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In classical probability and statistics, one computes many measures of interest

from mean and standard deviation. However, mean, and especially standard

deviation, are overly sensitive to outliers. One way to address this sensitivity is by

considering alternative metrics for deviation, skewness, and kurtosis using mean

absolute deviations from themedian (MAD). We show that the proposedmeasures

can be computed in terms of the sub-means of the appropriate left and right sub-

ranges. They can be interpreted in terms of average distances of values of these

sub-ranges from their respective medians. We emphasize that these measures

utilize only the first-order moment within each sub-range and, in addition, are

invariant to translation or scaling. The obtained formulas are similar to the quantile

measures of deviation, skewness, and kurtosis but involve computing sub-means

as opposed to quantiles. While the classical skewness can be unbounded, both

the MAD-based and quantile skewness always lies in the range [−1, 1]. In addition,

while both the classical kurtosis and quantile-based kurtosis can be unbounded,

the proposedMAD-based alternative for kurtosis lies in the range [0, 1]. We present

a detailed comparison of MAD-based, quantile-based, and classical metrics for

the six well-known theoretical distributions considered. We illustrate the practical

utility of MAD-based metrics by considering the theoretical properties of the

Pareto distribution with high concentrations of density in the upper tail, as might

apply to the analysis of wealth and income. In summary, the proposedMAD-based

alternatives provide a universal scale to compare deviation, skewness, and kurtosis

across di�erent distributions.

KEYWORDS

computational statistics, mean absolute deviation, kurtosis, quantiles, distributions, data

analysis, skewness

1. Introduction

Classical statistics uses the standard deviation σ as the primary measure of dispersion. In

computing σ , we use the squares of the distances from the meanµ. As noted in [1], using the

L2 norm is convenient in differentiation, estimation, and optimization. The additive property

of variance σ 2 for independent variables is also cited as one of the prime reasons for using

the L2 norm in sampling theory and analysis of variance. A historical survey is given in [2].

At the same time, this normhas a number of disadvantages. For example, large deviations

from outliers contribute heavily to mean and standard deviation and could significantly

overestimate “typical” deviations. A natural alternative is to use the L1 norm and measure

absolute deviations from a central point such as the mean or median.

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1206537
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1206537&domain=pdf&date_stamp=2023-06-02
mailto:epinsky@bu.edu
https://doi.org/10.3389/fams.2023.1206537
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1206537/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Pinsky and Klawansky 10.3389/fams.2023.1206537

The idea of using the L1 norm is not new. The L1 norm was

considered independently by both Boscovitch and Laplace as early

as the eighteenth century. A historical survey using the L1 norm

is presented in [3, 4] and a survey of more recent results is given

in [1]. However, the L1 norm has not been widely used in statistics

and statistical modeling [1].

There is currently a renewed interest in using the L1 norm

for robust statistical modeling and inference [e.g., [5–9]]. Using

the L2 norm, the influence of outliers is even more magnified

when computing skewness and kurtosis as these computations

would involve raising means and standard deviation to 3rd and

4th powers. By contrast, using mean absolute deviations from the

mean or median (both denoted as MAD in literature) can be more

appropriate. Therefore, using the L1 norm, outliers will have less

influence on the results. Consequently, results from using theMAD

(mean absolute deviation) are more robust to outliers than those

obtained using the standard deviation, as is common in classical

statistics.

Throughout this paper, we will use MAD to denote the mean

absolute deviation from the median. We will use the MAD in

deriving alternative expressions for skewness and kurtosis. The

proposed MAD-based measures can be computed and interpreted

as sub-means of the appropriate left and right sub-ranges. The

obtained formulas are analogous to those used in statistics based

on quantiles.

The MAD-based alternative measures considered in this paper

use only the first-order moment. Consequently, they do not

overweight outliers as compared to classical measures. When

compared to the quantile metrics, they are more sensitive to

concentrations at the extreme ends of distributions. In addition,

these alternativemeasures havemany desirable characteristics, such

as scale (by absolute value) and/or shift-invariance.

We illustrate our results with several examples. One of the novel

contributions of this paper is the MAD-based alternative metric for

kurtosis. This metric is shown to be in the [0, 1] range, allowing

us to compare the data distribution with different numerical scales.

We present a detailed analysis of some well-known distributions.

We contrast the proposed MAD-based metrics with both quantile

and classical statistics metrics.

2. Organization of the paper

This paper is organized as follows. Section 3 introduces

notation and reviews some bounds on mean absolute deviation.

In Section 4, we focus on computing MAD, show how it can

be computed as a difference of corresponding sub-means, and

contrast the expression for MAD deviation with that of quartile

deviation. In Section 5, we introduce MAD-based skewness and

kurtosis. The MAD expression for skewness has been known

before. To our knowledge, the proposed expression for MAD-

based kurtosis has not been considered before. Both MAD-based

skewness and kurtosis have simple interpretations, and their

formulas are similar to quantile-based alternatives skewness and

kurtosis. Section 6 discusses the advantages of proposed measures

vs. corresponding classical and quantile-based measures. Section 7

focuses on computational considerations and shows how MAD-

based measures can be computed from some integrals related to

the underlying probability distributions. In Section 8, we provide a

detailed comparison for a number of distributions:

1. Continuous uniform (Section 8.1)

2. Normal (Section 8.2)

3. Log-normal (Section 8.3)

4. Exponential (Section 8.4)

5. Laplace (Section 8.5)

6. Pareto (section 8.6).

In Section 9, we present an example of applying our results

to analyze wealth distribution. In Section 10, we directly compare

MAD-based skewness and kurtosis for the above six distributions.

We conclude our paper with Section 11.

For completeness and clarity of presentation, we moved

some details of derivations into Appendices. In Appendix 1

(Section A1), we present summary tables for the above

distributions. In Appendices 2–4 (Sections A2–A4) we present

some computational details for log-normal, Laplace and Pareto

distributions, respectively.

3. Preliminaries

We start with preliminary definitions. Consider a real-valued

random variable X on a sample space � ⊆ R with density f (x),

finite mean E(X), and cumulative distribution function F(x). If X is

a discrete random variable, then � is some countable sample space,

and f (x) is the probabilitymass function (discrete density function).

We use µ = E(X) and σ to denote mean and standard

deviation ofX. Let F−1 be the quantile function defined by F−1(t) =
inf{x : F(x) ≥ t} with t ∈ [0, 1]. The median M, the quartiles

Q1 and Q3 are given by M = F−1(1/2), Q1 = F−1(1/4), and

Q3 = F−1(3/4), respectively.

For any a, we define the mean absolute deviation of X from a as

H(X, a) = E(|X − a|) =
∫

�

∣
∣x− a

∣
∣f (x) dx (1)

If a = µ, then H(X,µ) is the mean absolute deviation from the

mean µ. If we take a = M, then H(X,M) is the mean absolute

deviation from the median. Both of these are denoted as MAD

(mean absolute deviation) in the statistical literature, leading to

some confusion [1]. In this paper, we use MAD to denote mean

absolute deviations from the median. It can be interpreted as the

average distance of values of X to the medianM. We will writeH as

an abbreviation to H(X,M).

Let us start by establishing a lower and upper bound for H.

Since f (x) ≥ 0, is integrable and E(X) < ∞we have−|x−M|f (x) ≤
(x−M)f (x) ≤ |x−M|f (x) and, therefore, we obtain

H =
∫

�

∣
∣x−M

∣
∣f (x) dx ≥

∣
∣
∣
∣

∫

�

(x−M)f (x) dx

∣
∣
∣
∣
= |M − µ |

To establish an upper bound, we use the well-known fact that

H ≤ H(X, a) for any value of a [10–12]. In particular, if a = µ then

H ≤ E(|X − µ|). This means that the average absolute deviation

from themedianH is always less than or equal to the mean absolute

deviation from the mean E(|X−µ|). If we apply Jensen’s inequality
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E(g(X)) ≥ g(µ) to the convex function g(t) = t2 (corresponding to

σ 2) we immediately obtain an upper bound for H:

σ 2 = E
(

(X − µ)2
)

= E
(

g(|X − µ|)
)

≥ g
[

E(|X − µ|)
]

=
[

E(|X − µ|)
]2 ≥ H2

Of the three metrics to measure deviations, namely H, E(|X −
µ|) and σ , the MADmetric H has the lowest value.

Example 1: Consider two uniform random variables X and Y with

corresponding sample spaces �x and �y with n = 12 elements

given by

�X =
{

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
}

, and

�Y =
{

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 100
}

and the discrete density functions fx(·) = fy(·) = 1/n for any value

in �X and �Y , respectively. For variable X we have Mx = 6.5,

µx = 6.5, σx = 3.45, and Hx = 3 whereas for variable Y we

have My = 6.5, µy = 13.83, σy = 26.16, and Hy = 10.33. For

the purpose of illustration, let us define an outlier as any numeric

value v with |v − µ| > 2σ . Both random variables X and Y have

the same median Mx = My = 6.5, but the random variable Y has

a much higher outlier value y12 = 100. This much higher outlier

value results in a higher mean and a higher standard deviation

for Y than for X. The impact of this outlier value on H can be

immediately computed: it increases H from Hx = 3 to Hy = 10.33

by (y12 − x12)/n = 7.33. The change in standard deviations due

to this outlier would involve a much more complicated expression.

TheMAD-based deviationHY for Y is about four times higher than

theMAD-based deviationHx for X, whereas the standard deviation

σy for Y , is more than seven times greater than σx for X because of

the squaring of the deviations. To assess the impact of the outlier

y12 = 100, we compare Hx and Hy in terms of σx and σy. For

variable X we have Hx ≈ 0.87σx whereas for variable Y we have

Hy ≈ 0.39σy. The lower value of Hy as compared with σy for Y

indicates that Y has heavier tails compared to X.

The above example with an outlier illustrates one of the

advantages of using MAD instead of standard deviation as a

measure of variability. When computing the standard deviation

or variance of X, the outlier effect is amplified since we square

the differences (xi − µ). This effect of outliers is further amplified

in computing skewness or kurtosis where we need to raise these

differences to the 3rd or 4th power. By contrast, the proposed

MAD-based metrics for deviation, skewness, and kurtosis is easy

to interpret and express in terms of simple differences and ratios

of mean absolute deviations computed over corresponding sub-

ranges of X. As a result, these measures are less impacted by outliers

than the corresponding measures used in classical statistics.

Another advantage of using mean absolute deviation H instead

of standard deviation σ is that H is often simpler to interpret as

it is computed directly (without squaring). Consider the example

suggested in [1]: if X follows a uniform distribution in [0, 1] then

H = 1/4 and σ =
√
3/2 (for details see Section 8.1). The MAD

valueH = 1/4 is easy to interpret: it represents the average distance

of X from its medianM = 1/2. However, it is more difficult to find

an easy interpretation for standard deviation σ =
√
3/2.

4. MAD computation and
interpretation

Our approach is to replace standard deviation σ with mean

absolute deviation from the median H and to derive MAD-based

measures for skewness and kurtosis without resorting to higher

powers. The proposed measures are simple to interpret in terms of

corresponding sub-ranges.

We will find it convenient to use the indicator function for any

subset U ⊂ �

1U =

{

1 if x ∈ U

0 otherwise

Define the left sub-space of � by �L = {w ∈ � | x(w) ≤ M}
and right sub-space of � by �R = {w ∈ � | x(w) > M}. Also,
define XL = X1�L and XR = X1�R . Then, from the definition ofH

in Equation (1) we have

H =
∫

�

∣
∣x−M

∣
∣f (x) dx =

∫

�L
(M − x)f (x) dx

+
∫

�R
(x−M)f (x) dx = E(XR)− E(XL)(2)

From the above equation, it is easy to show that for any

constants b and c we have H(bX + c) = |b|H and, therefore, H

is shift invariant. In addition, from Equation (2), we can interpret

H as the difference of the sub-means of the right sub-range �R

and left sub-range �L. Since E(X) = E(XL) + E(XR), we have

H = E(X) − 2E(XL). Therefore, we can also interpret H as the

difference between the mean of X and twice the sub-mean of XL.

Let us now compare the mean absolute deviation H in

Equation (2) with quartile deviation (or semi-quartile range)HQ =
(Q3 − Q1)/2 which is used in descriptive statistics as a measure of

statistical dispersion [e.g., [13, 14]]: Both equations for H and HQ

have the same form under this correspondence:

E(XL) ⇐⇒ Q1/2 and E(XR) ⇐⇒ Q3/2 (3)

Example 2: Consider the same random variable X uniform in

� = {1, 2, . . . , 12} as in the previous example. For this sequence

n = 12, f (x) = 1/12, E(X) = M = 6.5, and H = 3. Let us re-

compute H using the left and right half sub-ranges. To that end,

we split � into left and right sub-spaces (�L and �R) around the

median:

� =
{

1, 2, 3, 4, 5, 6
︸ ︷︷ ︸

�L (left half)

, 7, 8, 9, 10, 11, 12
︸ ︷︷ ︸

�R (right half)

}

For the left sub-mean, we have E(X1�L ) = (1+ 2+ 3+ 4+ 5+
6)/12 = 1.75 and for the right sub-mean E(X1�R ) = (7+ 8+ 9+
10+11+12)/12 = 4.75. Thenwe computeH = E(XR)−E(XL) = 3.

Alternatively, we have H = E(X) − 2E(XL) = 3. To compute the

corresponding quantile-based metricHQ, we note that the first and

third quartiles for this sequence are Q1 = 3.75 and Q3 = 9.25.

Therefore, the quantile-based deviationHQ = (Q3−Q1)/2 = 2.75.
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5. MAD-based alternatives for
skewness and kurtosis

We now consider skewness and kurtosis. In classical statistics,

skewness is defined as a measure of the asymmetry of the

probability distribution around its mean. For a survey, see [15].

One of the most common measures is the moment coefficient of

skewness (or skew) S, defined as the third standardized moment in

terms of mean µ and standard deviation σ , namely,

S =
E(X − µ)3

σ 3
(4)

Just like in the computation of variance, this definition is

sensitive to outliers. We will define MAD-based alternatives for

skewness and kurtosis without resorting to the computation of

higher powers. In this way, our proposed expressions for skewness

and for kurtosis will be more resilient to outliers.

We proceed as follows. From Equation (2), the expression for

H can be written as follows:

H = E
(

(M − X)1�L

)

+ E
(

(X −M)1�R

)

(5)

The first term is the contribution to H from X1�L whereas the

second term is the contribution toH from X1{�R . Our MAD-based

alternative AM for skewness can be defined as the (normalized)

difference of these contributions as follows:

AM =
E

(

(X −M)1�R

)

− E
(

(M − X)1�L

)

H
(6)

The above expression immediately implies that theMAD-based

skewness is both shift and translation invariant.

From Equation (2), we can re-write the expression for AM in

Equation (6) as follows:

AM =
E(X)−M

H
(7)

Therefore, the MAD-based metric AM for skewness coincides with

Groeneveld and Meeden’s skewness coefficient [16]. The MAD-

based skewness in Equation (7) has a simple interpretation as the

ratio of two distances: the numerator E(X) − M is the (signed)

distance between the mean and the median, whereas the numerator

H is the average distance of values in X to the median. It is

more difficult to attach a simple and intuitive interpretation to the

classical skewness S in Equation (4).

Let us compare the MAD-based skewness from the above

Equation (7) with the non-parametric skewness given by (E(X) −
M)/σ . Since H ≤ σ , we have the following relationship between

these measures:

Non Parametric Skewness =
E(X)−M

σ
≤ AM

Next, we derive the upper and lower bound for AM . Since

E
(

(X −M)1�L

)

< 0 and E
(

(X −M)1�R

)

> 0 from Equations (5)

and (6) we easily obtain−1 ≤ AM ≤ 1.

The definition of MAD-based skewness in Equation (6) has

been suggested before [e.g., [17]]. However, our results for the

representation ofH would allow us to derive simple computational

expressions for MAD-skewness and compare the obtained results

with skewness estimates used in quantile statistics.

To start, let us re-write our definition of AM as follows. From

Equation (6), we obtain

AM =
(

E(XR)−M/2
)

−
(

M/2− E(XL)
)

E(XR)− E(XL)
(8)

We can now compare MAD-based skewness AM from

Equation (8) with the quantile skewness AQ often used in

descriptive statistics [e.g., [18, 19]]:

AQ =
(Q3 −M)− (M − Q1)

Q3 − Q1
=

(Q3/2−M/2)− (M/2− Q1/2)

Q3/2− Q1/2
(9)

where Qi denote the corresponding quartiles. The expressions

in Equations (8) and (9) have the same form under the same

correspondence as before in Equation (3). The numerator in

Equation (9) for AQ is the difference between the average of

upper and lower quartiles and the median and the denominator

is the quartile deviation HQ. By contrast, in Equation (8) for AM ,

the numerator is the difference between the concentrations of

probability mass for the left and right halves and the half median,

whereas the denominator is the mean absolute deviation H.

Finally, note that from Equation (9) we have

AQ = −1+
2(Q3 −M)

Q3 − Q1
≥ −1 and AQ = 1−

2(M − Q1)

Q3 − Q1
≤ 1

Therefore, both MAD-based skewness AM and quantile-based

skewness AQ are always in the range [−1, 1]. By contrast, the

classical skewness S can be unbounded.

We now turn our attention to kurtosis. Recall that classical

Pearson’s kurtosis K is defined as [20]:

K =
E(X − µ)4

σ 4
(10)

To define an analogy to kurtosis using absolute deviations from

the median, we find it useful to interpret kurtosis as suggested

in [21]. We consider a standardized variable Z = (X − µ)/σ and

letW = Z2. Then E(W) = 1 and

Var(W) = E(W2)− E2(W) = K − 1 H⇒ K = Var(W)+ 1

Note that since Z is normalized and dimensionless, W =
Z2 is also automatically dimensionless. Therefore, Var(W) is also

dimensionless. The kurtosis K can be viewed then as related to

the dispersion of W = Z2 around its mean 1. Equivalently, K is

associated with the dispersion of Z around −1 and 1 [21]. This

implies that kurtosis is associated with the concentration of X

around points µ − σ and µ + σ . High values of kurtosis can

occur in a peaked unimodal distribution, in a dual-peaked bi-modal

distribution, or with the concentration of probability in the tails of

the distribution.

Pursuing this analogy, we want to define MAD-based kurtosis

to measure the concentration of X around Q1 (playing the role of

µ − σ ) and around Q3 (playing the role of µ + σ ) as in classical

statistics.

Consider �L and �R defined above. We measure the

concentration of probability in �L around Q1 by E
(∣
∣X − Q1

∣
∣1�L

)

.
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Similarly, we measure the concentration of probability in �R

around Q3 by E
(∣
∣X − Q3

∣
∣1�R

)

. We define MAD-based alternative

TM for kurtosis by normalizing the total concentration by MAD:

TM =
E

(∣
∣X − Q1

∣
∣1�L

)

+ E
(∣
∣X − Q3

∣
∣1�R

)

H
(11)

From the above definition, it is easy to show that MAD-based

kurtosis TM is scale and translation invariant just as MAD-based

skewness AM .

The above expression for TM in Equation (11) can be

interpreted as follows. From the definition of the median, F(XL) =
F(XR) = 0.5. Therefore, the term E(|X − Q1|1{X≤M}) in

Equation (11) can be interpreted as one half of the average distance

dL of values ofX
L fromQ1. Similarly, the term E(|X−Q3|1{X>M}) in

Equation (11) can be interpreted as one half of the average distance

dR of values of X
R fromQ3. The numerator in Equation (11) is then

the average of these distances, namely (dL + dR)/2.

Therefore, the proposed MAD-based alternative TM for

kurtosis in Equation (11) has a simple and intuitive explanation as

the ratio of two distances: the numerator is the average of distances

from values in �L and �R from Q1 and Q3, respectively, whereas

the denominator H is the average distance of values of � to its

median M. It is more difficult to provide an intuitive explanation

of the classical kurtosis K in Equation (10).

Let us now establish some simple bounds for TM . Recall that

the median minimizes the sum of absolute deviations [11, 12].

Since Q1 is the median for XL and Q3 is the median for XR, we

obtain E(|X − Q1|1�L ) ≤ E((M − X)1�L ) and E(|X − Q3|1�R ) ≤
E((X −M)1�R ). Therefore, from (11) we can immediately obtain:

0 ≤ TM ≤
E

(

(M − X)1�L

)

+ E
(

(X −M)1�R

)

H
= 1

Unlike Pearson’s kurtosis K that can be unbounded [22], the

proposed MAD-based alternative TM for kurtosis is always in the

range 0 ≤ TM ≤ 1. This could allow for more meaningful

comparisons of data.

The definition of MAD-based measures to measure tails has

been suggested before [17]. In that work, it was suggested to

use E
(

(M − X)1�L

)

/H and E
(

(X −M)1�R

)

/H as measures of

fat tails. By contrast, our suggestion for MAD-based kurtosis

in Equation (11) is to use the mean absolute deviations of left

and right sub-spaces from their corresponding medians Q1 and

Q3, not from the median M. This would allow us to provide

additional interpretation for the proposed kurtosis and to compare

the proposed formula for TM with quantile kurtosis TQ suggested

by Moors [21].

To proceed, let us re-write TM in terms of sub-means of

corresponding sub-means. We consider the following sub-spaces:

�LL = {w ∈ � | x(w) ≤ Q1}, �LR = {w ∈ � |Q1 ≤ x(w) ≤ M},
�RL = {w ∈ � |M ≤ x(w) ≤ Q3}, �RR = {w ∈ � | x(w) ≥ Q3}

and define

XLL = X1�LL , XLR = X1�LR ,

XRL = X1�RL , XRR = X1�RR

From the above definitions, we have

E(|X − Q1|1{X≤M}) = E(XLR)− E(XLL),

E(|X − Q3|1{X>M}) = E(XRR)− E(XRL)

and therefore, we can re-write our expression (11) for kurtosis TM

as follows

TM =
E(XLR)− E(XLL)+ E(XRR)− E(XRL)

E(XR)− E(XL)
(12)

Moors [21] suggested a quantile-based formula for kurtosis in

terms of the octiles O1, . . . ,O7 as follows:

TQ =
(O7 − O5)+ (O3 − O1)

(O6 − O2)
(13)

The expressions in Equations (12) and (13) have the same form

under the following correspondence:

E(XLR)− E(XLL) ⇐⇒
(O3 − O1)

2
,

E(XRR)− E(XRL) ⇐⇒
(O7 − O5)

2
,

E(XR)− E(XL) ⇐⇒
(O6 − O2)

2

Our justification for (12) is analogous to the justification

for a quantile-based alternative to kurtosis in (13) in terms

of octiles suggested in [21]. The terms in the numerator

of TQ are large if large probability mass is concentrated in

O2 and O6 corresponding to large dispersion around µ −
σ and µ + σ . The terms in the numerator of TM . are

small if small probability mass is concentrated in Q1 and

Q3. The difference between our formula in (12) and the

quantile-based formula in (13) is that we measure these masses

in terms of “partial” means E(XLL), E(XLR), E(XRL) and

E(XRR) instead of octiles. This is illustrated in the following

example.

Example 3: As before, consider a random variable X with uniform

probability in � = {1, 2, . . . , 12 }. The corresponding sub-ranges

are shown below:

� =
�LL (1st quarter)

︷ ︸︸ ︷

1, 2, 3 ,

�LR (2nd quarter)
︷ ︸︸ ︷

4, 5, 6
︸ ︷︷ ︸

�L (left half)

,

�RL (3rd quarter)
︷ ︸︸ ︷

7, 8, 9 ,

�RR (4th quarter)
︷ ︸︸ ︷

10, 11, 12
︸ ︷︷ ︸

�R (right half)

For this sequence, we compute H = 3. This distribution is

symmetric and S = AM = AQ = 0. We will therefore focus

on MAD-based kurtosis TM . The median for the left sub-range

�L is Q1 = 3.5 and we compute H(XL,Q1) = 0.75. The value

H(XL,Q1) = 1.5 is one half of the average distance dL from values

in �L to its median Q1. Similarly, the median for the right sub-

range �R is Q3 = 9.5 and we compute H(XR,Q3) = 0.75. The

value H(XR,Q3) = 1.5 is one half of the average distance dR from

values in �R to its median QR. Therefore, the term H(XL,Q1) +
H(XR,Q3) = (dL + dR)/2 = 0.75 is the average of the distances

from sub-ranges �L and �R to their respective median. From

Equation (11) the MAD-based kurtosis TM = 0.5. It has a simple
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interpretation as the ratio of the average distances (dL + dR)/2

to H which is the average distance of � to its median M = 6.5.

Let us re-compute TM using sub-means. We have E(XLL) = 0.5,

E(XLR) = 1.25, E(XRL) = 2 and E(XRR) = 2.75. Applying

Equation (12) we have TM = 0.5. By contrast, the standard

statistical kurtosis is K = 1.78. Let us compare the MAD-based

kurtosis TM with quantile-based kurtosis TQ in formula (13). To

compute TQ, we compute the octiles O1, . . . ,O7 for our sequence

(using midpoint for interpolation): O1 = 2.375 O2 = 3.75, O3 =
5.125, O4 = 6.5, O5 = 7.875, O6 = 9.25 and O7 = 10.625.

Then, the quantile formula for kurtosis from Equation (13) gives

us TQ = 1.

6. Discussion

One of the reasons to use quantile-based metrics for data is that

they are resistant to outliers. One of the measures of this resistance

is the sample breakdown point - the proportion of observations that

can be altered that can result in statistics being arbitrarily large or

small. ThemedianM has a breakpoint of 50%. This means that 50%

of the points must be “outliers” before the median can be moved

outside the range of outliers [9, 23]. By contrast, the breakpoint

of the mean is 0%. This means that a single observation would

change it.

The computation of MAD-based measures for deviation,

skewness, and kurtosis involves computing the corresponding sub-

spaces. A single change in observation value would change these

measures. However, these changes will not be as dramatic as

changes for the classical measures.

By contrast, the MAD-based measures are determined by the

corresponding sub-means. Any change in values would change

some of these, and this, in turn, would result in different

values for MAD-based measures for each of the sub-spaces.

Note that a single observation value change would change the

corresponding partial mean without affecting other sub-means. By

contrast, a single change in observation would change the mean

and result in changes for the corresponding moments, affecting

both skewness and kurtosis. However, because the proposed

MAD-based measures involve only the first moment whereas

classical skewness and kurtosis involve the 3rd and 4th moments,

respectively, we would expect that MAD-based measures would

change by a smaller percentage than the corresponding classical

measures.

For illustration, consider the MAD-based alternative TM

for kurtosis. It can capture concentrations in the tails more

accurately than can the quantile kurtosis TQ. For example, if the

largest 10% of values in X increase in value then this cannot

be captured by TQ since octiles will not change. Similarly, if

the smallest 10% of values in X decrease, then again octiles

will not change resulting in the same value for octile kurtosis.

By contrast, the proposed MAD-based formula for kurtosis

uses sub-means of appropriate sub-ranges and can, therefore,

more accurately reflect the impact of such larger or smaller

values.

Schematically, we can indicate this as follows:

� =

�LL (1st quarter)
︷ ︸︸ ︷

. . .O1 . . . Q1

�LR (2nd quarter)
︷ ︸︸ ︷

. . .O3 . . .
︸ ︷︷ ︸

�L (left half)

,

M,

�RL (3rd quarter)
︷ ︸︸ ︷

. . .O5 . . . Q3

�RR (4th quarter)
︷ ︸︸ ︷

. . .O7 . . .
︸ ︷︷ ︸

�R (right half)

If we consider any changes in values in quarter sub-ranges

�LL, �LR, �RL or �RR that do not change the octiles, then the

quantile kurtosis TQ would remain the same. By contrast, these

changes in values will change the corresponding sub-means and,

therefore the value of MAD-based kurtosis TM . Therefore, MAD-

based kurtosis TM can capture changes in probability mass in the

tails more accurately than using octiles in TQ.

By the same argument, it is easy to show that quantile skewness

AQ and quantile deviations HQ would remain unchanged, whereas

the mean absolute deviation from median H and MAD-based

skewness AM would change.

The proposed MAD-based alternative measures for deviation,

skewness, and kurtosis provide additional tools for data analysis.

These measures are less sensitive to outliers in that they change by

a smaller percentage as compared to the changes in the classical

statistics metrics.

At the same time, they do not ignore outliers as quantile-

based measures do. In situations where classical, MAD-based, and

quantile-based kurtosis could be computed, MAD-based kurtosis

TM has the advantage of 0 ≤ TM ≤ 1, whereas both the classical

kurtosis S could be unbounded. For some distributions such as

log-normal, the quantile-based kurtosis could be unbounded as

well (see Section 8.3). Using the proposed MAD-based alternative

measure for kurtosis with a value that is always in [0, 1] provides a

potentially useful tool to directly compare distributions in terms of

the concentration of data in the tails.

As one potentially important application of these

proposed measures considers the national income and wealth

distributions [24]. It is widely recognized that there are

disproportionate concentrations of income and wealth at the

highest quantile. As the above example illustrates, the MAD-based

metrics appear to have the ability to characterize concentrations

in the upper-most quantiles in a manner that is not possible

with the classical and quantile-based methods. This ability likely

follows from the property that the MAD-based metrics are

sensitive to excessive concentrations in the upper-most quantile,

while the quantile-based metrics are not. At the same time, the

classical metrics that use the third and fourth moment may overly

exaggerate the impact of these concentrations in the upper-most

quantile. The foregoing analysis demonstrates that these alternative

MAD-based metrics would be able to capture the detailed behavior

that is engendered by the concentrations of extreme income and

wealth at the highest range of distribution, namely the highest

quantile. We illustrate this by a detailed example in Section 9.
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7. Computational considerations

In the computation of quantile-based measures, we need to

compute the quantiles. These can be obtained from the inverse

of the cumulative distribution function F−1(p). The quartiles Q1,

M and Q3 are obtained as Q1 = F−1(1/4), M = F−1(1/2) and

Q3 = F−1(3/4) whereas the remaining octiles are Oi = F−1(i/8)

for i = 1, 3, 5, 7. Then the quantile-based measures for deviation,

skewness, and kurtosis are

HQ =
Q3 − Q1

2
, AQ =

Q3 + Q1 − 2M

(Q3 − Q1)
,

TQ =
(O7 − O5)+ (O3 − O1)

(O6 − O2)
(14)

If the distribution is symmetric, the skewness AQ = 0 and for

octiles we haveO1 = 2M−O7,Q1 = 2M−Q3, andO3 = 2M−O5.

In particular, (O7 − O5) = (O3 − O1). In this case, we only need to

compute four quantiles, namelyM, O5, Q3 and Q7 to obtain

HQ = Q3 −M and TQ =
2(O7 − O5)

(Q3 −M)
(15)

Note that the quantile-basedmeasures are expressed in terms of

differences of corresponding quantiles. This implies, in particular,

that the above quantile-based measures in Equation (14) are shift-

invariant.

In the computation of MAD-based performance measures, we

need to compute the corresponding sub-means. To facilitate this

computation, consider the following auxiliary integral:

I(z) =
∫

t≤z
tf (t) dt

If we can evaluate the above integral for I(Q1), I(M), and I(Q3)

then we can compute MAD-based performance measures from

these integrals and the mean value E(X). Specifically, E(XL) = I(M)

and E(XR) = E(X) − I(M). For the other sub-means, we have

E(XLL) = I(Q1), E(X
LR) = I(M)− I(Q1), E(X

RL) = I(Q3)− I(M),

and E(XRR) = E(X)− I(Q3). From this, we obtain the following for

MAD-based deviation, skewness and kurtosis:

H = E(X)− 2I(M), AM =
E(X)−M

E(X)− 2I(M)
,

TM =
E(X)+ 2I(M)− 2I(Q1)− 2I(Q3)

E(X)− 2I(M)
(16)

In some situations, it is easier to evaluate the following integral

J(z) =
∫

t≥z
tf (t) dt

Since J(z) = E(X) − I(z), we can compute MAD-based

deviation, skewness, and kurtosis as follows:

H = 2J(M)− E(X), AM =
E(X)−M

2J(M)− E(X)
,

TM =
2J(Q1)+ 2J(Q3)− 2J(M)− E(X)

2J(M)− E(X)
(17)

The computation of MAD-based performance measures

requires the computation of I(Q1), I(M) and I(Q3) in addition

to computing the expected value E(X). By contrast, in classical

statistics, to compute skewness, we need to compute expectation

E(X), standard deviation σ , and the third moment E(X3). To

compute Pearson’s kurtosis would require us also to compute

the fourth moment E(X4). Therefore, the computational cost of

computing these measures is not higher than that of computing

Pearson measures of classical statistics. Moreover, unlike the

classical measures, the computation of MAD-based measures

requires only the existence of first-order moments. For example,

consider Pareto distributions with parameter α (see Section 8.6).

For such distributions, the mean is defined for α > 1, variance is

defined for α > 2, and kurtosis is defined for α > 3. By contrast,

MAD-based measures would require only α > 1. Therefore, for

1 < α < 2 we can only useMAD-based or quantile-basedmeasures

to analyze deviation, skewness, and kurtosis.

On the other hand, we should note that there are situations

where classical kurtosis K or MAD kurtosis TM does not exists

but the quantile-based kurtosis TQ exists and is finite. An example

is presented in [21]. If X follows the Cauchy distribution, its

expected value, variance, and kurtosis are undefined. However, the

quantile-based kurtosis TQ is finite with TQ = 2.

In most situations where classical, MAD-based, and quantile-

based kurtosis could be computed, MAD-based kurtosis TM has

the advantage of 0 ≤ TM ≤ 1 whereas the classical kurtosis K

can be unbounded. For some distributions such as log-normal,

the quantile-based kurtosis TQ could also be unbounded (see

Section 8.3 below for details). Using a MAD-based measure TM

for kurtosis with a value in 0 ≤ TM ≤ 1 allows an additional

comparison of all distributions in terms of their tails.

8. Comparisons for distributions

We now turn our attention to some well-known distributions.

We will compute MAD-based alternatives for deviation, skewness,

and kurtosis and compare them with the corresponding quantile-

based and classical metrics for the following well-known

probability distributions: continuous uniform, normal, log-

normal, exponential, Laplace, and Pareto distributions. A summary

table is provided in Section 1.

8.1. Continuous uniform distribution

Suppose X is distributed according to a uniform distribution in

[a, b]. Its density f (x) = 1/(b − a) and its cumulative distribution

function F(x) = (x−a)/(b−a). For this distribution, E(X) = M =
(a+ b)/2, σ = (b− a)/2

√
3 and K = 9/5. Since this distribution is

symmetric, the skewness measures are 0.

The quantiles are computed from from F−1(p) = (1−p)a+pb.

In particular,Q1 = (3a+b)/4,M = (a+b)/2 andQ3 = (a+3b)/4.

Since this distribution is symmetric, we compute the octiles O1 =
(7a+b)/8,O3 = (5a+3b)/6,O5 = (3a+5b)/8 andO7 = (a+7b)/8.

To compute MAD-based measures, consider the following integral

J(z) =
∫ z

a
tf (t) dt =

z2 − a2

2(b− a)
, a ≤ z ≤ b
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TABLE 1 A comparison of measures for uniform distribution.

Measure Classical MAD-based Quantile-based

Deviation σ =
(b− a)

2
√
3

H =
(b− a)

4
HQ =

(b− a)

2

H < σ < HQ

Skewness S = 0 AM = 0 AQ = 0

Kurtosis K = 1.8 TM = 0.5 TQ = 1

TM < TQ < K

We have J(Q1) = (Q2
1−a2/2(b−a), J(M) = (M2−a2)/2(b−a)

and J(Q3) = (Q2
3 − a2)/2(b − a). From this using Equation (17)

and Equation (15) we compute MAD-based and quantile-based

measures for deviation and kurtosis. The results are summarized

in the Table 1.

8.2. Gaussian distribution

Suppose X is distributed according to normal distribution

N(µ, σ 2) with density f (x) and cumulative distribution function

F(x):

f (x) =
1

σ
√
2π

e−(x−µ)2/2σ 2
,

F(x) = 8

(
x− µ

σ

)

=
1

σ
√
2π

∫ x

−∞
e−(t−µ)2/2σ 2

dt

where 8(·) denotes the cumulative distribution of the standard

normal. Let Q1 and Q3 denote the first and third quartiles of

the standard normal distribution. This distribution is symmetric;

therefore, all skewness measures are 0.

The MAD-based, quantile-based, and classical measures are

invariant under shifts. Skewness and kurtosis are also invariant

under scaling whereas for MAD-based deviation, H(X/σ ) =
(1/σ )H(X). Therefore, we can consider the standard normal

distribution for X and multiply the obtained value for H(X) by 1/σ .

The quartiles for this distribution Q3 = −Q1 ≈ 0.67 whereas

for the octiles we have O5 = −O3 ≈ 0.32, Q3 = −Q1 ≈ 0.68

and O7 = −O1 ≈ 0.15. To compute MAD-based MAD-based

measures, consider the following integral

J(z) =
∫ ∞

z
tf (t) dt =

1
√
2π

∫ ∞

z
te−t2/2 dt =

1
√
2π

e−z2/2

Since Q3 = −Q1 ≈ 0.67 we have J(Q1) = J(Q3) =
exp(−Q2

3/2)/
√
2π and J(0) = 1/

√
2π . Therefore, from the above,

using Equation (17) and Equation (15) we compute MAD-based

and quantile-basedmeasures for deviation and kurtosis. The results

are summarized in Table 2.

8.3. Log-normal distribution

Suppose X is distributed according to log-normal distribution

with parameters µ ∈ (∞,+∞) and σ 2 (σ > 0). Its density f (x)

and its cumulative distribution function F(x) are given by

f (x) =
1

xσ
√
2π

e−(log x−µ)2/2σ 2
, and F(x) = 8

(
log x− µ

σ

)

where 8(·) is the cumulative distribution function of the standard

normal.

We will use the apostrophe ′ to distinguish the performance

measures of X in the log-normal distribution from those of the

underlying normal distribution. Therefore, σ ′ will denote the

standard deviation ofX,µ′ will denote the mean ofX etc. As before,

let Oi denote the octiles of the standard normal and let O′
i denote

the octiles of the log-normal distribution. Then O′
i = eµ+σOi .

In particular, the log-normal median is M′ = eµ and the log-

normal mean is µ′ = eµ+σ 2/2. Similarly, let Q1 and Q3 denote

the first and third quartiles for the standard normal distribution

and let Q′
1 and Q′

3 denote the corresponding quartiles for the log-

normal distribution. Consider the following integral (derived in

Appendix A2)

I(z) =
∫ z

0
tf (t) dt = µ′8

(
log z − µ

σ
− σ

)

In particular, I(Q′
1) = µ′(1−8(σ −Q1), I(M

′) = µ′(1−8(σ ))

and I(Q′
3) = µ′(1 − 8(σ − Q3)). Therefore, from the above,

using Equation (17) and Equation (15) we compute MAD-based

and quantile-based measures for deviation and kurtosis. Note that

we can express mean absolute deviation H′ in terms of the error

function erf(·). Using erf(x) = 28(x
√
2) − 1 we obtain H′ =

2µ′ erf(σ/
√
2).

In Appendix A2, we show the following relationships between

MAD-based and quantile-based measures:

H′
Q < H′ ≤ σ ′, A′

M ,A′
Q < S′, T′

M < T′
Q < K ′

We summarize our results in Table 3. In addition, in

Appendix A2, we examined the asymptotic behavior of these

measures for σ 7→ 0 and for σ 7→ ∞. For σ 7→ 0 we have

A′
M 7→ 0, T′

M 7→ 0.59, A′
Q 7→ 0 and T′

Q 7→ 1.23. Therefore,

for σ 7→ 0, the MAD-based and quantile-based measures for

skewness and kurtosis converge to the corresponding values for

normal distribution. On the other hand, for σ 7→ ∞
we have: A′

M 7→ 1, T′
M 7→ 1, A′

Q 7→ 1 and T′
Q 7→ ∞. Finally,

note that for log-normal distribution both quantile kurtosis T′
Q

and classical kurtosis K ′ are unbounded whereas the MAD-based

kurtosis T′
M always satisfies 0 ≤ T′

M ≤ 1. This allows us to compare

distribution in the tails across different distributions. The results

are summarized in Table 3.

8.4. Exponential distribution

Suppose X is distributed according to an exponential

distribution with rate λ > 0 [22]. Its density f (x) = λe−λx and its

cumulative distribution function F(x) = 1− e−λx with x ∈ [0,∞).

Its mean E(X) = 1/λ and its standard deviation σ = 1/λ. The

quantiles of exponential distribution are F−1(p) and are given by

− log(1 − p)/λ. In particular, Q1 = log(4/3)/λ, M = log(2)/λ
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TABLE 2 A comparison of measures for normal distribution.

Measure Classical MAD-based Quantile-based

Deviation σ H =
√

2

π
σ ≈ 0.80 σ HQ = Q3 σ ≈ 0.68 σ

HQ < H < σ

Skewness S = 0 AM = 0 AQ = 0

Kurtosis K = 3 TM = −1+ 2e−Q2
3/2 ≈ 0.59 TQ =

O7 − O5

Q3
≈ 1.23

TM < TQ < K

TABLE 3 A comparison of measures for log-normal distribution.

Measure Classical MAD-based Quantile-based

Deviation σ ′ =
√

(eσ
2 − 1)e2µ+σ 2

H′ = eµ+σ 2/2
(

28(σ )− 1
)

H′
Q = eµ (eσQ3−e−σQ3 )

2

H′
Q < H′ < σ ′

Skewness S′ = (eσ
2 + 2)

√

eσ
2 − 1 A′

M = (eσ
2/2−1)

eσ
2/2(28(σ )−1)

A′
Q = −1+ 2eσQ3

(eσQ3+1)

0 < A′
M ,A′

Q < S′ (unbounded)

Kurtosis K ′ = e4σ
2 + 2e3σ

2
T′
M = NM (σ ,Q1 ,Q3)

28(σ )−1
T′
Q = NQ(σ ,O5 ,O7)

(eσQ3−e−σQ3 )

+3e2σ
2 − 6

T′
M < T′

Q < K ′ (unbounded) (bounded) 0 < TM < 1 (unbounded)

NM(σ ,Q1 ,Q3) = −1− 28(σ )+ 28(σ − Q1)+ 28(σ − Q3)

NQ(σ ,O5 ,O7) = (e−σO5 − e−σO7 )+ (eσO7 − eσO5 )

and Q3 = log(4)/λ whereas the octiles are O1 = log(8/7)/λ,

O3 = log(8/5)/λ, O5 = log(8/3)/λ and O7 = log(8)/λ.

To compute MAD-based measures, we compute (using

integration by parts) the following integral

I(z) =
∫ z

0
tf (t) dt =

∫ z

0
λte−λt dt =

1− (1+ λz)e−λz

λ

We compute I(Q1) = (1 − 3 log(4/3))/4λ, I(M) = (1 −
log 2)/2λ and I(Q3) = (3− log 4)/4λ. Then from the above results

and from Equations (16 a)nd (15) we compute MAD-based and

quantile-based measures for deviation, skewness, and kurtosis. The

results are summarized in the Table 4.

8.5. Laplace distribution

Suppose X is distributed according to Laplace distribution with

location µ and scale b. Its density f (x) and cumulative distribution

function F(x) are given by Feller [22]

f (x) =
1

2b
e−|x−µ|/b and F(x) =

{
1
2 e

(x−µ)/b, if x ≤ µ

1− 1
2 e

−(x−µ)/b, if x ≥ µ

This distribution of X is symmetric around µ. its median M

and mean E(X) are both the same with E(X) = M = µ. Its

standard deviation σ = b
√
2. Since bothMAD-basedmeasures and

quantile-based measures are shift-invariant, we let µ = 0.

The quantiles are easily computed as F−1(p). In particular,

Q1 = −b log 2 and Q3 = b log 2. whereas for the octiles we have

O1 = −2b log 2, O3 = b log 3 − 2b log 2, O5 = 2b log 2 − b log 3,

and O7 = 2b log 2.

To compute the MAD-based measures, we compute the

integral J(z) (derived in Appendix A3):

J(z) =
∫ ∞

z
xf (x) dx =









(b+ z)

2
e−z/b, z ≥ 0

(b− z)

2
ez/b, z < 0

We compute J(Q1 = b(1 + log 2)/4, J(M) = b/2 and J(Q3) =
b(1+ log 2)/4. Then from Equations (17) and (15) we can compute

MAD-based and quantile-based measures for deviation, skewness,

and kurtosis. We summarize our results in Table 5.

We note that just as for classical kurtosis, the MAD-based

kurtosis for Laplace distribution is greater than the MAD-based

kurtosis for Normal distribution. This is because the Laplace

distribution has fatter tails compared to the Normal distribution.

8.6. Pareto distribution

SupposeX is distributed according to Pareto Type I distribution

distribution with shape α > 0 and scale β > 0. Its density f (x) and

its cumulative distribution function F(x) are given by

f (x) =







αβα

xα+1
x ≥ β

0 x < β

and F(x) =









1−
(

β

x

)α

x ≥ β

0 x < β

This distribution has infinite mean µ for α ≤ 1, undefined

variance σ 2 for α ≤ 2, undefined skewness S for α ≤ 3 and

undefined (excess) kurtosis K for α ≤ 4. The quantiles are

computed from F−1(p) and are given by β/(1 − p)1/α . For Q1, M
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TABLE 4 A comparison of measures for exponential distribution.

Measure Classical MAD-based Quantile-based

Deviation σ =
1

λ
H =

log 2

λ
≈ 0.69σ HQ =

log 3

2λ
≈ 0.55σ

H < HQ < σ

Skewness S = 2 AM = −1+
1

log 2
≈ 0.44 AQ = −1+

2 log 2

log 3
≈ 0.26

AQ < AM < S

Kurtosis K = 9 TM = 3−
3 log 3

2 log 2
≈ 0.62 TQ = 1+

log (7/5)

log 3
≈ 1.31

TM < TQ < K

TABLE 5 A comparison of measures for Laplace distribution.

Measure Classical MAD-based Quantile-based

Deviation σ = b
√
2 ≈ 1.41b H = b HQ = b log 2 ≈ 0.69b

HQ < H < σ

Skewness S = 0 AM = 0 AQ = 0

Kurtosis K = 6 TM = log 2 ≈ 0.69 TQ =
log 3

log 2
≈ 1.58

TM < TQ < K

TABLE 6 A comparison of measures for Pareto distribution.

Measure Classical MAD-based Quantile-based

Deviation σ = β

(α−1)

√
α

α−2
H = βα( α√2−1)

(α−1)
HQ = β( α√4− α

√
4/3)

2

HQ < H < σ (α > 2) (α > 1)

Skewness S = 2(1+α)
(α−3)

√

α−2
α

AM = −1+
α√2

α( α√2−1)
AQ = −1+ 2( α√4− α√2)

α√4− α
√
4/3

AQ < AM < S (α > 3)

Kurtosis K = 6(α3+α2−6α−2)
α(α−3)(α−4)

TM =
NM(α)

2( α
√
2− 1)

TQ =
NQ(α)

α
√
4− α

√
4/3

TM < TQ < K (α > 4)

NM(α) = 3 α
√
4/3+ α

√
4− 2 α

√
2− 2

NQ(α) = ( α
√
8/5− α

√
8/7)+ ( α

√
8− α

√
8/3)

and Q3 we have Q1 = β α
√
4/3, M = β

α
√
2 and Q3 = β

α
√
4. For

the octiles we have O1 = α
√
8/7, O3 = α

√
8/5, O5 = α

√
8/3 and

O7 = α
√
8. To compute MAD-based measures, we compute the

integral for any z >= β and α > 1

J(z) =
∫ ∞

z
xf (x) dx = −

αβα

(1− α)
x−α+1|∞z =

αz

(α − 1)

(
β

z

)α

=
αz(1− F(z))

(α − 1)

Since 1 − F(Q1) = 3/4, 1 − F(M) = 1/2, and 1 −
F(Q3) = 1/4, we immediately compute J(Q1) = 3αβQ1/4(α − 1),

J(M) = αβM/2(α − 1), and J(Q3) = αβQ3/3(α − 1). Then from

Equations (17) and (15) we can computeMAD-based and quantile-

based measures for deviation HQ, skewness AQ, and kurtosis TQ.

Moreover, in Appendix (Section A4), we showed the following

relationship between measures: HQ < H < σ and AQ < AM < S

and TM < TQ < K. These results are summarized in Table 6.

In Appendix (Section A4), we examined the asymptotic

behavior of these measures for α 7→ 1 and for α 7→ ∞. For α 7→ 1,

we showed that for MAD-based measures that H 7→ ∞, AM 7→ 1,

and TM 7→ 1 whereas for quantile-based measures HQ 7→ 4/3,

AQ 7→ 0.5, and TQ 7→ 2.17. By contrast, for α 7→ ∞ we showed in

Appendix (Section A4) that both MAD-based and quantile-based

measures for skewness and kurtosis converge to the corresponding

measures for exponential distribution H 7→ 0, AM 7→ 0.44, TM 7→
0.62, HQ 7→ 0, AQ 7→ 0.26, TQ 7→ 1.31 (see Table 4). Note that

if X is Pareto with shape α and scale β , then Y = log(X/β) is

exponentially distributed with rate α [20, 22].

9. Example: wealth distribution

Assume that income is distributed according to a Pareto

principle p + q principle [20]: 100p% of all income is received by

100q% of people (p+q = 1) For example, the 60−40 rule (p = 0.6,

q = 0.4) means that 40% of the people receive 60% of the wealth.

We assume that p > 0.5.
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FIGURE 1

Skew for Pareto distribution.

FIGURE 2

Kurtosis for Pareto distribution.

This p + q principle with p > q corresponds to a Pareto

distribution with a tail index α satisfying

α =
log(p)

log(p)− log(q)

For example, the 60 − 40 rule (p = 0.6, q = 0.4) has α =
2.260 whereas 80 − 20 rule (p = 0.8, q = 0.2) corresponds to

α = log(5)/ log(4) ≈= 1.161. If we take even larger p as in 95 − 5

rule (p = 0.95, q = 0.05 we get α = log(0.05)/ log(0.95) ≈ 1.017.

It is easy to prove that ∂α/∂p < 0 and, therefore, α decreases as
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FIGURE 3

MAD-based skew/kurtosis comparison of distributions.

p increases. In particular, α ց 1 as p 7→ 1. Larger values of p

correspond to higher concentrations of wealth.

Figure 1 demonstrates that the MAD-based skewness

approaches its asymptotic value of +1 more rapidly than the

quantile-based skewness approaches its asymptotic value of 0.5.

This behavior demonstrates that the MAD-based skewness AM

is better able to explore the extreme distribution of wealth and

income in the highest brackets than using the quantile-based

skewness.

It is important to note that in the case of α < 2, we cannot use

classical measures for standard deviation, skewness, and kurtosis.

By contrast, the MAD-based measures could be computed for

these lower values of α and compared with the corresponding

quantile-based measures.

As shown in Figure 2, the quantile-based kurtosis approaches

its asymptotic value of 2.17 (from Equation A15 in Appendix)

more rapidly than MAD-based kurtosis approaches its asymptotic

value of 1. Despite this behavior in the kurtosis, we believe that

skewness is more widely used and more revealing as a measure of

the concentration of wealth and income at the highest brackets. The

MAD-based kurtosis has the added practical advantage of having a

maximum value of 1.

10. Comparison of distributions

Using MAD-based alternatives for deviation, skewness and

kurtosis gives us additional ways to compare distributions. The

MAD-based skewness AM and MAD-based kurtosis TM are always

in the range −1 ≤ AM ≤ 1 and 0 ≤ TM ≤ 1, respectively. This

is in contrast to classical and quantile-based measures that can be

unbounded. Therefore, with MAD-based measures, we have a way

to directly compare any two distributions in terms of their MAD-

based skewness and kurtosis. In Figure 3, we plot both skewness

and kurtosis for the distributions considered.

11. Conclusion

This paper considered MAD (about median)-based alternative

metrics for classical standard deviation, skewness, and kurtosis.

These MAD-based measures are shift-invariant. The MAD-based

measures for skewness and kurtosis are also scale invariant. They

can be computed from the corresponding left and right sub-

ranges and require the existence of first-order moments only.

The mathematical expressions for these measures are similar to

those in quantile-based measures but involve computing means as

opposed to quantiles. The resulting expressions can be interpreted

as average values distance in sub-ranges from their respective

medians.

In terms of practical applications, it is widely recognized

that the median can be a better measure of centrality when

the mean is overly influenced by outlier concentrations at the

high end. The median captures the data centrality in many

distributions with concentrations at the very high end, such as

wealth and income. Building on the recognition that the median

is the preferred metric in such applications, we go further in

proposingMAD-based (about Median) metrics that give additional

information and insight on the concentrations in the highest

quantile.

For any distribution, the proposed MAD-based

expressions for skewness and kurtosis are shown to be in

the range [−1, 1] and [0, 1], respectively. The proposed

MAD-based alternative measures provide a universal
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scale to compare skewness and kurtosis across different

data sets.
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