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In this study, we consider algorithm unfolding for the multiple measurement

vector (MMV) problem in the case where only few training samples are available.

Algorithm unfolding has been shown to empirically speed-up in a data-driven

way the convergence of various classical iterative algorithms, but for supervised

learning, it is important to achieve this with minimal training data. For this, we

consider learned block iterative shrinkage thresholding algorithm (LBISTA) under

di�erent training strategies. To approach almost data-free optimization at minimal

training overhead, the number of trainable parameters for algorithm unfolding

has to be substantially reduced. We therefore explicitly propose a reduced-size

network architecture based on the Kronecker structure imposed by the MMV

observation model and present the corresponding theory in this context. To

ensure proper generalization, we then extend the analytic weight approach by

Liu and Chen to LBISTA and the MMV setting. Rigorous theoretical guarantees and

convergence results are stated for this case. We show that the network weights

can be computed by solving an explicit equation at the reduced MMV dimensions

which also admits a closed-form solution. Toward more practical problems, we

then considered convolutional observation models and show that the proposed

architecture and the analytical weight computation can be further simplified and

thus open new directions for convolutional neural networks. Finally, we evaluate

the unfolded algorithms in numerical experiments and discuss connections to

other sparse recovering algorithms.

KEYWORDS

unfolding, compressed sensing, multiple measurement vector problem, deep learning,

block-sparsity

1 Introduction

This study connects the multiple measurement vector (MMV) problem, block-

or joint-sparsity and recent results of deep unfolding of the iterative shrinkage

thresholding algorithm (ISTA) to reconstruct unknown joint-sparse vectors from given

linear observations. Such vectors could be, for example, signals received at the different

antennas in a wireless communication problem or, in a computational imaging setup,

discrete images observed at different detectors or aggregation stages. Compressed sensing

is a way to reconstruct compressive measurements from their underdetermined systems and

first theoretical breakthroughs were achieved by Candés et al. [1] and Donoho [2], leading

to an approach where fewer samples can be used, than stated within the Nyquist–Shannon

sampling theorem [3]. They were able to show that unknown vectors can be reconstructed

using convex optimization if the linear mapping fulfilled certain assumptions [1, 4]. These
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idea rely on minimizing ℓ1-norm to promote sparsity and the

approach of basis pursuit [5]. These convex optimization problems

could then be solved with iterative algorithms, in Figueiredo et al.

[6] gradient projection approaches are presented and in Fornasier

and Rauhut [7] the idea of thresholding algorithms, which will

be also discussed in this study. Although this is already a well

researched field, in practice leading to high computational effort

because of many iterations and large underlying systems and is

thus not suitable for real-world applications. Thus, Karol Gregor

and Yann LeCun proposed to use the iterative structure of these

algorithms for a neural network and to train each iteration step [8],

which is also referred to as deep unfolding and will be discussed

in Section 2. Convergence for deep unfolding of the iterative

thresholding algorithm has also been studied by Chen et al. [9]. Liu

and Chen [10] proposed in to exclude the weight matrix from the

data-driven optimization approach and pre-compute this by data-

free optimization and thus presented Analytical LISTA (ALISTA).

In recent results, Chen et al. could reduce the training procedure

even more, by showing that only tuning three hyperparameters

is sufficient, proposing HyperLISTA [11]. Creating large sets of

training data is often difficult in practice, and thus, it is important

to reduce the trainable parameters. Therefore, we will extend the

already stated concepts for the block-sparse setting and especially

for the multiple measurement vector problem, developing suitable

learned algorithms, with only a few trainable parameters and

similar theoretical guarantees as ALISTA.

1.1 Multiple measurement vector problems

Multiple measurement vector (MMV) problems occur in many

applications, for example, in tomography [12], communication

[13], blurred image reconstruction, or superresolution [14]. In the

following, we derive the connection to block-sparsity. In an MMV

problem, we assume that we derived d ∈ Nmeasurements yl ∈ R
m,

l = 1, . . . , d from d sparse signal vectors xl ∈ R
n sharing the

same support supp(xl) = {i : |xli| 6= 0}, which is referred to as

joint-sparsity [15, 16]. The MMV problem can then be presented

as solving the following d equations

yl = Kxl + ǫ̃ (1)

for l = 1, . . . , d and with K ∈ R
m×n. This can be rewritten in the

following matrix equation form

Y = KX + Ẽ, (2)

where X = (x1, . . . , xd) ∈ R
n×d, Y = (y1, . . . , yd) ∈ R

m×d. With

the vectorizing operator vec(·), stacking each column of amatrix on

each other, we can cast Equation (2) into a block-sparse problem.

We have

Y = KX

⇔ YT = XTKT

⇔ vec(YT) = (K ⊗ Id)vec(X
T),

where we used the well-known vectorization property of matrix

equations, see for example Schacke [17]. Here, ⊗ is the Kronecker

product. The vector x = vec(XT) is block-sparse with n blocks of

length d, if the signals xl are jointly sparse. With D = (K ⊗ Id) ∈
R
ny×nx , where ny = m ·d and nx = n ·d, we obtain the block-sparse

setting considered in this work.

1.2 Block sparsity

In themore general setting, we want to reconstruct an unknown

vector x ∈ R
nx from a given matrix D ∈ R

ny×nx and given y ∈ R
ny

y = Dx+ ǫ , (3)

with nx = nd, ny = md for some n,m, d ∈ N. We assume that noise

ǫ ∈ R
ny is added to Dx. In applications, we often have this problem

is ill-posed, i.e., ny < nx or D is not invertible. We assume that x is

the concatenation of n “smaller” vectors of length d, called blocks,

i.e., x[i] ∈ R
d,

xT = [x1 . . . xd
︸ ︷︷ ︸

=x[1]

xd+1 . . . x2d
︸ ︷︷ ︸

=x[2]

. . . xnx−d+1 . . . xnx
︸ ︷︷ ︸

=x[n]

]T . (4)

Following the notation in Yonina and Eldar [18], we define

‖x‖2,0 =
n
∑

i=1

I(‖x[i]‖2 > 0) ,

where I(‖x[i]‖2 > 0) = 1 if ‖x[i]‖2 > 0 and equal to zero

otherwise and the ℓ2-norm is defined as ‖x‖22 =
∑n

i=1 |xi|2. We

call x ∈ R
nx s-block-sparse if ‖x‖2,0 ≤ s. Similar to Equation (4),

we can construct the matrix D in Equation (3) from n “smaller”

matrices D[i] ∈ R
ny×d, i = 1, . . . , n

D = (D[1]D[2] . . . D[n]) .

Without loss of generality, we can assume that these blocks

are orthonormal, see Yonina and Eldar [18], i.e., D[i]TD[i] = Id,

where Id is the d×d identity matrix. This assumption simplifies the

presentation of several statements below.

Definition 1. The block-coherence of a matrix D ∈ R
ny×nx is

defined as

µb(D) = max
i6=j

1

d
‖D[i]TD[j]‖2 . (5)

Here, we use ‖A‖2 =
√

λmax(ATA), where λmax denotes the

largest eigenvalue ofmatrixATA. Note that the block coherence can

also be introduced with a normalization factor 1/
(

‖D[i]‖2‖D[j]‖2
)

,

but since we assume orthonormal blocks, we can neglect this. This

reduces to the already known coherence µ for d = 1

µ(D) = max
i6=j

|DT
:,iD:,j| ,

where D:,i denotes the ith column of D, see Donoho et al. [19]. In

Yonina and Eldar [18], it is shown that 0 ≤ µb(D) ≤ µ(D) ≤ 1,

and it is possible to derive recovery statements for small µb similar

to µ, for details see Yonina and Eldar [18]. We can consider also

the cross block coherence, which compares two matrices and will

be important in the following.
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Definition 2. For B,D ∈ R
ny×nx with B[i]TD[i] = Id the cross

block coherence is defined as

µb(B,D) = max
i6=j

1

d
‖B[i]TD[j]‖2 . (6)

Similar to ordinary basis pursuit and LASSO [5, 20–22], we use

the following ℓ2,1-LASSO to solve Equation (3)

min
x∈Rnx

1

2
‖Dx− y‖22 + α‖x‖2,1 (7)

where ‖x‖2,1 =
∑n

i=1 ‖x[i]‖2 is the ℓ2,1-norm of x, which will

promote block-sparsity for the solution of Equation (7). This

convex programm can be solved by the fixed point iteration known

as the block iterative shrinkage thresholding algroithm (Block-

ISTA/BISTA):

x(k) = ηαγ

(

x(k−1) − γ

[

DT
(

Dx(k−1) − y
)])

, (8)

where ηα is the block-soft-thresholding operator, given as

ηα (x) [i] = max

{

0, 1− α

‖x[i]‖2

}

x[i]. (9)

BISTA is an already well-studied proximal gradient algorithm

based on the functional in Equation (7). It is known that the fixed

point iteration in Equation (8) converges for γ ∈ (0, 1L ), where L =
‖D‖22 is the Lipschitz constant of the least squares term in Equation

(7) w.r.t to x, to a solution of Equation (7), if at least one solution

exists, see for example Byrne [23], Bauschke et al. [24], and Beck

[25]. On the other hand, the choice of the regularization parameter

α has to be done empirically and is very crucial for a “good”

recovery. If α is set too large, this can lead to too much damping,

possibly setting blocks to 0 that actually have a non-zero norm. If α

is too small, we get reverse effects. In practice, this leads to problems

since computing the iterations require high computational effort.

Deep unfolding is a way to tackle these problems, i.e., reduce the

number of iterations by learning optimal regularization parameters

and step-sizes. There are already classical concepts in increasing

the convergence speed by using an additional step in updating

the current iterate x(k), by using the previous x(k−1), resulting in

Block Fast ISTA [25, 26]. On the other hand, the choice of optimal

parameters is still solved empirically.

2 Deep unfolding and learned BISTA

Recently, the idea of deep unfolding has been developed, where

the goal is to optimize these parameters of such an iterative

algorithm [8, 10, 27]. This in turn gives us an iterative algorithm

with optimal chosen step-size γ and regularization parameters,

but we will see that we do not have to restrict our self only to

those parameters. Recently, Fu et al. proposed Ada-BlockLISTA by

applying deep unfolding to block-sparse recovery [28]. They show

an increase in the convergence speed with numerical examples but

do not cover theoretical studies.

In the following, we are going to present the idea of deep

unfolding, then we are going to derive Learned BISTA (LBISTA).

2.1 Deep unfolding

We will now formalize the concept of deep unfolding for an

arbitrary operator that depends on a certain set of parameters,

before we apply this to the previously presented fixed point

iteration. To this end, we define an operator

T(· ; θ , y) :X → X (10)

which depends on a set of parameters θ ∈ 2, such as the stepsize of

a gradient descent operator and an input y. For example, for BISTA,

this would be θ = (α, γ ) with

T(x ; θ , y) = ηαγ

(

x− γ

[

DT
(

Dx− y
)
])

.

We assume that Fix(T
(

· ; θ , y
)

) 6= ∅ and that we have

convergence for the fixed point iteration

Tk
(

x(0) ; θ , y
)

= x(k) (11)

for an arbitrary x(0) ∈ X. Deep unfolding now interprets each

iteration step as the layer of a neural network and uses the

parameters θ ∈ 2 as trainable variables. In more detail, this means

we look at the Kth iteration of Equation (11), i.e., the composition

(T ◦ · · · ◦ T)
︸ ︷︷ ︸

K times

(x(0) ; θ , y) = x(K)

for some K ∈ N. By unfolding this iterative scheme, we define

Tθ (k−1)

(

· ; y
)

:= T
(

· ; θ (k), y
)

for k = 1, . . . ,K and set θ (k) as the set of trainable variables in this

operator, so they can vary in each iteration step. For example, in

LBISTA, we will get θ (k) = (α(k), γ (k)) in the later called tied case.

With this we get the following composition

(

Tθ (K−1) ◦ · · · ◦ Tθ (0)

)
(

x(0) ; y
)

= x(K) . (12)

and define the operator

Tθ̃
:= Tθ (K−1) ◦ · · · ◦ Tθ (0) , (13)

where we get the full parameter space 2̃ = 2 × · · · × 2, with

trainable variables θ̃ =
⋃K

i=1 θ (i). T2̃ will then be the neural

network which will be trained with respect to θ̃ . So in the end, after

training, we have an iterative algorithm with fixed but optimized

parameters. It seems thus that deep unfolding can be applied to

any iterative algorithm and help us to estimate the best choice of

parameters, but we will only present deep unfolding for BISTA and

consider deep unfolding for arbitrary operators in future studies.

2.2 Learning

In this section, we give an overview for the training procedure

used in this study. The general idea of supervised learning is to

choose model parameters such that the predictions are close, in
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1 for k ≤ K do

2 while ¬(NMSE(x(k), x∗
i,validation

) < tol for 5,000 Iterations) do

3 Adam
(

tr , l(x̂
(k) − x∗i,train) , θ

(k−1)
)

4 with x(k) =
(

Tθk−1 ◦ · · · ◦ Tθ0
)

(x0; yi,train) for all

i = 1, . . . , ntrain

Algorithm 1. Training.

some sense, to the unknown target, i.e., in our case, the unknown

vector x in Equation (3) generating the measurement y. Hence, we

aim to minimize an expected loss over an unknown distributionD:

min
θ

[

R(θ) := Ex∗˜D
[

ℓ(x̂− x∗)
]
]

(14)

where ℓ(·) is a given loss function, x̂ = Tθ̃

(

x(0) ; y
)

is the

output of the model, and x∗ is the ground-truth. Here, we will

use the squared ℓ2-loss ℓ(x) = 1
2‖x‖22. The objective functional

R(θ) = Ex∗˜D
[

ℓ(x̂− x∗)
]

is also called risk of the model. Since

the underlying distribution D is unknown, we take a batch of S

independently drawn samples of input and output data (x∗j , yj) for
j = 1, . . . , ntrain according to Equation (3) and minimize instead

data-driven the empirical risk

RS(θ) =
1

ntrain

ntrain∑

j=1

ℓ(x̂j − x∗j ) . (15)

Proceeding in this way for all layer at once is sometimes

referred as end-to-end learning. Because of the special structure

of our deep unfolding models, and inspired by Musa et al. [29],

we instead train the network layer-wise, by optimizing only θ
(k−1)
case

for layer k yielding the following training procedure: Let k ∈
{1, . . . ,K},

min
θ
(k−1)
case

Ex∗˜D

[

ℓ(x̂(k) − x∗)
]

,

where x̂(k) is the output of the kth layer. We realized

this training as follows, we generate a validation set
(

x∗
i,validation

, yi,validation

)

, used to evaluate the model while

training and a training set
(

x∗i,train, yi,train
)

, i = 1, . . . , ntrain,

used to calculate (15). This objective is locally minimized

by gradient descent methods. As a stopping criteria,

we evaluate the normalized mean square error, defined

as

NMSE(x, x̂(k)) = ‖x̂(k) − x∗‖22
‖x∗‖22

,

depending on the validation set, and stop if the maximum

of all evaluated NMSE stays the same for a given number

of iterations. See Algorithm 1, where Adam is the ADAM

Optimizer [30] depending on an training rate tr and the

functional which should be minimized with respect to

given variables, here the loss function ℓ(·) with respect to

θk−1.

2.3 Learned BISTA

In the following, we present four different unfolding techniques

for BISTA. We present a tied (weights are shared between different

layers) and untied (individual weights per layer) case, which refers

to different training approaches

S = I − BTD

B = γD.

Tied LBISTA: The idea of LBISTA is now to fix the matrices

S and B for all layers but also include them in our set of trainable

variables:

x(k) = ηα(k−1)

(

Sx(k−1) + BTy
)

. (16)

For LBISTA (Equation 16), we get trainable variables

θ =
(
(

α(k)
)K−1

k=0
, S,B

)

,

where we initialize S = I − BTD and B = γD. Algorithm

(16) is also referred to as vanilla LISTA in the sparse case.

Inspired by the LISTA-CP model, i.e., LISTA with coupled

parameters, proposed in Liu and Chen [10], we will also consider

LBISTA-CP

x(k) = ηα(k−1)

(

x(k−1) − γ (k−1)BT
(

Dx(k−1) − y
))

. (17)

For LBISTA-CP (Equation 17), we get

θ =
(
(

α(k)
)K−1

k=0
,
(

γ (k)
)K−1

k=0
,B

)

,

where we initialize B = D.

Untied LBISTA: The idea of untied LBISTA is then to use in

each layer different matrices S and B to train, i.e.,

x(k) = ηα(k−1)

(

S(k−1)x(k−1) +
(

B(k−1)
)T

y

)

. (18)

For LBISTA (untied) Equation (18), we get trainable variables

θ =
(
(

α(k)
)K−1

k=0
,
(

S(k)
)K−1

k=0
,
(

B(k)
)K−1

k=0

)

,

where we initialize S(k) = I − BTD and B(k) = γD for every

k = 0, . . . ,K − 1. Inspired by Algorithm (17), we will also consider

Algorithm (19), which will be referred to as LBISTA-CP (untied),

[9, 10]:

x(k) = ηα(k−1)

(

x(k−1) − γ (k−1)
(

B(k−1)
)T (

Dx(k−1) − y
)
)

. (19)
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For LBISTA-CP (untied) (Equation 19), we get

θ =
(
(

α(k)
)K−1

k=0
,
(

B(k)
)K−1

k=0

)

,

where we initialize B(k) = D for every k = 0, . . . ,K − 1. Hence,

compared to O(nynx + K) parameters in the tied case, now more

training data and longer training time is required to train now

O(Knynx + K) parameters.

We initialize the trainable variables with values from original

BISTA. In Chen et al. [9], it has been shown that convergence of

LISTA-CP (untied) can be guaranteed if the matrices B(k) belong to

a certain set and their proof can be extended to block-sparsity. The

steps are very similar to the convergence proof for learned block

analytical ISTA given in the next section.

3 Analytical LBISTA

In the previous section, we presented several approaches

for learned BISTA where optimal weights are optimized in a

data-driven fashion. In Liu and Chen [10] instead proposed to

analytically pre-compute the weights and only train step-size

and threshold parameters. It turns out that this Analytic LISTA

(ALISTA) with the so called analytical weight matrix is as good

as the learned weights. In the following, we are going to extend

and improving the theoretical statements for ALISTA to the block-

sparse case and propose analytical LBISTA. In contrast to Liu and

Chen [10], we will provide a direct solution and also show different

ways to calculate the analytical weight matrix in different settings.

3.1 Upper and lower bound

This part of the study will focus on combining and extending

several theoretical statements from Chen et al. [9] and Liu and

Chen [10] and applying these for the block-sparse case. With the

following two theorems, we are then going to present analytical

LBISTA, by showing that this is as good as LBISTA-CP (untied) with

a pre-computed B.

3.1.1 Upper bound
In this section, we start with an upper bound for the error of

the approximation generated by Equation (19), i.e., LBISTA-CP

(untied), and the exact solution x∗ for given parameters. For this,

we modify Assumption 1 from Liu and Chen [10] to be consistent

with the block-sparse setting.

Assumption 1. We assume (x, ǫ) ∈ Xb(M, s, σ ) with

(x, ǫ) ∈ Xb(M, s, σ )

= {x : ‖x[i]‖2 ≤ M ∀i = 1, . . . , n, ‖x‖2,0 ≤ s , ‖ǫ‖2 ≤ σ }.
(20)

As already mentioned, a matrix with small block-coherence has

good recovery conditions. In Liu and Chen [10] proposed analytical

LISTA, where the pre-computed matrix B is minimizing the mutual

cross-coherence. This motivates the following definition.

Definition 3. With D ∈ R
ny×nx , we define the generalized mutual

block-coherence

µ̃b(D) = inf
B∈Rny×nx

BT [l]D[l]=Id
∀1≤l≤n









max
i6=j

1≤i,j≤n

1

d
‖BT[i]D[j]‖2









= inf
B∈Rny×nx

BT [l]D[l]=Id
∀1≤l≤n

{µb (B,D)} . (21)

We define, analogously to Liu and Chen [10] with Wb(D) the

set of all B ∈ R
ny×nx which attain the infimum in Equation (21),

i.e.,Wb(D) =
{

B ∈ R
ny×nx

: µb(B,D) = µ̃b(D)
}

.

Note that the setWb(D) is non-empty because the set of feasible

matrices {B ∈ R
ny×nx

:BT[i]D[i] = Id, 1 ≤ i ≤ n} contains at least
D because we assume DT[i]D[i] = Id, also 0 ≤ µ̃b(D) ≤ µb(D)

and therefore, Equation (21) is a feasible and bounded program, see

Supplementary material to [9]. We will call matrices from Wb(D)

analytical weight matrices.

Definition 4. The block-support of a block-sparse-vector x ∈
XB(b, s) is defined as

suppb (x) = {i : ‖x[i]‖2 6= 0 ∀i = 1, . . . n} . (22)

We will now derive an upper bound for the ℓ2-error and

thus showing convergence of LBISTA-CP for a special matrix B

and given parameters α(k) and γ (k). In [9], Liu et al. showed

linear convergence for unfolded ISTA with additional noise, more

precivesly for LISTA-CP (untied), if the matrices B(k) belonged to

a certain set. In Liu and Chen [10], it was shown that we can

pre-compute such a matrix B, chose B(k) = B, chosen by a data-

free optimization problem and still have the same performance.

For this, new proposed unfolded algorithm linear convergence

was also shown, without additional noise. In Liu and Chen [10],

convergence only in the noiseless case was shown, but the results

derived in Chen et al. [9] were derived with bounded noise. Thus,

we are going to combine these two proofs and extend it to block-

sparsity:

For given (x, ǫ), y = Dx + ǫ and parameters {θ (k)}K
k=1

, we

abbreviate with {x(k)(x, ǫ)}K
k=1

the sequence generated by (19) with

x(0) = 0. Further, we define

C
(k)
X

= sup
(x,ǫ)∈Xb(M,s,σ )

{‖x(k)(x, ǫ)− x‖2,1}

C = sup
k

max
j=1,...,n

|γ (k)|‖B[j]‖2
(23)

Theorem 1. For any B ∈ Wb(D) and any sequence γ (k) ∈
(

0, 2
µ(2s−1)+1

)

and parameters
(

B(k) := B,α(k), γ (k)
)

, for k ≤ K,

with

α(k) − Cσ

γ (k)µ(D)C
(k)
X

∈ [1, κ] (24)

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1205959
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Hau�en et al. 10.3389/fams.2023.1205959

for some κ ≥ 1, with µ = dµ̃b(D). With M > 0 and s <

(µ−1 + 1)/2, we have

suppb

(

x(k)(x∗)
)

⊂ suppb
(

x∗
)

=: S , (25)

‖x(k) − x∗‖2 ≤ exp



−
k−1
∑

τ=0

ã(τ )



 sM (26)

+ Cσ



1+
k−1
∑

τ=0

exp



−
k−τ
∑

s=τ

ã(s)







 .

where

ã(τ ) = − log
(

γ (τ )µ
(

(κ + 1)s− 1
)

+ |1− γ (τ )|
)

> 0 .

Note that in the noiseless case and with κ = 1, we obtain the

results in Liu and Chen [10]. However, from the latter theorem,

it follows that one can relax this condition to κ > 1. We

also see from the proof of Theorem 1 that one needs at least

α(k) ≥ dγ (k)µ̃b(D)C
k()
X

+ Cσ to have Equation (25). On the other

hand, one can always find such a κ from the trained (and then

fixed) parameters and thus use therefore the theorem afterward.

Obviously, a worse α effects the upper bound of the ℓ2-error and

thus appears in ã(τ ). Summarizing, above theorem shows now

convergence on the training set even if κ 6= 1.

3.1.2 Lower bound
This section states the lower bound for the ℓ2,1-error,

showing that for convergence in the ℓ2,1-norm the defined

parameters in Theorem 1 are optimally chosen. We now modify

Assumption 2 from Liu and Chen [10] to be consistent with the

block-sparse setting.

Assumption 2. x∗ is sampled from PX . PX satisfies: 2 ≤ S ≤ s and

S is uniformly distributed over the whole index set. The non-zero

blocks of x∗ satisfy the uniform distribution and ‖x[i]‖2 ≤ M for

all i ∈ S. And we assume, ǫ = 0.

The latter theorem states that the analytical weight matrix

should minimize the generalized mutual block coherence.

Therefore, for a lower bound, we will only consider matrices that

are bounded away from the identity.

Definition 5. With D ∈ R
ny×nx , s ≤ 2, σ̄min > 0 we set

W̄ (D, s, σ̄min) := {B ∈ R
ny×nx (27)

: σmin

(

I −
(

B[(j ∈ S)]
)T

D[(j ∈ S)]
)

≥ σ̄min} .

The parameters are chosen from the following set.

Definition 6. Let {x(k)}∞
k=1

be generated by x(k+1) =
ηα(k)

(

x(k) − (B(k))T(Dx(k) − y)
)

with parameters {B(k),α(k)}∞
k=0

and x(0) = 0. We define the set of all parameters guaranteeing no

false positive blocks in x(k) by

T ={{B(k) ∈ W̄ (D, s, σ̄min) , θ
(k)}∞k=0 : (28)

suppB (x) ⊂ S, ∀x∗ ∈ Xb(M, s, 0) , ∀k} .

This set is non-empty since Equation (25) holds true if α(k) are

chosen large enough. Following mainly the proof in Liu and Chen

[10] by extending the setting from sparsity to block-sparsity, the

lower bound for the ℓ2,1-norm can be stated as follows.

Theorem 2. Let {x(k)}∞
k=1

be generated by x(k+1) =
ηα(k)

(

x(k) − (B(k))T(Dx(k) − y)
)

. Under Assumptions 2,

{W(k) ∈ W̄ (D, s, σ̄min) , θ
(k)}∞

k=0
∈ T and ǫ > 0, we have

‖x(k) − x∗‖2,1 ≥ ǫ‖x∗‖2 exp(−ck) , (29)

with probability 1− ǫs
3
2 − ǫ2 and c = log 3− log σ̄min.

3.2 Analytical LBISTA

Analogously to Liu and Chen [10] and following the previous

two theorems, decompose LBISTA-CP (untied), Algorithm 17, into

two steps:

x(k) = ηα(k−1)

(

x(k−1) − γ (k−1)B̃T
(

Dx(k−1) − y
))

, (30)

where, in the first step, B̃ is pre-computed, such that

µb(B̃,D) = µ̃b(D) .

In the second step, the parameters θ =
(
(

α(k)
)K−1

k=0
,
(

γ (k)
)K−1

k=0

)

are trained layer wise, as discussed

in the previous section. This results in a comparable method,

with only O(K) trainable parameters, instead of O(nynx + K) for

LBISTA-CP (Equation 17) or even O(Knynx + K) for LBISTA

(untied) Equation 18.

4 Computing the analytical weight
matrix

ALBISTA relies on the analytical weight matrix, deriving this

matrix can be challenging in practice, thus this section focuses

on computing this matrix. We follow the procedure in Liu and

Chen [10] by estimating Equation (21) with an upper bound. But

in addition to Liu and Chen [10], we state a closed form for the

upper bound, and currently, this is done by a projected gradient

descent approach.

4.1 Solving an upper bound

Since the objective in Equation (21) is not differentiable, one

solves the following upper bound problem

min
B∈Rny×nx

1

d
‖BTD‖2F (31)

s.t. BT[i]D[i] = Id for i = 1, . . . , n .
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This is derived from the following inequality

max
i6=j

1

d
‖BT[i]D[j]‖22 ≤ max

i6=j

1

d
‖BT[i]D[j]‖2F

≤ 1

d

∑

i,j

‖BT[i]D[j]‖2F

= 1

d
‖BTD‖2F .

In Liu and Chen [10], this is solved by a projected gradient

method, but since this is a constrained linear least squares problem

in the vector space of matrices with Frobenius inner product the

following Theorem states a closed form of the solution of Equation

(31).

Theorem 3. The minimizer B ∈ R
ny×nx of Equation (31) is given

as the concatenation

B = (B[1] ,B[2] , . . . , B[n]) ,

where the n blocks are given as

B[i] = K+
i (D[i]− EiHi)

with

Ki =
(

2DDT
)2

+ D[i]D[i]T ,

Ei = 2DDTD[i] ,

Ri = D[i]− 2DDTK+
i Ei ,

Si = −D[i]TK+
i Ei ,

Li = RTi Ri + STi Si ,

Mi = K+
i Ei(I − L+i Li) ,

Hi = L+i S
T
i + (I − L+i Li)(I +MT

i Mi)
−1

(K+
i Ei)

TK+
i (D[i]− EiL

+
i S

T
i ) ,

for i = 1, . . . , n.

The proof can be found in Appendix C.

Let d = 1 and the singular value decomposition of D given

as D = V6UT and assume B = V6̃UT . Then, the solution of

Equation (31) is given in an even simpler form since

‖BTD‖2F = ‖U6̃VTV6UT‖2F
= ‖U6̃6UT‖2F
= ‖6+6‖2F .

Choosing B = D+,Tdiag(d̃)−1, where d̃ = diag(D+D), i.e.,
a normalized pseudo-inverse, yields also a solution for Equation

(31). Here, diag follows the matlab/python notation, where diag of

a matrix gives the vector of the main diagonal and gives a diagonal

matrix with a given vector on its main diagonal. For d ≥ 2, the

orthonormal block constraints in Equation (31) would not be met

since with this construction we can only guarantee that the diagonal

elements of BTD are equal to one but cannot control what happens

on the off-diagonal, thus not yielding a feasible solution.

4.2 Computing the analytical weight matrix
in a MMV problem

In practice, often large data sets are obtained, i.e., by a large

amount of measurements or measurements yl, xl representing

pictures. For instance, 1, 000 pixels and 200 measurements lead to

a matrix D with (1, 000 · 200)2 elements. Applying the theory for

analytical LBISTA could thus be difficult in practice. Although D

is sparse, it can take a long time to calculate the analytical weight

matrix. The following Theorem states the connection between the

MMV setting and the block sparse setting for ALBISTA, showing

that it is sufficient to minimize the generalized mutual coherence

Equation (32), see Liu and Chen [10], for K instead of minimizing

the generalized mutual block-coherence (Equation 21) for D =
K ⊗ Id. Moreover, in many applications the measurement model

involves convolutions, see for example Ahmadi et al. [14], so we

conclude this section by considering the cases where K is a circular

or Toeplitz matrix.

Theorem 4. Let B̃ attain the minimum in

inf
B̃∈Rn×n

B̃T
:,iK:,i=1

∀1≤i≤n

max
i6=j

|B̃T
:,iK:,j| , (32)

where B̃:,i refers to the ith column. Then the minimum of

inf
B∈Rny×nx

BT [l]D[l]=1
∀1≤l≤n









max
i6=j

1≤i,j≤n

1

d
‖BT[i]D[j]‖2









,

is given as B = B̃⊗ Id, if D = K ⊗ Id.

The proof can be found in Appendix D. Moreover, the

following relation holds, if D = K ⊗ Id,

µb(D) =
1

d
µ(K),

thus, the block-coherence of D can be enhanced by increasing the

number of measurements d. It is feasible to solve Equation (31) by

the pseudo inverse in the MMV setting, since this is solved for K,

i.e., d = 1

4.3 Circular matrix case

Consider now the following setting, where the measurements

yl ∈ R
n are obtained by a circular convolution of xl with vector k,

i.e.,

yl = k⊛ xl (33)

= Kxl, l = 1, . . . , d ,

where K is a circular matrix generated by a vector k ∈ R
n, i.e.,

K = circ(k) ∈ R
n×n. Applying Theorem 3 to the circular case yields

the following lemma.

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2023.1205959
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Hau�en et al. 10.3389/fams.2023.1205959

Lemma 1. Let k ∈ R
n and let B = circ(b) ∈ R

n×n where b ∈ R
n is

given by

(

2KKT k

kT 0

)(

b

λ

)

=
(

0

1

)

, (34)

λ ∈ R. Then, B attains the minimum in Equation (31).

The latter statement implies a simpler way to compute b ∈ R
n

by using singular value decomposition

B∗K = U∗diag
(

σ (B)
)

UU∗diag
(

σ (K)
)

U

= U∗diag
(

σ (B)⊙ σ (K)
)

U ,

where σ (B) ∈ R
n is the vector of singular values of B, respectively

K, filled with zeros and U an unitary matrix. With U = 1/
√
nF,

where F is the Discrete Fourier Transform (DFT) matrix, this leads

to the conclusion σ (B) = Fb = b̂, and thus

b = F−1
(

1/k̂
)

, (35)

where k̂ = Fk. The expression 1/k̂ should be interpreted point wise

and to be zero if k̂i = 0. This also concludes that the computation

of B tends to be difficult in practice if K has not full rank, since this

means that k̂ has at least one zero entry. In this case, b has to be

scaled with n
rank(K) since

bTk = 1

n
b̂T k̂ = 1

n
‖k̂‖0

= rank(K)

n

!= 1.

4.4 Toeplitz matrix case

Considering the more general convolutional setting,

y = k ∗ x , (36)

where k ∈ R
m̃ and x ∈ R

n with m̃ < n. This results in a Toeplitz

matrix K

K =



















k1 0 . . . 0

k2 k1 0
...

...
. . .

...

km̃ km̃
...

0 km̃
...

...
...

. . .
...

0 0 . . . km̃



















∈ R
m×n.

The reasoning of the previous section cannot be applied to show

that the solution of Equation (31) must be a Toeplitz matrix. But

the following can be observed: Let b be constructed as discussed for

K̃ = circ(k), where k is the concatenation of k and a zero vector

of suitable dimensions, i.e., the first column of K. The analytical

weight matrix B w.r.t. K can be constructed as

B:,i = Ti−1b, i = 1, . . . , n ,

where T is the m × m cyclic shift matrix, i.e., only the m × n

submatrix of B̃ = circ(b) ∈ R
m×m is used. The columns of K can

also be expressed through the cyclic shift of k. Hence,

BT
:,iK:,i = bTT−(i−1)Ti−1k = bTk = 1,

i.e., B is a feasible solution of Equation (31) for K. On the other

hand, the cross coherence is bounded since

max
i,j≤n. i6=j

|BT
:,iK:,j| = max

i,j≤n, i6=j
|bTT−(i−1)Tj−1k|

= max
i,j≤n, i6=j

|bTTj−ik|

≤ max
i,j≤m, i6=j

|bTTj−ik|

= max
i,j≤m, i6=j

|B̃T
:,iK̃:,j|

= ‖B̃TK̃ − Im‖max

= ‖
√
nF−1diag

(

σ (B)⊙ σ (K)
) 1√

n
F − Im‖max

= ‖F−1ImF − Im‖max = 0,

where ‖D‖max = maxi,j|dij| is the maximum norm and

diag
(

σ (B)⊙ σ (K)
)

= Im derives from Equation (35). Note: To

have this upper bound K̃ needs to have full rank, which is the case

if the full time continuous FT of k has no zero points. Or one has

to adjust the discrete grid. Thus, constructing B by extending K to

a circular matrix is a feasible approach.

4.5 Connection to CNNs

It is known that using the Fast Fourier Transform (FFT) in

CNNs can decrease the computation time if the convolutional filter

is big [31, 32]. In Pratt et al. [31] showed that training weights in

the Fourier domain can reduce training time while maintaining

efficiency. By using this, the costs of O(n2) operations could be

reduced to O(n log(n)) operations. To connect the theory of FFT-

CNNs and of unrolling ISTA in the context of deconvolution

(Equations 33 or 36), the gradient step can be viewed as follows:

x− γ b ∗
(

k ∗ x− y
)

= x− γ b ∗ k ∗ x+ γ b ∗ y
=
(

e− γ b ∗ k
)

∗ x+ γ b ∗ y
= f (γ ) ∗ x+ γ b̃ . (37)

This can be interpreted as a convolutional layer with kernel

f (γ ) =
(

e− γ b ∗ k
)

and bias b̃ = b∗y, where e = [1, 0, . . . , 0]. This

means that ALISTA, with a Toeplitz matrix, can be interpreted as a

CNN only two trainable parameters per layer, γ , λ. In the setting of

FFT-CNN, the update rule can be formulated as

x− γ b ∗
(

k ∗ x− y
)

= F−1
(

(ê− γ b̂⊙ k̂)⊙ x̂
)

+ γ b̃ .

On the other hand, using FFT CNNs shows only a speed up if we

deal with large data sets, i.e. by evaluating high-resolution images,

or large filters, i.e., if m̃ is greater than log(n).
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TABLE 1 Properties of matrix K in both scenarios.

Case Dimensions rank(K) µ(K)

Gauss K ∈ R
32×128 32 0.6268

Circ. K ∈ R
128×128 32 0.6833

5 Numerical examples

In the following, we are going to present numerical

results achieved by the presented algorithms.1 We will

investigate two MMV scenarios. First, the measurements yl

are obtained with a random Gaussian matrix, and second

obtained by a redcued-rank random circular convolution.

In each scenario, we will enforce the Kronecker structure

and thus reducing the training cost by training only low

dimensional m × n matrices. Furthermore, in the convolutional

setting, the circular structure will be also enforced, thus

reducing the training costs even more. To have a fair

comparison, all algorithms are initialized with the analytical

weight matrix.

5.1 MMV setting

The training data are sampled from an unknown distribution

X and generated as follows. The signals x are generated for a given

number of blocks n, given block length d and a possibility if a block

x[i] is active or not, i.e., if ‖x[i]‖2 6= 0 or ‖x[i]‖2 = 0, called pnz

(probability of non-zeros). If a block is active, the elements of this

blocks are given by a normal Gaussian distribution with variance

σ 2 = 1. The measurements y are obtained by Equation (3), where

the elements of ǫ are given from a normal Gaussian distribution

with variance σ 2 = pnz · nx/ny · 10−SNRdB/10. SNRdB is the signal-

to-noise ratio given in decibel. We consider the following cases.

In each case, we generate x with d = 15, n = 128,m = 32, and

pnz = 10%.

Gaussianmeasurementmatrix: In the Gaussian setting, we sample

a m × n matrix K iid from a Gaussian distribution with variance

σ 2 = 1. We normalize the columns, s.t. D has orthonormal blocks,

as assumed in the beginning.

Circular convolution matrix: We construct the circular matrix

as follows. At first, we generate a random iid sampled vector ã

but set a certain amount of elements to zero. We define k =
ℜ
(

F−1ã
)

, and thus we can generate a rank deficient Matrix D =
K ⊗ Id, where K = circ(k). Thus, yl is obtained through a circular

convolution with symmetric k̂ = Fk. It is important for this

section to generate a rank deficient matrix to have compressive

observations. Otherwise, we would get a trivial problem if K,

respectively D, has full rank. Computing D = K ⊗ Id yields the

desired matrix. The properties of these two matrices can be found

in Table 1.

1 Code: https://github.com/janhau�en/Block-ALISTA.

5.2 Discussion

The results of the proposed methods can be found in Figure 1A

for the Gaussian Problem case in Figure 1B for the circular

case. We also consider the performance of a version of AMP

[33]. AMP can be viewed as an Bayesian extension of ISTA

with an additional Onsager correction term, before applying the

thresholding operator, i.e.,

v(k) = y− Dx(k) + b(k)v(k−1)

x(k+1) = ηα

(

x(k) + γDTv(k)
)

where b(k) = E

[

η′(x(k))
]

. Here, we will train only γ ,α, with the

same procedure as already discussed and chooseDT = BT . By using

BT instead of DT we are resembling Orthogonal AMP (OAMP)

[34], which follows a similar idea as ALISTA. In Ma and Ping [34],

B is chosen to be de-correlated with respect to K, i.e.,

tr(Iny − BTD) = 0.

The analytical weight matrix B satisfies also this condition.

Moreover, in Ma and Ping [34], the choice of different matrices is

also discussed. Thus, untrained ALISTA with correction term can

be viewed as a special case of OAMP. Note also, that the structure

of Trainable ISTA, proposed in Ito et al. [35], is also based on

OAMP and thus there are interrelations between AMP, unfolding

ISTA, and analytical ISTA.We refer to learned AMP with analytical

matrix as ALAMP. Different from Ma and Ping [34], we use the

ℓ2,1-regularizer, instead of only ℓ1-regularization, since we consider

the MMV setting. This is also discussed in [36, 37]. Every proposed

algorithm performs better, in terms of NMSE, as their untrained

original. Interestingly learned AMP, with analytical weight matrix

B, has a performance almost as good as LBISTA (untied) with only

a fraction of trainable parameters. This may come from the fact,

that block-soft thresholding is not the correct MMSE estimator

for the generated signals x and thus the correction of b(k) yields

the better estimation for x. As expected, we get almost the same

performance of ALBISTA and LBISTA CP (untied). In Figure 2A,

we show similar plots for the justification of Theorem 1, as also

seen in Liu and Chen [10]. In particular, Figure 2A shows that α(k)

γ (k)

is proportional to the maximal ℓ2,1-error over all training signals.

An interesting behavior, which carries over from the sparse case, is

that the learned ℓ2,1-regularization parameters approach zero, as k

increases. If α is close to zero, we approach a least-squares problem.

This means that after LBISTA found the support of the unknown

signal x∗ the algorithm consist only of the least squares fitting.

Figure 2B shows that the trained γ (k) are bound in an interval.

Note that, in contrast to Liu and Chen [10], Theorem 1 is based

on a more general assumption, onto the thresholding parameters.

One can take a suitable κ and obtains the upper bound for the ℓ2-

error and thus have convergence on the training set if the sparsity

assumptions are met. Figure 3 shows the training loss over the

training iterations for the results presented in Figure 1. One can see

that ALBISTA needs less training iterations as LBISTA CP (untied)

or LBISTA (untied) and thus less training data. The observed jumps

occur whenmoving from one layer to the next due to the layer-wise
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training, Algorithm 1. A layer is defined to be optimized if NMSE

converged within 1e− 5.

6 Conclusion

We proposed ALISTA for the block-sparse and MMV

case, important for many real-world applications, and derived

corresponding theoretical convergence and recovery results. We

relaxed the conditions for the regularization parameter and thus

obtained a more precise upper-bound after ALISTA is trained.

Nevertheless, this is still dependent on a sharp sparsity assumption

on the unknown signals. We investigated and derived a direct

solution for the analytical weight matrix in the general block

sparse setting as well for one convolutional scenarios. The last

FIGURE 1

NMSE in dB over layers/iterations, pnz = 10%, without noise. BISTA, and FastBISTA are evaluated with α = 1 and γ = 1/(1.01‖D‖2). (A) Gaussian
measurement problem. (B) Circular convolution problem.

FIGURE 2

Plots justifying results in Theorem 1. (A) Parameters and maximal ℓ2,1-error in the noiseless case on the problem with circular convolution matrix. (B)

Trained γ over layers/iterations on the problem with Gaussian measurement matrix.
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FIGURE 3

Training history for results shown in Figure 1A respectively Figure 1B. One can see that ALBISTA needs less training iterations than LBISTA CP (untied)

or LBISTA (untied). (A) Gaussian measurement problem. (B) Circular convolution problem.

section provides numerical results and includes interrelations

to AMP.
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