π],R), αi ∈ (0, 1], βi ∈ [0, 1],

and i = 0, 1. We consider the fractional control system







































D
α1 ,β1
0+

(

D
α2 ,β2
0+ + A

)

x(t, ξ ) = f (t, x(t, ξ ))+ Bu(t, ξ ), t ∈ (0, 1),

ξ ∈ [0,π],

lim
t→0+

(

I
(1−α2)(1−β2)
0+ x

)

(t, ξ ) = 0,

lim
t→0+

d

dt

(

I
(1−α1)(1−β1)+(1−α2)
0+ x

)

(t, ξ ) = x0(ξ ),

(4.1)

where t ∈ (0, 1), ξ ∈ [0,π], and D
αi ,βi
0+ are Hilfer

fractional derivatives. Operator A is given by Ax = x −
∂2x
∂ξ2

, let D(A) = {x ∈ E : x, x′ absolutely continuous, x′′ ∈
E, x(t, 0) = x(t,π) = 0} and E be the domain and the range
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of A, respectively. We can see that (1 + n2) and xn(ξ ) =
√

2
π
sin(nξ ) are the eigenvalues and the normalized eigenvectors of

A, respectively.

For x ∈ E and 1 ≤ δ ≤ α1 + α2, we have

λα2−δ(λα2 I + A)−1x =
∞
∑

n=1

〈x, xn〉xn
λα2−δ

λα2 + (1+ n2)

=
∞
∑

n=1

〈x, xn〉xn
∫ ∞

0
e−λttδ−1Eα2 ,δ

(−(1+ n2)tα2 ) dt

=
∫ ∞

0
〈x, xn〉xne−λt

∞
∑

n=1

tδ−1Eα2 ,δ

(−(1+ n2)tα2 ) dt.

Hence,
{

Sα2 ,δ(t)
}

t≥0
is generated by operator−A,

Sα2 ,δ(t)x =
∞
∑

n=1

〈x, xn〉xntδ−1Eα2 ,δ(−(1+ n2)tα2 ), x ∈ E,

which is norm continuous by the continuity of Eα2 ,δ(·). Moreover,

for λ > 0, we have limn→∞ λα2−δ

λα2+(1+n2)
= 0, which implies

that λα2−δ(λα2 I + A)−1 is compact on the Hilbert space E, then

(λα2 I + A)−1 is compact for λ > 0.

Otherwise, for each x ∈ E, we obtain ‖Sα2 ,δ(t)x‖ ≤ bδ−1

Ŵ(δ)
‖x‖.

Therefore, Sα2 ,δ(t) is of type (b
δ−1/Ŵ(δ), 1).

Let f (t, x) = e−t

1+t x, then we can choosem(t) = e−t

1+t and 8 = I.

‖f (t, x)‖ ≤ e−t

1+ t

Assume that Bu(t) =
∞
∑

n=1
ûn(t)xn, where

ûn(t) =















0, t ∈
[

0, 1− 1

n

)

,

un(t), t ∈
[

1− 1

n
, 1

]

.

Similar to Lv and Yang [22], we see that B is a bounded linear

operator andW satisfies (H5). Then (4.1) can be controlled on J by

Theorem 3.3.

5. Conclusion

In this article, we consider the exact controllability of a Hilfer

fractional Langevin equation and the corresponding results are

obtained using three fixed point theorems, respectively. One result

is obtained without the compactness of proper
{

Sα2 ,δ(t)
}

, whereas

the other two results rely on the compactness of
{

Sα2 ,δ(t)
}

.
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