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Stabilizing machine learning
models with Age-Period-Cohort
inputs for scoring and stress
testing

Joseph L. Breeden* and Yevgeniya Leonova

Deep Future Analytics LLC, Santa Fe, NM, United States

Machine learning models have been used extensively for credit scoring,

but the architectures employed su�er from a significant loss in accuracy

out-of-sample and out-of-time. Further, the most common architectures do

not e�ectively integrate economic scenarios to enable stress testing, cash flow,

or yield estimation. The present research demonstrates that providing lifecycle

and environment functions from Age-Period-Cohort analysis can significantly

improve out-of-sample and out-of-time performance as well as enabling the

model’s use in both scoring and stress testing applications. This method is

demonstrated for behavior scoring where account delinquency is one of the

provided inputs, because behavior scoring has historically presented the most

di�culties for combining credit scoring and stress testing. Our method works

well in both origination and behavior scoring. The results are also compared to

multihorizon survival models, which share the same architectural design with

Age-Period-Cohort inputs and coe�cients that vary with forecast horizon, but

using a logistic regression estimation of the model. The analysis was performed

on 30-year prime conforming US mortgage data. Nonlinear problems involving

large amounts of alternate data are best at highlighting the advantages of machine

learning. Data fromFannieMae and FreddieMac is not such a test case, but it serves

the purpose of comparing these methods with and without Age-Period-Cohort

inputs. In order to make a fair comparison, all models are given a panel structure

where each account is observed monthly to determine default or non-default.

KEYWORDS

credit scoring, survival models, Age-Period-Cohort, neural networks, stochastic gradient

boosted trees

1. Introduction

Machine learning models are revolutionizing credit risk scoring. Models of common

loan products for prime borrowers using credit bureau data have been refined over decades,

but novel products, alternate data sources [1–5], and lending to underserved populations

have demonstrated the exceptional power of machine learning algorithms. However, the

structural setup of these new machine learning models largely follows that of traditional

cross-sectional logistic regression models – rank-ordering risk of default or a similar end

state during a fixed outcome period. As lending becomes ever more competitive, this

paradigm has several short-comings: rankings are not probabilities of default as needed for

loan pricing, credit scores may erroneously explain trends in the in-sample data with score

factor trends instead of macroeconomic trends, and credit risk rankings frequently degrade

out-of-time in large part because they do not incorporate an understanding of changes in the

macroeconomic environment.
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In the domain of regression models, these problems may

be addressed using Cox proportional hazards models [6, 7]

and discrete time survival models [8, 9]. In these methods, a

panel data structure is used so that accounts of all ages are

employed, meaning that no fixed outcome period is necessary.

These methods may be set up with hazard functions or lifecycles

and macroeconomic factors or environment functions as inputs so

that the scoring component of the model is centered around these

known effects. The models are leveraging the intrinsic structure of

loan performance in order to stabilize score estimation, particularly

behavior scoring. Breeden and Leonova [10] previously proposed

combining age-period-cohort models with neural networks to

create origination scores that also provide long-range forecasting

and stress testing.

The current work expands these ideas to demonstrate how

age-period-cohort (APC) models can be combined with machine

learning techniques, specifically stochastic gradient boosted trees

(SGBT) and artificial neural networks (NN), to create behavior

scores that are centered around a long-range stress testing

structure. This approach is compared to SGBT and NN without

APC inputs and to panel logistic regression and multihorizon

survival models [11]. The models are built on a combined dataset

of Fannie Mae and Freddie Mac 30-year term mortgages for prime

borrowers. This dataset has none of the attributes that highlight the

strengths of machine learning, but the goal of this work is not to

explore the benefits of nonlinear modeling. Rather, this research

shows that centering machine learning models around APC inputs

makes the models more robust out-of-sample, gives them new

applications to stress testing and loan pricing, and does so without

degrading the detracting from the benefits of machine learning.

Composing a machine learning model with age-period-

cohort models conveys other modeling advantages as well. Such

combinations are a form of heterogenous ensemble model designed

to leverage the specific structure of portfolio performance. APC

models are best known for long-range stress testing and have

minimal data needs. Lenders may have ten or more years of vintage

data for APC modeling, but only a couple years of alternate data

for machine learning. Wrapping a short-term machine learning

model around a long-term APC model makes a machine learning

model usable for long-range, account-level stress testing, cash flow

modeling, pricing optimization, and more.

Section 2 provides an overview of the literature. Section 3

describes the available data. Section 4 provides descriptions of the

modeling techniques used. Section 5 discusses the results.

2. Background

The literature on applying machine learning methods to credit

risk modeling extends to thousands of papers and even dozens of

summary articles [12–14]. Stochastic gradient boosted trees [15–

19] and artificial neural networks [20–23] are two of the most

popular categories, but support vector machines [24, 25], random

forests [26, 27], and random survival forecasts [28, 29] are examples

of even more methods that have been applied to credit risk.

Our research focuses on machine learning methods that can

be combined with survival analysis concepts [30] so that account-

level cash flow simulations can be performed. Although the

preponderance of research articles focus on rank-ordering risk,

many articles have already focused on bringing machine learning

concepts to survival analysis. Some of the first explored using neural

networks to estimate the hazard [31, 32] or survival functions [33,

34]. However, nonparametric [35] and Bayesian [36] methods of

estimating survival functions already quantify these with as much

resolution as the data will support. The case for using machine

learning for this is not compelling.

Potentially more useful is to replace the linear partial likelihood

estimation of Cox proportional hazards models with machine

learning methods. Neural networks [37, 38] and stochastic gradient

boosted trees [39, 40] have both been used to extend Cox Phmodels

to capture more nonlinearities. The approach developed here is

conceptually similar to these efforts, but with a specific focus on

the structure of loan performance data. Vintage models such as

age-period-cohort models have been effective for stress testing loan

portfolios [41–43], because they explicitly recognize three primary

dimensions along which performance must be measured: the age

of the loan; the loan origination date, also called the vintage; and

the calendar date. Simulation studies of Cox Phmodels have shown

that they can be used effectively on problems with two dimensions,

but develop instabilities when applied to the three dimensions of

loan portfolios [44], in part because of the linear relationship age =

time − vintage. This is a challenge for any modeling technique, as

it appears in either a specification error in a nonparametric setting

or a multicolinearity problem in parametric models. Following a

two-step process of estimating an APC model on a long history of

vintage performance or account-level performance data, and then

replacing the vintage credit risk function with a machine learning

model using account-level panel data, we can take advantage of

the methods developed in APC for controlling the specification

error and stabilize the machine learning model by having it focus

on explaining the APC residuals with account-level demographic,

performance, or alternate data.

Another challenge comes from incorporating behavioral

performance data within the model. Delinquency and credit line

utilization are probably the most important such examples. In the

Cox Ph literature, they are referred to as time-varying covariates

[45–47]. When both macroeconomic and behavioral variables are

to be included in a model, the attribution of cause and effect

becomes challenging. Alternate methods have been developed to

address this [48, 49], including the multihorizon survival models

[11] that provide a template for the work done here.

The work here will compare machine learning models with

and without APC inputs as well as traditional logistic regression

credit scoring models with and without APC inputs. Logistic

regression credit scores have been the workhorse in the lending

industry for decades. Built on cross-sectional data with outcome

horizons over a fixed interval, such as 12 months for use in

Basel II capital calculations or 24 or 36-month intervals for loan

origination, these models are usually estimated on only recent

data and frequently rebuilt because of a presumed loss of accuracy

during economic changes.

3. Data

The analysis was performed on a combined dataset of Fannie

Mae and Freddie Mac 30-year, fixed-rate, conforming mortgages.

The data contained de-identified, account-level information on
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default, pay-off, origination (vintage) date, balance, delinquency,

FICO score, debt-to-income (DT), loan-to-value (LTV) and

cumulative-loan-to-value (CLTV), number of borrowers, property

type, and loan purpose.

The panel data was constructed by recording each month

if the loan was in a active or default status, the values of the

independent variables, and the value of the APC offset, where used.

Default was defined as any account that is 180 days delinquent

or more. Accounts that default or pay-off are removed from the

panel after that point. Pay-off was not modeled for this exercise,

but by censoring paid-off accounts, the default rate is a conditional

probability for accounts that were active on the last observation

date. A vintage graph for conditional PD is shown in Figure 1.

A 10% sample was taken from the $2 trillion in available

mortgage data for purposes of model estimation and validation.

This created a dataset with 622,452 unique loans of which

4,346 defaulted for a lifetime default rate of 0.7%. This data

included vintages from January 1999 through November 2019 with

performance data from January 2017 through December 2019 with

FICO scores between 660 and 780.

4. Methods

All of the models compared use a panel data approach.

Specifically, we create panel behavioral models:

• Multihorizon survival

• Neural network with panel data

• Neural network with APC lifecycle and environment inputs

• Stochastic gradient boosted trees (SGBT) with penal data

• SBGT with APC lifecycle and environment inputs

Each of these methods build one model for each forecast horizon,

following the approach of multihorizon survival models for

capturing the nonlinear forecast response to delinquency status. In

theory, most machine learning methods should be compatible with

APC inputs and a multihorizon structure, but only NN and SGBT

were found to have libraries that accepted the fixed offsets necessary

for this approach.

4.1. Age-Period-Cohort models

Age-Period-Cohort models originated as an estimation method

for extracting information from Lexis diagrams [50, 51]. Cohort

models were adopted in sociology and epidemiology in the 1960s

[52] and their statistical foundations were studied in depth in

the decades thereafter [53, 54]. The concepts were independently

discovered in application to loan portfolio stress testing [55] where

it is commonly referred to as vintage analysis, and APC models or

similar variants are now widely used globally for stress testing and

lifetime performance forecasting.

Several of the methods described above will use inputs from

an initial Age-Period-Cohort (APC) analysis. APCmodels describe

the risk of default at each observation period through the life of the

loan as functions of the age a of the loan, the calendar date t, and

the vintage date v. These functions can be spline approximations,

non-parametric, or other forms. For this analysis, a Bayesian

APC algorithm was employed to estimate these functions non-

parametrically [36]. Using non-parametric estimations of these

functions allows them to capture detailed nonlinear structures even

when no cause can be assigned. Leaving the use of explanatory

factors to a later stage of the analysis is a primary source of

effectiveness for these algortihms.

Because a = t − v, a model specification error exists if no

constraints are imposed [56, 57]. In applications to credit risk

analysis, the following representation is common.

D ∼ b0 + b1a+ F′(a)+ b2v+ G′(v)+H′(t) (1)

where b0 is the intercept, b1 and b2 are the linear coefficients for a

and v, and F′(a), G′(v), and H′(t) are the nonlinear functions that

have zero mean and no linear component. For explanation, these

are usually combined as

F(a) = b0 + b1a+ F′(a) (2)

G(v) = b2v+ G′(v) (3)

H(t) = H′(t) (4)

where F(a) is called the lifecycle measuring the timing of losses

through the life of the loan, G(v) is the vintage function measuring

credit risk by vintage, and H(t) is the environment function

measuring the net impact from the environment (primarily

economic conditions). Intuitively, the specification error has been

resolved by forcing the environment function to have zero mean.

This is most appropriate with long time histories spanning more

than one recession, because it is consistent with assuming that a

through-the-cycle PD exists. Over spans of just a few years, the

macroeconomic environment usually has a net trend of expansion

or contraction, so an assumption os zero trend would be unlikely to

hold. The misallocation of trends over short time spans is assumed

to be a primary cause of the instability in traditional cross-sectional

scores that is observed in the model results here, even when the

testing environment has only a mild trend.

The primary advantage of APC models is the ability to separate

age, vintage, and time effects, so the credit risk function captures

the full amount of credit quality variation, but is cleaned of

impacts from the macroeconomic environment and normalized for

differences in the age of the loans. This analysis can be segmented,

as is commonly done by score and term in order to capture

corresponding shifts in the lifecycle. In this case, the data was

selected so that only one lifecycle is necessary. No state or MSA

segmentation was performed for the environment function, which

is equivalent to assuming that the loan mix by state geography is

relatively constant. This is a reasonable assumption for the Fannie

Mae and Freddie Mac data.

4.2. Multihorizon survival model

Traditional credit scores [58, 59] assume a fixed outcome

interval, like the first 36 months of a loan, to observe whether any

defaults occur during this time, and then attempt to model this via

logistic regression. Logistic regression credit scores are ubiquitous

for rank-ordering loan risk, but the use of a fixed observation
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FIGURE 1

Plot of the annual vintage data for conditional probability of default for Fannie Mae and Freddie Mac 30-year prime conforming mortgage data.

window without indication of when a default might have occurred

within that window prevents such models from being integrated

effectively with macroeconomic factors, cash flow modeling, and a

number of other applications.

A panel logistic regression model can optimize the scoring

coefficients over multiple future forecast horizons, possibly with

time-varying independent variables. The dependent variable can be

taken as a specific number of months into the future h from the last

observation date t0.

logit(Di(t0 + h)) ∼

n
∑

j=1

cjsij(t0)+ c0 (5)

where the cj are the n estimated coefficients for the scoring factors

sij(t0) for account i. The set of scoring factors s are chosen to

optimize the Akaike Information Criterion (AIC). In a regression

model, some of the scoring variables may be binned to capture

nonlinearities. All of the well-known aspects of a scoring model are

preserved, except that the data has one observation for each account

each month until it defaults or is censored from early pay-off or

reaching the end of the data.

Discrete time survival models (DTSM) [60, 61] are a form of

panel logistic regression where information on the loan age and

macroeconomic environment are added to the regression inputs.

Some researchers have included these as dummy variables for each

age and calendar date or include parameters for an age function

and macroeconomic variables so that the hazard function and

macroeconomic sensitivities are estimated concurrently with the

scoring factors.

To avoid multicolinearity problems, we prefer to use a

multihorizon survival modeling approach where the lifecycle and

environment from an APC model as fixed inputs and estimate

only the coefficients for the scoring factors. Equation 6 shows

this structure. From a regression perspective, F(a) and H(t) are
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inputs with coefficients equal to 1. In the language of most logistic

regression implementations, this is a fixed offset. If the target

variable were continuous, we could compute the residuals relative

to the APC inputs and model that with only scoring factors. Having

a binary target variable requires the use of an offset among the input

variables.

logit(Di(t0 + h)) ∼ F(a)+H(t)+

n
∑

j=1

cjsij(t0)+ c0 (6)

Delinquency is obviously correlated to macroeconomic

variables such as unemployment, but with this approach,

maximum explanatory power is given to macroeconomic factors

and account-specific measures such as delinquency are used only to

explain the account-level distribution centered about the portfolio

trends. A separate model is estimated for each forecast horizon.

Comparing the coefficients for the first six horizons shows that

they can change rapidly because of the complicated relationship

between delinquency at t0 and future defaults. However, the

information value of delinquency decays rapidly, so by horizon

12 the coefficients cj will usually have reached their saturation

values with delinquency being less important. Of course, this can

be tested for specific problems. For the current analysis, all models

are estimated through horizon 12.

In order to capture potential nonlinear structure between some

of the scoring variables and probability of default, CLTV, LTV, and

DTI were binned with separate coefficients estimated for each bin.

A backward stepwise regression process was used to select the best

set of predictive variables to optimize AIC. This modeling was

performed separately for each forecast horizon, h ∈ [1, 12].

4.3. Artificial neural network

Using artificial neural networks (NN) for credit risk forecasting

has been the subject of numerous publications [21, 22, 62].

The problem design is similar to creating a logistic regression

credit score, but with the network allowing for non-linearity and

interaction effects that would need to be discovered manually and

encoded into the inputs of a regression model.

Data for defaults on conforming mortgages does not include

the kind of nonlinear alternate data where neural networks aremost

compelling. The application tomortgage data is just to demonstrate

the technique, rather than trying to perform a competition between

methods. Because the inputs are traditional financial and loan

application information, unintended ethical bias would not be

a problem regardless of the amount of nonlinear complexity of

the NN.

In order to accelerate the training of the neural network, all

continuous variables were standardized to mean = 0, deviation =

1. No binned variables were included, because the NN should be

able to learn any nonlinear structure required for incorporating

these variables. Binning with a corresponding coefficient estimated

for each bin is useful with linear regression models that cannot

otherwise capture non-linear structure.

The neural network architecture was simpler than applications

involving alternate data. The network had an input layer, 5

fully connected layers with softplus activation functions, and a

sigmoid output node. Softplus is less efficient and some argue

less interpretable than ReLu activation functions, but it had better

convergence performance in this context. The target was the same

binary indicator of default within 24 months as used in the logistic

regression model with a binary cross-entropy loss function. This

architecture was the result of running a small set of tests to

explore deeper or wider designs. Some architecture optimization

is desirable for best performance, but extensive testing leads to

overfitting the test data.

Neural networks do not estimate well when defaults comprise

only 0.2% of the training data. Previous research has shown that

at least a 4:1 or 3:1 ratio is needed for proper network estimation

[63, 64]. In this case, a random undersampling approach was used

where all default accounts were included and four times as many

non-default accounts were randomly sampled from the dataset.

More advanced data sampling methods have been developed, such

as Synthetic Minority Over-sampling Technique (SMOTE) [65],

Adaptive Synthetic Sampling (ADASYN) [66], or Active Learning

[67]. Although these methods may leverage the training data better,

they can distort the relationship to the APC inputs. Random

sampling allows us to develop easily rebalance the model forecasts

to match the default probability distribution of the original training

dataset.

Equation 7 provides a closed form solution for rebalancing the

predictions, derived using Bayes’ Theorem [68].

y′ =
1

p0
p1

·
pNN1
pNN0

·

(

1
y − 1

)

+ 1
(7)

where p0 and p1 are a priori probabilities for the original data and

pNN0 and pNN1 are a priori probabilities for the balanced dataset, y

is the neural network forecast with the balanced dataset, and y′ is

the forecast for the original dataset. The same could be achieved

numerically by performing a logistic regression on the NN forecasts

to estimate the needed scaling factor for the original dataset. This

simple numerical approach works in our case with fixed APC

inputs, but other methods have been proposed in general [69].

4.4. NN + APC

In order to combine neural networks with APC lifecycle and

environment functions, these inputs should not be included as any

other scoring factors, because then we would lose the separability

assumption from APC models that resolved the multicolinearity

problem. Instead, we created a custom network design as shown

in Figure 2 where the APC inputs O(a, t) = F(a)+ H(t) in units of

log-odds of default are passed to the final node as an offset without

modification. The neural network is used only as a replacement for

the credit risk component of an APC model, effectively modeling

the account-level residuals around the long-term trends of lifecycle

and environment.

This structure was first proposed by Breeden and Leonova

[10]. In a behavior scoring context, a separate neural network

was estimated for each forecast horizon. In principle, a single

network could be created with one output node for each forecast

horizon and one offset connected to each output node. However,
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FIGURE 2

A neural network architecture designed to take fixed inputs of

lifecycle F(a) and enviornent H(t) from an APC decomposition.

the approach of having a collection of neural networks was used in

order to parallelize the computations.

For proper estimation, the dataset still requires balancing, but

Equation 7 is no longer applicable when an offset is supplied to

the network. Instead, the input offset needs to be adjusted with

an additive constant for any change in default probabilities due

to rebalancing. For this study, revised offset, O′ was estimated as

a constant added to the original offset in order to incorporate the

sample bias. When the network produces forecasts, the original

offset O(a, t) is used without the rebalancing adjustment factor. As

with the plain NN, the dataset for model estimation under-sampled

the loans that never default in order to achieve a 4:1 ratio with loans

that eventually will default. Model training was performed on 80%

of this balanced dataset and cross-validation on 20% to determine

the stopping point.

4.5. Stochastic gradient boosted trees

Decision trees have been used for decades in credit risk

modeling [70, 71]. The multidimensional space described by the

scoring variables is split by hyperplanes to separate good from bad

accounts. In the current research, we created regression trees where

regression models are constructed within each resulting hypercube,

as in CART [72].

Stochastic gradient boosted trees [73, 74] are essentially

an ensemble modeling approach. The algorithm starts with a

base learner, which can be any starting model, but is usually

implemented as an initial tree. The prediction residuals from the

base learner are used to weight the data, more weight on the

most poorly predicted points, so that the next tree is built to be

an additive refinement of all previous trees. Trees are added to

the ensemble until no significant improvement is obtained on a

cross-validation set.

Using SGBT models also involves architecture decisions. After

experimentation, the optimal depth (number of levels of the tree)

was found to be three. This is consistent with the finding that the

optimal neural network architecture had only a few layers. The

input data does not contain the complexity of analyzing a corporate

financial statement or extracting sentiment from call center logs, so

the model is correspondingly simple, The number of trees in the

ensemble was also kept relatively small in order to avoid overfitting.

The SGBT models were constructed on the same panel data as

previous models with one model created for each forecast horizon.

In total 80% of the data was used for model estimation and 20% for

cross-validation to identify the stopping point.

4.6. SGBT + APC

Because SGBT algorithms are sequential refinements to a base

learner, making the base learner an Age-Period-Cohort model

would be a natural extension. However, by providing the APC

inputs as a fixed offset, all trees are adjusted so that none try

to alter the APC structure. Some implementations of stochastic

gradient boosted trees allow for the same kind of fixed inputs as

logistic regression. Again defining the offset, O(a, t) = F(a)+H(t),

as a fixed input allows us to create an SGBT credit risk panel

model that is centered around the long-term trends of lifecycle and

environment. For proper calibration, the offset O(a, t) must be in

units of log-odds of default, not probability of default. The offset is

used at the point where the regression trees are constructed in order

to normalize for account age and environmental impacts.

The input variables and sampling for cross-validation were the

same as the SGBT model without APC inputs. One model was

created for each of twelve forecast horizons.

5. Results

All of the data was used to perform the APC decomposition.

The resulting lifecycle, environment, and vintage functions are

shown in Figure 3 for probability of default and in Figure 4 for

probability of prepayment. These estimates are monthly rates

conditional on the account being active in the previous month.

The PD lifecycle increases vs. the age of the account because of

the selection effect where better loans are likely to refinance earlier.

The environment function for PD clearly shows the 2001 and 2009

recessions along with annual seasonality. The vintage function for

PD shows the poor quality loans booked prior to the 2009 recession

and steadily increasing risk through the end of the data.

The environment and vintage functions for the probability of

prepayment, Figure 4 show more volatile structure, because they

are dependent on changes in mortgage interest rates.

For development of account-level models, identical samples

were used across themodel types. A 20% sample was used formodel

training. The remaining 80% was used for out-of-sample testing
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FIGURE 3

Age-period-cohort decomposition of probability of default for 30-year prime conforming mortgage data.

during the same time period. A separate data selection was used

for out-of-time testing.

For accounts less than 6 months old, an origination score was

developed using a discrete time survival model approach with APC

inputs of lifecycle and environment. Table 1 shows the coefficients

of this model. This table is included primarily as a representation of

the kinds of factors that were found to be useful in the modeling.

From this example output, the usual factors show up as

important. Bureau score is the most important and has a reliably

linear relationship with log-odds of default. Loan-to-value (LTV)

has a more nonlinear structure, probably due to the pricing changes

that occur at certain threshold values. Therefore LTV and debt-

to-income (DTI) are both binned prior to modeling in order to

allow the regression model to capture some of the non-linearities.

Origination balance was found to be predictive, probably because of

the implied difference in risk between small loans and jumbo loans,

although this might be more predictive in combination with other

variables. Most of the p-values are very significant because of the

large amount of data available. Some individual coefficients within

a set of coefficients for a binned variable may be insignificant, but

this just indicates that it is close to the reference level. Individual

bins need not be removed from the model. Rather, if none of the

coefficients for a binned variable were significant, then the entire

variable might be removed.

When delinquency is added to the model, a multihorizon

survival model is estimated. Figure 5 shows how the coefficients

for delinquency change versus forecast horizon. For the first six

months, delinquency is the dominant factor in the model, but

beyond six months, the other factors seen in the origination score

become more important.

The same factors were provided as inputs to the stochastic

gradient boosted trees and neural network models. These models

were estimated separately for each forecast horizon, as was

done with the multihorizon survival model. We also create

two versions of each, one with APC inputs and one without.

Table 2 shows the relative influence of factors in the stochastic

gradient boosted trees model with APC inputs included via

an offset.
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FIGURE 4

Age-period-cohort decomposition of probability of prepayment for 30-year prime conforming mortgage data.

All of the panel models created were designed to predict the

probability of default conditional on the account being active in

the previous month. In order to run a long-range forecast, we

must simultaneously predict the probability of prepayment each

month. This could be done with a series of scores comparable to the

PD scores described above. However, for purposes of simplifying

the tests, only the vintage-level APC models of probability of

prepayment were employed to predict the monthly probability of

being active. The final test results therefore translate the conditional

PDs to unconditional PDs using the pre-payment probabilities.

Table 3 collects the in-sample, out-of-sample, and out-of-time

test results for all of the models. The full-period tests mean that a

snapshot of accounts was taken in themonth prior to the test period

and the forecast was run for the full period. Annual tests mean that

a new snapshot was taken each year and a series of 12-month tests

was conducted with the combined results reported.

In most credit scoring competitions, SGBT has been a winning

approach. Recent research by Grinsztajn et al. [75] suggests that

tree-based models will perform better than neural networks for

tabular data structures where neighboring input factors may have

no ordering or continuity. Neural networks have been found to

excel in sound and image processing applications where the inputs

are neighboring pixels in an image or sequential points in the time

sampling. Although effort was put into choosing good designs for

the neural networks and SGB Trees, they were not optimized so

much that we would want to declare a winner between them.

The most important result is that when looking at the SGB

Trees and Neural Networks, even accepting a certain amount of

testing noise, the models degrade out-of-sample and out-of-time.

The neural network degrades less, but it may also have been

less overfit in-sample to begin with. For the models with APC

inputs: multihorizon survival, SGBT+APC, and NN+APC, no out-

of-sample or out-of-time performance degradation is observed.

In fact, in all three cases the performance ticked up slightly out-

of-time, but that is not easily explainable as anything more than

testing noise. One primary goal for providing APC lifecycle and

environment as fixed inputs is that the machine learning models

focus just on modeling the account distribution about the APC
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TABLE 1 Coe�cients for a discrete time survival model (no behavioral factors and no dependence upon forecast horizon).

Variable Coe�cient Std Err P-value

(Intercept) 9.603 0.359 1.50E-150

Origination.Balance gte5,000 lt75,000 0.000

Origination.Balance gte75,000 lt100,000 –0.252 0.059 2.24E-05

Origination.Balance gte100,000 lt120,000 –0.374 0.063 2.79E-09

Origination.Balance gte120,000 lt140,000 –0.466 0.066 1.64E-12

Origination.Balance gte140,000 lt160,000 –0.606 0.071 1.27E-17

Origination.Balance gte160,000 lt190,000 –0.527 0.064 2.09E-16

Origination.Balance gte190,000 lt220,000 –0.458 0.067 9.94E-12

Origination.Balance gte220,000 lt265,000 –0.530 0.066 1.05E-15

Origination.Balance gte265,000 lt330,000 –0.591 0.068 3.03E-18

Origination.Balance gt330,000 –0.483 0.064 3.07E-14

LTV gt0 lt0.55 0.000

LTV gte0.55 lt0.65 0.310 0.085 0.000295

LTV gte0.65 lt0.7 0.318 0.094 0.000734

LTV gte0.7 lt0.75 0.395 0.085 3.17E-06

LTV gte0.75 lt0.8 0.603 0.077 3.91E-15

LTV gte0.8 lt0.85 0.650 0.071 8.47E-20

LTV gte0.85 lt0.9 0.821 0.092 5.71E-19

LTV gte0.9 lt0.95 1.001 0.080 1.56E-35

LTV gte0.95 lt1 1.173 0.078 3.27E-51

LTV gt1 1.132 0.094 3.96E-33

ChannelB 0.000

ChannelC –0.155 0.066 0.0183

ChannelR –0.060 0.061 0.327

ChannelT 0.549 0.070 6.50E-15

Loan.PurposeP 0.000

Loan.PurposeC 0.461 0.045 3.31E-24

Loan.PurposeN 0.110 0.047 0.0185

Number.Of.Borrowers 1 0.000

Number.Of.Borrowers 2 –0.750 0.033 3.68E-112

Bureau.Score –0.014 0.000 6.73E-201

DTI gte0.01 lt0.2 0.000

DTI gte0.2 lt0.25 –0.147 0.109 0.181

DTI gte0.25 lt0.3 0.103 0.096 0.287

DTI gte0.3 lt0.35 0.191 0.092 0.0379

DTI gte0.35 lt0.4 0.363 0.089 4.41E-05

DTI gte0.4 lt0.45 0.529 0.087 1.23E-09

DTI gte0.45 lt0.5 0.684 0.091 4.15E-14

DTI gte0.5 lt0.55 0.724 0.111 6.12E-11

DTI gte0.55 lt0.6 0.645 0.149 1.45E-05

DTI gte0.6 lte0.65 0.740 0.163 5.42E-06

DTI NA 0.469 0.099 2.24E-06

This provides a reference for the multihorizon survival analysis.
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FIGURE 5

A visualization of the coe�cients estimated by forecast horizon for delinquency, binned by number of payments missed.

TABLE 2 Input factor sensitivities for the stochastic gradient boosted tree

model with APC inputs for lifecycle and environment (SGBT+APC).

Variable Relative influence

Bureau.score 29.57

Channel 26.19

Number.of.borrowers 12.18

Origination.balance 10.89

CLTV 7.49

DTI 6.87

PPM.flag 3.99

Loan.purpose 0.84

Property.type 0.82

LTV 0.58

First.time.homebuyer.flag 0.32

Occupancy.status 0.13

Mortgage.insurance.Pct 0.11

Number.of.units 0.02

time-varying mean so that the scores generalize better out-of-

sample and out-of-time. That appears to be happing.

With this test design, questions about information leakage

could arise. The theory behind APC models asserts that the

lifecycle, environment, and vintage functions are separable, so

using all of the data to estimate the lifecycle does not influence

estimation of the panel credit score. Looking out-of-time, the test

is using the actual APC environment function to set the mean of

the distribution. This is definitely future information, but it will

not impact the rank ordering of the account level scoring model.

By focusing on a rank ordering statistic (Gini), we are separating

the question of how well the future environment can be forecasted

from the quality of the account-level discrimination.

Note that the economy was relatively benign during the train

and test periods. If a recession had been present in the out-of-time

test period, the scoring approaches would be expected to perform

much worse whereas the macroeconomic scenarios provided via

the APC inputs could continue to guide the forecasts. The models

were not explicitly tested on their accuracy in predicting total loss

rates, because the models without APC inputs simply could not do

so. The aggregate forecast accuracy for the multihorizon survival,

SGBT+APC, and NN+APC will depend primarily on the accuracy

of the APC model.

6. Conclusion

The purpose of this research was to extend logistic regression

insights on long-range forecasting and stress testing to commonly

used machine learning methods. Multihorizon survival models

have previously been shown to extend logistic regression scoring

models for use in account-level lifetime forecasting, stress testing,

and volatility analysis. The key to this advancement was adopting

a panel data structure and taking age-period-cohort inputs for

lifecycle and environment as fixed inputs to the model training.

This was found to enhance out-of-sample and out-of-time stability

and enable scenario-based forecasting.

Machine learning models have rarely been shown in use with

panel-structured data in credit risk modeling, probably because

the use case was not compelling. However, by adopting a panel

data structure and taking the same APC lifecycle and environment

offsets as fixed inputs, we replicated the performance enhancement
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TABLE 3 Test results comparing the Gini coe�cient for the models built on 30-year conforming prime mortgage data.

Full period tests Date range Multihorizon SGB trees SGBT+APC Neural NN+APC
survival network

20% In-sample Jan 2015 — Dec 2016 0.64 0.61 0.70 0.48 0.56

80% Out-of-sample Jan 2015 — Dec 2016 0.66 0.28 0.69 0.48 0.54

Out-of-time Jan 2017 — Dec 2019 0.76 0.40 0.71 0.42 0.59

Annual tests

20% In-sample Jan 2015 — Dec 2016 0.89 0.85 0.90 0.74 0.65

80% Out-of-sample Jan 2015 — Dec 2016 0.89 0.68 0.85 0.74 0.67

Out-of-time Jan 2017 — Dec 2019 0.89 0.64 0.86 0.64 0.69

and gain of function that was seen previously for logistic regression

models. Implementations of stochastic gradient boosted trees were

found which accepted fixed inputs when regression trees are used.

Neural network implementations do not provide this architecture

by default, but we were able to replicate it with some simple design

changes. Support vector machines, which have also been tested

for use in credit scoring, have not been found to support the

incorporation of fixed inputs.

Out-of-sample and out-of-time degradation of model

performance has been one of the dominant problems in machine

learning. Several architectural refinements have been introduced

that may reduce overfitting for machine learning models, and

those methods may be combined with the technique developed

here. However, even with no such refinements, our technique of

incorporating APC lifecycle and environment inputs dramatically

stabilizes the use of machine learning methods. This would seem to

demonstrate that much of the overfitting that has been occurring in

machine learning model estimation when applied to credit scoring

is an attempt by the algorithm to explain short-term trends that

are better explained as a piece of a longer trend due to the product

lifecycles or macroeconomic environment. Using pre-trained APC

inputs performs better than simply adding account age fixed effects

or macroeconomic factors, because correlations to delinquency

and other scoring factors could destabilize the model whereas APC

analysis has explicit controls to separate these effects.

This approach allows the analyst to leverage long histories of

limited data for the APC analysis and then incorporate the APC

components into machine learning models on short data sets.

Combining the analysis of long, thin datasets with the analysis

of short, wide (many input variables) datasets is unique and

allows for these long trends to be explained with macroeconomic

factors. When only a short time history is available, the same

approach applies and the score rank ordering can be enhanced

relative to traditional methods, but extrapolating the environment

function becomes more challenging. These are the limitations of

any stress test model built upon short histories, and the literature

on using APC models for forecasting should be reviewed by the

analyst before extending the use of the models from simple scoring

to cash flow modeling, lifetime loss and yield estimates, capital

calculations, etc.

With enough history so that the preceding caveat is resolved,

a key advantage of any panel data score is that the monthly

forecasts can be summed over any forecast horizon. That means

that the same model that is used for account management with

a 24-month horizon can be used for Basel II with a through-

the-cycle environment function and a 12-month forecast horizon.

Similarly, the same model can be used for all stages of estimating

IFRS 9 loss reserves where both 12-month and lifetime forecasts

are required. This flexibility is a significant business advantage in

terms of development, validation, and deployment costs. Questions

around using machine learning models for regulatory purposes are

left to another discussion.

Although the language and example applications of this article

are focused on lending, the methods are generic. These methods

have already been tested for predicting the value of fine wines

[76]. In any field where vintage data can be found, these methods

can be used to improve account-level, item-level, or consumer-

level analysis.

Merging vintage analysis with the most popular machine

learning techniques means that we can integrate account-

level machine learning modeling with portfolio forecasting.

A single model backbone can support credit risk modeling

needs across a wide range of business functions without

introducing compromises.
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