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Role of the whitefly maturation
period on mosaic disease
propagation in Jatropha curcas

plant

Fahad Al Basir*

Department of Mathematics, Asansol Girls’ College, Asansol, West Bengal, India

Mosaic disease in Jatropha curcas plants is caused by begomoviruses carried by

whitefly vectors, and only mature vectors can transmit the virus. In this study, a

mathematical model is developed for the dynamic analysis of the spread ofmosaic

disease in the J. curcas plantation, accounting for the whitefly maturation period

as a time delay factor. The existence conditions and stability of the equilibrium

points have been studied with qualitative theory. The basic reproduction number,

R0, is determined to study the stability of the disease-free equilibrium with respect

to it. Transcritical bifurcation of the disease-free equilibrium and Hopf bifurcation

of the endemic equilibrium are also analyzed. Using numerical simulations, the

analytical findings are verified and discussed the di�erent dynamical behaviors

of the system. In this research, the stabilizing role of maturation delay has been

established. That means whenmaturation time is large, disease will be transmitted

when the infection rate is high.

KEYWORDS

mathematical model, time delay, basic reproduction number, stability analysis, forward

bifurcations, Hopf bifurcation

1. Introduction

Whiteflies can transmit mosaic viruses (Begomoviruses) when they feed on infected

Jatropha plants [1]. The transmission of the virus can occur quickly, often within minutes

of the whitefly feeding on the infected plant. However, it is worth noting that the ability of

whiteflies to transmit the virus can also depend on factors such as the maturation period of

the whitefly population and the length of time the matured whitefly feeds on the infected

plant. The maturation time of whiteflies can vary depending on the temperature, humidity,

and host plant availability. Generally, the maturation time of whiteflies ranges from 20 to 30

days, during which time they develop from eggs to larvae and then to pupae and finally to

adults [2]. Once the whiteflies have matured into adults, they can begin feeding on plants

and transmitting Begomoviruses similar to a mosaic virus [3].

Jatropha curcas is a multi-purpose, drought-resistant tropical plant of the Euphorbiaceae

family that can be grown in low-to-high rainfall areas [4]. This plant is affected by parasites

and diseases, such as the mosaic disease caused by viruses of the Begomovirus family [5].

This disease manifests in substantial leaf damage, such as yellowing of the leaves and sap

drainage, and it attacks the fruits, thus significantly reducing the yield of seeds. Whitefly

(Bemisia tabaci) is the vector that carries the virus and transmits it to Jatropha plants, so the

spread of the mosaic disease is primarily determined by the distribution of whitefly vectors

and the density of the host plants [6, 7].
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The viral infection of a plant is often considered a delayed

process, which represents various processes associated with the

production of virus particles by the vectors, vector maturation time,

duration of feeding on the plants, entry of the virus into plant cells,

etc. [8]. When considering plant disease, it is problematic from a

practical point of view to distinguish between different stages of

the plant infectious status; thus, identifying appropriate time delay

from observing plant pathology status is a challenging problem

[8–10].

From a mathematical perspective, delays in the disease

transmission and development of symptoms can be effectively

modeled using the formalism of delay differential equations

(DDEs) [11, 12]. Several mathematical models have looked at

the dynamics of plant diseases, starting with a seminal work of

Van der Plank [13], who looked at the possibility of predicting

whether an epidemic outbreak can occur and its size. Jeger

et al. [14] provided a detailed review of recent study examining

various interactions between plants and disease-carrying vectors.

Jackson and Chen-Charpentier [15, 16] have recently studied

the propagation of plant viruses while accounting for two-time

delays, one representing the incubation period of the plant and

the other being a shorter delay due to the incubation period of

the vector. Time-delayed models have also proved effective for the

analysis of within-plant dynamics of the immune response to viral

infections [17].

In the particular context of mosaic disease affecting the

population of J. curcas plant, several models have been proposed

that have looked at the dynamics of control of and disease [18, 19].

Venturino et al. [19] have presented a mathematical model for the

dynamics of J. curcas plant’s mosaic disease though they focused on

a constant disease transmission rate. In [20], authors have looked

at the effects of roguing delay, which caused stable oscillations

in plants and vector populations. These earlier models of plant

mosaic disease have assumed a constant disease transmission,

without account for vector maturation time [9]. Matured vector

can only fids on plants biomass, and the maturation time of

vector whitefly is 20–30 days depending on temperature and other

weather conditions [2, 19]. To make the model more realistic,

an epidemic model for the mosaic disease is proposed here that

explicitly accounts for whiteflymaturating time as a delayed process

in this study.

Basic reproductive number (R0) plays an important role in

understanding the dynamics of a plant disease. It is the expected

number of susceptible individuals that an infected individual can

infect []. The stability of the disease-free equilibrium can be studied

using the range of the basic reproductive number. Disease-free

equilibrium is stable when R0 is below unity, and system becomes

endemic when R0 crosses unity. In this research, basic reproduction

number, R0 is derived to study the stability of the disease-free

equilibrium using R0 and also to analyse the forward bifurcation.

The outline of the article is as follows. In the next section,

a time-delayed model of mosaic disease transmission has been

formulated and discussed the main properties of the model in

Section 3. The Section 4 is devoted to analyzing the feasibility

and stability of different steady states of the model. In Section 5,

numerical techniques are used to perform and illustrate the model’s

behavior in different dynamical regimes. The article concludes in

Section 6 with a discussion of results and future outlook.

2. Formulation of the mathematical
model

In this section, the delay model is derived for mosaic disease

transmission in J. curcas plantation. The following hypotheses are

taken in formulating the desired mathematical model.

– Let S(t) and I(t) be the susceptible and infected plant

populations, respectively, while non-infective and infective whitefly

populations are denoted by U(t) and V(t). Vector population is

considered in the modeling process without explicitly considering

a separate compartment for the mosaic virus (begomovirus).

– Due to the finite area of a plantation, a logistic growth is

assumed for susceptible plants, with the intrinsic growth rate r and

the carrying capacity K.

– Susceptible plant becomes infected, while an infected vector

feeds on a healthy plant leaf or stem. Similarly, a non-infected

vector becomes infected upon feeding on an infected portion of the

plant [21, 22].

– Infected vectors transmit the disease to susceptible plant at a

rate λ, while uninfected vectors themselves pick up the disease from

the infected plants at rate β .

– For the dynamics of vector population, b is considered to

be the net growth rate of non-infective vectors and a to be the

maximum number of vectors that can survive on a plant. Then,

a(S + I) > 0 is the overall carrying capacity of the vectors on

all plant biomass, m is taken as the removal rate of infected plant

biomass, and µ is the natural mortality rate of the infected vectors.

– The maturation time of the vector is assumed as a time delay

factor. Thus, infection transmission in a Jatropha plant by whitefly

vector is a delayed process. In order to model this mathematically,

the transmission of infection is expressed at time t by the term

λe−mτ SV(t − τ ), where m and λ are positive constants. The term

e−mτ represents the survival probability of inoculum through the

maturation time [t − τ , t].

From the assumptions made above, the following mathematical

model can be formulated:

dS

dt
= rS

[

1−
S+ I

K

]

− λe−mτ SV(t − τ ),

dI

dt
= λe−mτ SV(t − τ )−mI,

dU

dt
= bU

[

1−
U + V

a(S+ I)

]

− βUI,

dV

dt
= βUI − µV .

(1)

For biological reasons, the plant and vector populations cannot

have negative values; hence, the initial function for model (1) is

taken as follows:

S(γ ) = φ1(γ ), I(γ ) = φ2(γ ), U(γ ) = φ3(γ ), V(γ ) = φ4(γ ),

φi(γ ) ≥ 0, γ ∈ [−τ , 0], φi(0) > 0, i = 1, 2, 3, 4.

(2)

Using the result established in [12, 23], it can be shown that

the solution [S(t), I(t),U(t),V(t)]T of the model (1) with the initial

condition (2) exists and is unique on [0,+∞].

Before proceeding with the main analysis of the model (1), the

basic properties of the model are discussed in the next section.
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3. Basic properties of the model (1)

In this section, the basic properties of the delay model (1) such

as non-negativity, boundedness of solutions, basic reproduction

number, etc. are analyzed.

3.1. Non-negativity

The following theorem is derived for the non-negativity

of solutions.

Theorem 1. All solutions of model (1) with the initial condition (2)

remain non-negative for t ≥ 0.

Proof. I rewrite the first equation of (1) as

dS

dt
− S

[

r

(

1−
S+ I

k

)

− λe−mτV(t − τ )

]

= 0. (3)

Let f (S, I,V) = r
(

1− S+I
k

)

− λe−mτV(t − τ ), then from the

above equation, one can get

dS

dt
− Sf (S, I,V) = 0,

⇒
[

dS

dt
− Sf (S, I,V)

]

e−
∫ t
0 f (θ)dθ = 0,

⇒
d

dt

[

Se−
∫ t
0 f (θ)dθ

]

= 0.

Since S(0) = φ1(γ ) > 0, then S(t) > 0 for t ≥ 0.

An identical argument can establish the non-negativity of U(t).

To prove the result for I(t) and V(t), let t1 > 0 be the first time

when I(t1)V(t1) = 0, and let us assume that at this point I(t1) = 0

and V(t1) ≥ 0. The second equation of model (1) then shows that

at t = t1, one has

dI(t1)

dt
= λe−mτ S(t1)V(t1−τ )−mI(t1) = λe−mτ S(t1)V(t1−τ ) ≥ 0,

implying that I(t) ≥ 0 for all t ≥ 0. Now that the non-negativity of

I(t) has been established, if there is ever t2 > 0 such that V(t2) = 0,

at this moment one would also have

dV(t2)

dt
= βU(t2)I(t2)− µV(t2) = βU(t2)I(t2) ≥ 0,

which again proves that V(t) ≥ 0 for t ≥ 0.

3.2. Boundedness

To ensure the model remains biologically plausible, plant

and vector populations must remain bounded during their time

evolution. Let us denote by M(t) the total plant biomass, i.e.,

M(t) = S(t)+ I(t), then it satisfies the equation

dM

dt
= rS

[

1−
S+ I

K

]

−mI ≤ rM

(

1−
M

K

)

, H⇒

lim sup
t→∞

M(t) ≤ B,

where B = max[M(0),K], and hence, the total plant biomass

is bounded. Non-negativity of solutions implies that the third

equation of model (1) can be rewritten as follows:

dU

dt
= bU

[

1−
U

a(S+ I)

]

− µUI ≤ bU

[

1−
U

a(S+ I)

]

, H⇒

lim sup
t→∞

U(t) ≤ aB.

Similarly, from the last equation of (1), one obtains

dV

dt
= βUI − µV ≤ βaB2 − µV , H⇒ lim sup

t→∞
V(t) ≤

βaB2

µ
.

From the above calculation, the following positively invariant

set is obtained

D =
{

(S, I,U,V) ∈ R
4
+ : 0 ≤ S, I ≤ B, 0 ≤ U ≤ aB,

0 ≤ V ≤
βaB2

µ

}

, (4)

which attracts each solution of the model (1) that starts within the

set for a sufficiently large t > 0.

3.3. Basic reproduction number

The method used by Hefferman et al. [24] for calculating the

basic reproduction number (R0).

The next generation matrix G is a combination of two parts,

namely, thematrix F (where Fi is the new infections) and thematrix

V (where Vi transfers the infections from one compartment to

another). The matrices are given as

F =
[

∂Fi(E1)

∂xj

]

=

[

0 λe−mτK

0 0

]

and

V =
[

∂Vi(E1)

∂xj

]

=

[

m 0

−βe−µaK µ

]

.

Here, indices i and j correspond to I and V , respectively, and

E2(K, 0, aK, 0) is the disease-free steady-state of the system.

According to [24], the basic reproduction number R0 is taken

as the dominant eigenvalue of the matrix G = FV−1 and obtained

as

R0 =
aK2βλ

mµemτ
. (5)

3.4. Characteristic equation

The characteristic equation for eigenvalues ρ of linearization

near any steady point E(S̄, Ī, Ū, V̄) has the form

△(ρ) =| ρI − A− e−ρτD |= 0, (6)
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where the matrices A and D are given by

A = [aij] =























a11 a12 0 0

a21 a22 0 0

a31 a32 a33 a34

0 a42 a43 a44























and

D = [dij] =











0 0 0 d14
0 0 0 d24
0 0 0 0

0 0 0 0











,

with

a11 = r
[

1− 2S̄+Ī
K

]

− λe−mτ V̄ ,

a12 = − rS̄
K , a21 = λe−mτ V̄ , a22 = −m,

a31 = bŪ(Ū+V̄)
a(S̄+Ī)2

, a32 = −βŪ + bŪ(Ū+V̄)
a(S̄+Ī)2

,

a33 = b
[

1− 2Ū+V̄)
a(S̄+Ī)

]

− β Ī,

a34 = − bŪ
a(S̄+Ī)

, a42 = βŪ, a43 = β Ī, a44 = −µ,

and

d14 = −λe−mτ S̄, d24 = λe−mτ S̄.

The characteristic equation (6) has the explicit form

φ(ρ, τ ) = ρ4 + J1ρ
3 + J2ρ

2 + J3ρ + J4 + e−ρτ

(B1ρ
2 + B2ρ + B3) = 0, (7)

where the coefficients are given below,

J1 = −[a11 + a22 + a33 + a44], B1 = −d14a42,

J2 = (a11 + a22)(a33 + a44)+ a11a22 − a12a21
−a34a43 + a33a44,

J3 = (a11 + a22)(a34a43 − a33a44)+ (a33 + a44)

(a12a21 − a11a22),

J4 = (a12a21 − a11a22)(a34a43 − a33a44),

B2 = d14a42(a33 − a11 − a21 − a42),

B3 = d14
{

a33a42(a21 − a11)+ a43
[

(a11 + a21)

(a42 − a31)+ a31(a12 + a22)
]}

.

4. Steady states and their stability

The system (1) has up to three possible equilibria, namely,

(a) the axial equilibrium, E1 = (K, 0, 0, 0)

(b) the disease-free equilibrium (DFE), E2 = (K, 0, aK, 0)

(c) the endemic equilibrium point (EEP), E∗ = (S∗, I∗,U∗,V∗)

where

I∗ =
rS∗(K − S∗)

rS∗ + Km
, U∗ =

mµ

βλe−mτ S∗
,

V∗ =
rm(K − S∗)

(rS∗ +mK)λe−mτ
,

and S∗ satisfies the quartic equation

F(S∗) = l0S
4 + l1S

3 + l2S
2 + l3S+ l4 = 0 (8)

where,

l0 = aβ2Kr(r +m)λe−mτ > 0,

l1 = arK(r +m)[b− βK]λe−mτ + bmβr2,

l2 = aK2(r +m)bmλe−mτ − bmr2µ − βbmrK(r −m),

l3 = −bm2rK[2µ + Kβ] < 0,

l4 = −bm3µrK2 < 0.

To ensure biological feasibility of E∗, i.e., positivity of all state

variables, one has to require S∗ < K.

Since F(0) < 0 and limx→∞ F(x) = ∞, Equation (8) always has at

least one positive root. Using the Descartes’s rule of signs, one can

state the following result.

Theorem 2. Let

d = 256l30l
3
4 − 192l20l1l3l

2
4 − 128l20l

2
2l
2
4 + 144l20l2l

2
3l4 − 27l20l

4
3

+144l0l
2
1l2l

2
4 − 6l0l

2
1l
2
3l4 − 80l0l1l

2
2l3l4 + 18l0l1l2l

3
3 + 16l0l

4
2l4

−4l0l
3
2l
2
3 − 27l41l

2
4 + 18l31l2l3l4 − 4l31l

3
3 − 4l21l

3
2l4 + l21l

2
2l
2
3

be the discriminant of Equation (8). If d > 0, and either l1 > 0, or

l2 < 0, then Equation (8) has a single positive root. If d ≥ 0, and

l1 < 0, or l2 > 0, the Equation (8) has three positive roots, with one

double root if d = 0.

Since b − βK > 0 implies l1 > 0, the following proposition

is proposed.

Proposition 3. Suppose d > 0, b > βK, and S∗ < K, then model

(1) has unique co-existence steady state.

The steady state E1 is unstable for any parameter values as one

of its characteristic eigenvalues is equal to b > 0.

4.1. Stability of DFE

At the disease-free steady state E2, two eigenvalues of the

characteristic equation are −b and −r, and the remaining roots

satisfy the transcendental equation

H(ρ) = ρ2 + (m+ µ)ρ +mµ − e−(m+ρ)τaK2βλ = 0. (9)

The following theorem is established concerning the stability of

the steady state E2.

Theorem 4. (i) For R0 < 1, the disease-free equilibrium E2 of the

model (1) is asymptotically stable

(ii) For R0 = 1, E2 is linearly neutrally stable

(iii) For R0 > 1, E2 is unstable.
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Proof. (i) let us assume R0 < 1, which implies aK2βλe−mτ <

mµ, i.e., M3 < M2. We note that in this case for τ = 0 that

all characteristic roots of Equation (9) have negative real part,

and, therefore, our goal is to show that as τ > 0, none of the

characteristic roots can reach the imaginary axis. Let us assume

by contradiction that for some τ > 0, ρ = iκ is a root of (9).

Substituting this into (12) yields

κ4 + κ2(m2 + µ2)+ (M2
2 −M2

3) = 0. (10)

Since this equation has no positive real roots for κ , it means that

the characteristic equation (9) cannot have purely imaginary roots,

and hence, R0 < 1 the steady state E2 is linearly asymptotically

stable for all τ ≥ 0.

(ii) If R0 = 1, then ρ = 0 is a simple characteristic root of (9).

Let ρ = η + iκ by any other characteristic root, then the Equation

(9) turns into

(η + iκ)2 + (η + iκ)M1 +M2 = e−(η+iκ)τM3, (11)

withM1 = m+ µ,M2 = mµ, andM3 = aK2βλe−mτ .

By separating the real and imaginary parts, one can obtain

−κ2 + η2 + ηM1 +M2 = e−ητM2 cos κτ ,

2ηκ + κM1 = e−ητM2 sin κτ ,

First squaring and then adding the two equations, the following

equation is derived

(η2 + κ2)2 + κ2(m2 + µ2)+ (ηM1 +M2
2)

+2η(κ2M1 + ηM2) = e−2ητM2
2 . (12)

The relation in (12) is true only for η < 0. Thus, for R0 = 1, the

disease-free equilibrium point E2 is linearly neutrally stable.

For R0 > 1, H(0) = mµ − e−mτaK2,βλ = mµ(1 − R0) < 0,

and since limρ→∞ H(ρ) = ∞, there exists at least one positive root

of the Equation (9), implying that for R0 > 1, E2 is unstable.

4.2. Stability of EEP

At the endemic equilibrium E∗, the coefficients of the

characteristic equation (7) depend on the time delay τ , which

makes it impossible to derive closed form conditions for stability

switches. To gain some understanding of how the stability of

E∗ depends on parameters, we first consider the case where

the maturation time of vectors is very small, so that one can

assume τ = 0.

4.2.1. Stability analysis without delay
In this case, the characteristic equation (7) transforms into a

quartic equation

ρ4 + α1ρ
3 + α2ρ

2 + α3ρ + α4 = 0, (13)

where αi, i = 1, 2, 3, 4 are given below:

α1 = −(m11 +m22 +m33 +m44),

α2 = −m12m21 +m11(m22 +m33 +m44)

+m22(m33 +m44)−m14m42

−m34m43 +m33m44,

α3 = (m11 +m22)(m34m43 −m33m44)

+(m33 +m44)(m12m21 −m11m22)

−m14m42(m11 +m21 +m33 +m43),

α4 = m14(m11 +m21)(m33m42 −m31m43 +m42m43)

+m14m31m43(m12 +m12)

+(m33m44 −m34m43)(m11m22 −m12m21),

and

m11 = m12 = − rS∗

K , m21 = λV∗, m22 = −m,

m14 = −m24 = −λS∗,

m31 = bU∗(U∗+V∗)
a(S∗+I∗)2

, m42 = βU∗, m32 = m31 −m42,

m33 = − bU∗

a(S∗+I∗) , m34 = − bU∗

a(S∗+I∗) ,

m44 = −µ, m43 = βI∗.

Since α1 > 0 for all parameter values, in light of Routh-

Hurwitz criterion [25], the characteristic equation (13) has roots

with negative real parts if

α2 > 0, α3 > 0, α4 > 0, α1α2 − α3 > 0, and

(α1α2 − α3)α3 − α2
1α4 > 0.

Thus, we have the following result.

Theorem 5. For τ = 0, the endemic equilibrium point E∗ of the

system (1) is asymptotically stable if the conditions given below

are fulfilled:

α2 > 0, α3 > 0, α4 > 0, α1α2 − α3 > 0, and

(α1α2 − α3)α3 − α2
1α4 > 0. (14)

Now that the conditions for stability of the endemic steady state

E∗ have been established, the next question is whether stability can

change depending on system parameters. We focus on the disease

transmission rate λ, which is one of the biologically most important

parameters representing an aggregate rate at which mosaic disease

is passed from disease-carrying vectors to plants. Hopf bifurcation

of the endemic steady state can occur if the characteristic equation

(13) has a pair of purely imaginary eigenvalues for some λ = λ∗ ∈
(0,∞), with all other eigenvalues having negative real parts. For the

Hopf bifurcation to actually take place, the transversality condition

dRe[ρ(λ)]

dλ

∣

∣

∣

∣

∣

λ∗

6= 0

should be satisfied.

Let us define a continuously differentiable function 8 :

(0,∞) → R of λ as follows:

8(λ) : = α1(λ)α2(λ)α3(λ)− α2
3(λ)− α4(λ)α

2
1(λ).

We then have the following result.
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Theorem 6. The endemic equilibrium E∗ of the system (1) with

τ = 0 undergoes a Hopf bifurcation at λ = λ∗ ∈ (0,∞) if and

only if

α2(λ
∗) > 0, α3(λ

∗) > 0, α4(λ
∗) > 0,

α1(λ
∗)α2(λ

∗)− α3(λ
∗) > 0,

8(λ∗) = 0, and α3
1α

′
2α3(α1 − 3α3)

6= (α2α
2
1 − 2α2

3)(α
′
3α

2
1 − α′

1α
2
3).

(15)

Moreover, at λ = λ∗, two characteristic eigenvalues ρ(λ) are

purely imaginary, and the other two have negative real parts. Here,

primes denote differentiation with respect to λ.

Proof. Using conditions (15), the characteristic equation (13) can

be equivalently rewritten in the form

(

ρ2 +
α3

α1

)(

ρ2 + α1ρ +
α1α4

α3

)

= 0. (16)

Two roots of this equation are given by

ρ1,2 = ±iω0 and ω0 =
√

α3

α1
,

while the other two roots, ρ3 and ρ4 satisfy the equation

ρ2 + α1ρ +
α1α4

α3
= 0,

and from the Routh-Hurwitz criterion, they both have a negative

real part.

To verify the transversality condition, we first note that 8(λ∗)

is a continuous function of its argument, and hence, there exists an

open interval λ ∈ (λ∗ − ǫ, λ∗ + ǫ), where ρ1 and ρ2 are complex

conjugate roots of the characteristic equation, which can be written

in the general form as

ρ1,2(λ) = ζ (λ)± iν(λ),

with ρ1,2(λ
∗) = ±iω0.

Substituting ρj(λ) = ζ (λ) ± iν(λ) into the characteristic

equation (13), differentiating with respect to λ, and separating real

and imaginary parts gives

P(λ)ζ ′(λ)− Q(λ)ν′(λ)+ R(λ) = 0, (17)

Q(λ)ζ ′(λ)+ P(λ)ν′(λ)+ S(λ) = 0,

where

P(λ) = 4ζ 3 − 12ζν2 + 3α1(ζ
2 − ν2)+ 2α2ζ + α3,

Q(λ) = 12ζ 2ν + 6α1ζν − 4ζ 3 + 2α2ζ ,

R(λ) = α1ζ
3 − 3α′

1ζν2 + α′
2(ζ

2 − ν2)+ α′
3ζ ,

S(λ) = 3α′
1ζ

2ν − α′
1ν

3 + 2α′
2ζν + α′

3ζ .

Solving the (17) for ζ ′(λ∗) and using the condition (15) yields

[

dRe[ρj(λ)]

dλ

]

λ=λ∗
= ζ ′(λ∗) = −

Q(λ∗)S(λ∗)+ P(λ∗)R(λ∗)

P2(λ∗)+ Q2(λ∗)

=
α3
1α

′
2α3(α1 − 3α3)− 2(α2α

2
1 − 2α2

3)(α
′
3α

2
1 − α′

1α
2
3)

α4
1(α1 − 3α3)2 + 4(α2α

2
1 − 2α2

3)
2

6= 0.

Thus, the transversality condition holds, and consequently, a

Hopf bifurcation occurs at λ = λ∗.

4.2.2. Stability analysis with delay
To investigate whether increasing time delay τ can affect

stability of the co-existence steady state E∗, we look at the

characteristic equation (7) at the steady state E∗. Stability changes

of E∗ can only occur if the characteristic equation (7) has purely

imaginary solutions.

In this case, the characteristic equation becomes

φ(ρ, τ ) = ρ4 + J1ρ
3 + J2ρ

2 + J3ρ + J4

+ e−ρτ (B1ρ
2 + B2ρ + B3) = 0, (18)

Substituting ρ = iω into this equation and separating real and

imaginary parts gives

ω4 − J2ω
2 + J4 = (ω2B1 − B3) cosωτ − ωB2 sinωτ ,

J1ω
3 − J3ω = (ω2B1 − B3) sinωτ + ωB2 cosωτ .

(19)

Squaring and adding these two equations yields the following

equation for the Hopf frequency ω:

z4 + δ1z
3 + δ2z

2 + δ3z + δ4 = 0, (20)

where z = ω2 and

δ1 = J1
2 − 2J2, δ2 = 2J4 + J22 − 2J1J3 − B21, and

δ3 = −2J4J2 + J23 + 2B1B3 − B22, δ4 = J24 − B23.

Provided the Routh-Hurwitz criterion for Equation (20) holds,

all of its roots will have a negative real part, and hence, there will be

no purely imaginary roots of the characteristic equation (18). Thus,

we have the following proposition.

Proposition 7. For τ = 0, the co-existence steady state E∗ is

linearly asymptotically stable for all τ ≥ 0 if the conditions of (14)

hold and the following conditions are satisfied for all τ > 0:

δ1 > 0, δ4 > 0, δ1δ2 − δ3 > 0and (δ1δ2 − δ3)δ3 − δ21δ4 > 0.

(21)

Instead, if δ4 < 0, Equation (20) possesses at least one real root

z0 > 0, and then ρ = ±iω0 with ω0 =
√
z0 will be two roots of the

characteristic equation (18).

From the system (19), one can determine the value of time

delays at which this pair of purely imaginary roots occurs:

τ ∗ =
1

ω0
cos−1

[

ω2
0B3

(

J1ω
2
0 − J3

)

+ (B1ω
2
0 − B3)

(

ω4
0 − J2ω

2
0 + J4

)

(

B1ω
2
0 − B3

)2 + B22ω
2
0

]

+
2πn

ω0
, n = 0, 1, 2, 3, ... (22)

Of course, δ4 < 0 is just one possibility, where the characteristic

equation (18) has a pair of purely complex eigenvalues, and this can

also happen for δ4 > 0, provided some of δ1, δ2, or δ3 are sufficiently

negative to ensure that Equation (20) has at least one real positive

root. Whenever this happens, we have the following result.
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FIGURE 1

Region of stability of disease-free equilibrium E2 is shown using the basic reproduction number R0 depending on (A) τ and λ and (B) β and λ. Color

code denotes the values of R0. The values of the parameters are given in the Table 1.

Theorem 8. For τ = 0, the steady state E∗ undergoes a Hopf

bifurcation at τ = τ ∗, provided the following condition holds

4ω6
0 + π1ω

4
0 + π2ω

2
0 + π3 6= 0, (23)

where

π1 = 3J1 − 6J2, π2 = 2J2 + 4J4 − 4J1J3 − 2B21, and

π3 = J23 − 2J2J4 − B22 + 2B1B3.

Proof. In light of the above analysis, at τ = τ ∗, the characteristic

equation (18) has a pair of purely imaginary eigenvalues. Hence,

to complete the proof of the theorem, it remains to prove the

transversality condition, i.e., that the characteristic eigenvalues

cross the imaginary axis. To this end, we differentiate characteristic

equation (18) with respect to τ to obtain

dτ

dρ
=

4ρ3 + 3(J1ρ
2 + 2J2ρ + J3)

B1ρ3 + B2ρ2 + B3ρ
eρτ +

2B1ρ + B2

B1ρ3 + B2ρ2 + B3ρ
−

τ

ρ
.

Evaluating this at τ = τ ∗ and using relations (19), we find

sgn

[

dRe(ρ)

dτ

]

τ=τ∗
= sgn

[

Re

(

dρ

dτ

)−1
]

ρ=iω0

sgn

[

4ω6
0 + π1ω

4
0 + π2ω

2
0 + π3

B2ω
2
0 + (−B1ω

2
0 + B3)2

]

.

Since the denominator of this expression is always positive,

if the condition of the theorem holds, this means that the

transversality condition

sgn

[

dRe(ρ)

dτ

]

τ=τ∗
6= 0

is satisfied, and thus, the steady state E∗ undergoes a Hopf

bifurcation at τ = τ ∗.

TABLE 1 Parameter values used in numerical simulations [18, 19, 27].

Parameter Description Value (unit)

r Intrinsic growth rate of

healthy plant biomass

0.05 kg day−1

K Carrying capacity of plant

biomass

50 kg plant−1

λ Infection rate of plants 0–0.0008 vector−1 day−1

m Infected biomass death rate 0.1 kg day−1

b Reproduction rate of vector 0.8 day−1

a Maximum vector abundance 80 kg−1 biomass

β Infection rate of vector 0.0012 kg−1biomass day−1

µ Mortality rate of vector 0.12 day−1

5. Numerical simulation

In this section, we investigate how various system parameters

affect the stability of the steady states and the dynamics of

the model.To analyze the stability of the endemic state E∗ for

τ > 0, one would have to resort to numerical computation of

characteristic roots, which can be done, for instance, by using

a pseudospectral method implemented in a trace-DDE suite in

Matlab [26].

The initial condition is taken as S(γ ) = 20, I(γ ) = 5, U(γ ) =
20, and V(γ ) = 5. Biologically, this initial condition means that

at time t = 0, some plants and vectors are already infected. While

this condition may be quite natural for the vectors, as without them

carrying the disease, the model would have no sense; for plants,

this would also very quickly become feasible once the vectors start

transmitting the infection.

Figure 1 shows how R0 depends the parameters, namely, the

delay parameter τ , disease transmission rate in plant λ and in

vectors β . This figure shows a region with R0 < 1 where the

system is free from infection and a region with R0 > 1, where

the disease can transmit. This means that the endemic steady state

E∗ is feasible. Higher values of the infection rate is required for

the disease to propagates when if the values of time delay is large.

At R0 = 1, a transcritical bifurcation occurs, the system becomes
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FIGURE 2

(A) Equilibrium values of the infected plant I∗ and (B) infected vector V∗ population for τ = 0 are plotted. The values of the parameters are taken from

Table 1, except λ.

FIGURE 3

Numerical solution of the system (1) with τ = 0, λ = 0.0003, and other parameter values taken from Table 1.

endemic. It is important to mention that the delay does not have

a significant effect on the stability of the disease-free equilibrium

E2 beyond a single stability change via the transcritical bifurcation

at R0 = 1. Increasing the delay period τ reduces the basic

reproduction number, thus making the disease-free equilibrium

more stable.

Figure 2 describes how the steady state values of the

infected plant and vectors change with R0. This figure

shows that the endemic steady state is stable for lower

values of R0 and then loses its stability via Hopf bifurcation

as R0 exceeds the critical value (following Theorems 5

and 6).

Figures 3, 4 illustrate the model’s behavior with τ = 0 and

other parameters chosen so that the endemic equilibrium E∗ is

biologically feasible. When λ < λ∗, the endemic steady state E∗

is stable verifying the Theorem 5, as shown in Figure 3, and for λ >

λ∗, the Hopf bifurcation has taken place as described in Theorem 6,

and, as a result, the system exhibits sustained periodic oscillations

shown in Figure 4. Further details of this transition to instability

are given in Figure 5, which presents a bifurcation diagram for

the endemic steady state E∗ depending on the transmission rate

λ. A higher transmission rate of the disease can cause instability

in the system, and a higher amplitude of oscillations in population

densities is seen.

Increasing the values of the time delay parameter τ , the stability

steady-state E∗ is recovered. For a fixed value of plant infection

rate λ = 0.0008 (the value at which the endemic steady state

E∗ is unstable for τ = 0), we have traversed the range of τ and

found that for τ ≈ 9.45, this equilibrium regains its stability,

and the periodic oscillations disappear (illustrated in Figure 6). The
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FIGURE 4

Numerical solution of the system (1) with τ = 0, λ = 0.0006, and other parameter values taken from Table 1.

FIGURE 5

Bifurcation diagram of the endemic steady state E∗ without time delay, i.e., for τ = 0, depending on the transmission rate λ, with other parameters

taken from Table 1. Dots represent maxima/minima of the respective variables.

numerical solution of the model for the values of τ exceeding this

critical threshold is shown in Figure 7, and it demonstrates that the

system converges to the stable steady-state E∗.

Figure 8 illustrates the stability of the endemic steady state E∗

depending on different parameters, indicating that E∗ is unstable

for small τ (which corresponds to high R0) and stable for larger

τ . We also observe that the product of transmission rate λ from

vectors to plants and β from plants to vectors has to exceed some

threshold value for the endemic steady state to be feasible. For

smaller values of this product, the endemic state is stable but

also loses its stability via a Hop bifurcation, giving rise to stable

periodic oscillations.

In Figure 9, we plotted the Jacobian matrix’s eigenvalues at

the endemic equilibria, with τ = 9.45 and λ = 0.0008.

A pair of imaginary eigenvalues is observed, indicating a Hopf

bifurcation’s existence.

6. Discussion and conclusion

In this study, we have analyzed a time-delayed model for the

dynamics of transmission of mosaic disease in J. curcas. Analytical

and numerical analyses have provided conditions for the feasibility

and stability of various steady states of the model depending

on parameters and the time delay. Increasing the rate of disease

transmission from vectors to plants destabilizes the disease-free

equilibrium through a transcritical bifurcation and the emergence

of a stable endemic equilibrium. Interestingly, a further increase of

this transmission rate can destabilize the endemic steady state and

the emergence of stable periodic oscillations, whose amplitude is

growing with the transmission rate.

The time delay can play a dual role: as is often found in

time-delayed models, it can by itself lead to a destabilization

of the endemic state, but interestingly, it can also provide
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FIGURE 6

(A–D) Bifurcation diagram of the endemic steady state E∗ with λ = 0.0008 and τ as a bifurcation parameter, other parameters are given in Table 1.

Dots represent maxima/minima of the respective variables.

FIGURE 7

(A–D) Numerical solution of the system (1) with λ = 0.0008, τ = 15, and other parameters as given in Table 1.

a mechanism for suppression of oscillations and recovery of

stability for the endemic steady state that was otherwise unstable

in the absence of the time delays. The numerical solution of

the transcendental characteristic equation has provided further

insights into how the stability of the endemic steady state depends

on parameters, and it has shown that the time delay plays

a stabilizing role. It is also seen that increasing either of the

transmission rates, i.e., from vectors to plants or from plants

to vectors, can result in the loss of stability by the endemic

steady state.

Modeling the maturation period as a time delay provides

inroads into understanding the stability of disease-free and

endemic equilibria by delivering conditions for stability and

onset or suppression of oscillations. The time-delayed model

effectively captures various aspects of disease dynamics, which

can be utilized when collecting and analyzing data from

farms, especially when measuring some of the parameters can

be difficult.

This model’s results provide several important insights for

the control and mitigation of the effects of mosaic disease.
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FIGURE 8

Stability of the endemic steady state E* with parameters values from Table 1 is shown in (A) τ − λ, and (B) λ− β parameter planes. Color code denotes

max[Re(ρ)]. the steady state E* is not feasible in the white region.

FIGURE 9

Eigenvalues of the Jacobian matrix evaluated at the endemic equilibrium, E∗, for τ = 9.45, λ = 0.0008, and other parameters values are given in

Table 1.

The basic reproduction number can be computed using

values for fundamental parameters describing the specific

farming situation. Vector maturation plays an essential role

in determining the dynamics of mosaic disease in J. curcas

plants. Managers should be aware of the effects of vector

maturation time on disease severity and onset of oscillations

in the population of infected plants and whitefly vectors.

Model predictions concerning particular dynamical regimes

depending on parameters provide managers with practical tools

for disease monitoring and for developing optimal techniques

for successful interventions, including timing and extent of

administering protective sprays, insecticides, and fertilizers to

reduce crop losses.
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