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A uniformly convergent numerical scheme is proposed to solve a singularly

perturbed convection-di�usion problem with a large time delay. The di�usion

term of the problem is multiplied by a perturbation parameter, ε. For a

small ε, the problem exhibits a boundary layer, which makes it challenging

to solve it analytically or using standard numerical methods. As a result, the

backward Euler scheme is applied in the temporal direction. Non-symmetric

finite di�erence schemes are applied for approximating the first-order derivative

terms, and a higher-order finite di�erence method is applied for approximating

the second-order derivative term. Furthermore, an exponential fitting factor is

computed and induced in the di�erence scheme to handle the e�ect of the small

parameter. Using the discrete maximum principle, the stability of the scheme is

examined and analyzed. The developed scheme is parameter-uniformwith a linear

order of convergence in both space and time. To examine the accuracy of the

method, twomodel examples are considered. Further, the boundary layer behavior

of the solutions is given graphically.

KEYWORDS

singularly perturbed, delay di�erential equation, exponentially fitted finite di�erence,

non-symmetric finite di�erence, uniform convergence

1. Introduction

Delay differential equations (DDEs) are differential equations in which the evolution

of the system is influenced by its past history. DDEs are called retarded types if the delay

argument does not appear in the highest-order derivative term; otherwise, they are neutral

types. DDEs play an important role in a variety of fields, including robotics, biosciences [1],

economics, epidemiology and mechanics [2], fluid dynamics, reaction-diffusion equations

[3], and population dynamics [4].

A singularly perturbed delay differential equation (SPDDE) is a delay differential

equation in which its higher-order derivative term is multiplied by a small perturbation

parameter (0 < ε ≪ 1) and contains at least one delay parameter on the term different

from the highest derivative. In contrast to the magnitude of the delay parameter with

the perturbation parameter, the delay is classified as a large delay or a small delay. If

the magnitude of the delay parameter of the SPDDE is smaller than the perturbation

parameter, then the equation is said to be a singularly perturbed delay differential

equation with a small delay, whereas when the magnitude of the delay parameter is

higher than the perturbation parameter, it is said to be a singularly perturbed delay
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differential equation with a large delay [5]. A singularly perturbed

problem, which arises as a time delay, occurs in many application

areas of science and engineering, for instance, in the simulation

of oil extraction from underground reservoirs, chemical processes,

fluid flows, water quality problems in river networks, and

mechanical systems [6].

The presence of ε as a multiple of the higher-order derivative

term causes a boundary layer. The boundary layer is an

asymptotically narrow region located in the neighborhood of

the endpoints of the domain, where the solution has a steep

gradient as ε tends to zero [6]. With the rapidly changing

behavior of the solution in the boundary layer, one encounters

computational difficulties in treating a singularly perturbed

problem using analytically or classical numerical schemes. On the

contrary, classical numerical schemes lead to spurious non-physical

oscillations in the numerical solution, unless an unacceptably large

number of mesh points are considered, which leads to a massive

computational cost [7]. In response to this, different authors have

to look for sounding numerical schemes which converge uniformly

regardless of ε.

Recently, the authors in [8], proposed the implicit-Euler

scheme in the time direction and the central difference scheme in

the space direction. The authors in [7, 9], proposed the implicit-

Euler scheme in the time direction and the hybrid scheme by

a proper combination of the midpoint upwind in the outer

region and the central difference scheme in the inner region

in the spatial direction on the Shishkin mesh. Moreover, this

method is addressed in [10], for the two-parameter problem.

In [11], the authors proposed the implicit-Euler scheme in the

time direction and the hybrid scheme on a generalized Shishkin

mesh in the spatial direction. Gowrisankar and Natisan in [12]

developed the backward Euler scheme in time direction and

the upwind finite difference scheme in the spatial direction

using a piecewise uniform mesh. The implicit Euler scheme

in the time direction and the upwind scheme in the spatial

direction are considered in [13]. In [14], the implicit trapezoidal

scheme in the time direction and the hybrid scheme by proper

combination of the midpoint upwind in the outer region and

the central difference in the inner region in the spatial direction

are used.

The implicit Euler scheme in the time direction and the

central difference scheme in the space direction are used in [4].

The extended cubic B-spline is considered in [15]. A domain

decomposition method is considered in [16, 17]. The authors in

[18, 19] proposed hybrid scheme on both Shishkin and Bakhvalov

meshes. Podila and Kumar [20] proposed a new stable finite

difference scheme on a uniformmesh and also on an adaptivemesh.

The backward Euler scheme in the time direction and exponentially

fitted difference method is considered in [21]. The Crank-Nicolson

method in the time direction and a novel fitted finite difference

scheme in spatial direction are proposed in [22]. The Crank-

Nicolson method in the time direction and an exponentially fitted

spline in the spatial direction are discussed in [23]. The implicit

Euler scheme in the time direction and the non-standard finite

difference method in the space direction are considered in [24].

In [25], the authors proposed Crank-Nicolson method in the time

direction and the operator compact implicit (OCI) method on

the Shishkin mesh in the space direction. The backward Euler in

the time direction and method of line following Micken’s type

discretization for the space derivatives are used in [26]. Sahoo and

Gupta [27] used higher-order difference with an identity expansion

(HODIE) on a piecewise uniform mesh. A similar technique was

also used in [28] for a coupled system of singularly perturbed

problems. The authors [29, 30] proposed the numerical schemes

that work for both cases when the delay term is large or small.

The main aim of this work was to develop a ε-uniform

numerical scheme for the class of singularly perturbed convection-

diffusion problem with a large time delay. The method comprises

the backward Euler scheme in the time direction and an

exponentially fitted higher-order finite difference scheme in the

spatial direction. Error bound and uniform convergence of the

developed scheme is investigated and proved. The proposed

scheme gives more accurate, stable, and uniformly convergent

results.

In this study, C has been considered as a generic positive

constant, which does not depend on 1s,1t, and ε. The

maximum norm is denoted by ‖.‖, which is defined by ‖γ ‖ =

maxs,t∈�|γ (s, t)|.

2. Continuous problem

Let � = �s × �t = (0, 1) × (0,T] for T > 0, we consider

SPDDE of the form



















zt(s, t)+ Lεz(s, t) = −κ(s, t)z(s, t − δ)+ γ (s, t), (s, t) ∈ �

z(s, t) = ψb(s, t), (s, t) ∈ ηb = [0, 1]× [−δ, 0],

z(0, t) = ψl(t), t ∈ ηl = {(0, t) : 0 ≤ t ≤ T},

z(1, t) = ψr(t), t ∈ ηr = {(1, t) : 0 ≤ t ≤ T},

(1)

where Lεz(s, t) = −εzss(s, t)+ β(s, t)zs(s, t)+ α(s, t)z(s, t).

Here, ε ∈ (0, 1] and δ > 0 are the perturbation parameter and

the delay parameter, respectively. We pretended that the functions

β(s, t), α(s, t), κ(s, t), γ (s, t) on �̄ = [0, 1] × [0,T] and

ψb(s, t), ψl(t), ψr(t) on η = ηl ∪ ηr ∪ ηb are smooth enough

and bounded which meet α(s, t) ≥ ̟ > 0, κ(s, t) ≥ ϕ >

0, β(s, t) ≥ µ > 0 on �̄. These conditions assure that problem

(1) has a boundary layer near s = 1 [7].

2.1. A priori bounds

Under the premises that the data are Hölder continuous and

satisfy the following compatibility conditions at the corner points

and the delay terms [31], we confirm the existence and uniqueness

of the solution of (1)

ψl(0) = ψb(0, 0), ψr(0) = ψb(1, 0), (2)

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2023.1244490
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Tesfaye et al. 10.3389/fams.2023.1244490

dψl(0)

dt
− ε

∂2ψb(0, 0)

∂s2
+ β(0, 0)

∂ψb(0, 0)

∂s
+

α(0, 0)ψb(0, 0) =− κ(0, 0)ψb(0,−δ)

+ γ (0, 0),

dψr(0)

dt
− ε

∂2ψb(1, 0)

∂s2
+ β(1, 0)

∂ψb(1, 0)

∂s
+

α(1, 0)ψb(1, 0) =− κ(1, 0)ψb(1,−δ)

+ γ (1, 0).

(3)

These assumptions and conditions are fulfilled. Then, the problem

(1) admits a unique solution [31].

Setting ε = 0, the reduced problem of (1) is given as























∂z0(s, t)

∂t
+ β(s, t)

∂z0(s, t)

∂s
+ α(s, t)z0(s, t) = −κ(s, t)z0(s, t − δ)+ γ (s, t),

z0(s, t) = ψb(s, t), (s, t) ∈ ηb,

z0(0, t) = ψl(t), t ∈ �̄t ,

(4)

where z0(s, t) is the solution of the reduced problem.

Lemma 2.1. Let z(s, t) be the solution of (1). Then, we have

|z(s, t)− ψb(s, 0)| ≤ Ct, (s, t) ∈ �̄, (5)

where C does not depends on ε.

Proof: The proof is considered in [7].

The operator L = ( ∂
∂t + Lε) in (1) satisfies the next lemma.

Lemma 2.2. (Maximum principle). Let ν(s, t) ∈ C2(�) ∪ C0(η)

satisfies ν(s, t) ≥ 0 (s, t) ∈ η. If Lν(s, t) ≥ 0, (s, t) ∈ �, then

ν(s, t) ≥ 0, (s, t) ∈ �̄.

Proof: The proof is considered in [14].

Lemma 2.3. (Stability result). Let z(s, t) be the solution of (1). Then,

we have

∣

∣z(s, t)
∣

∣ ≤ ̟−1‖γ ‖ +max{|ψl(t)|, |ψb(s, t)|, |ψr(t)|}, (6)

where̟ ≤ α(s, t).

Proof: The proof is considered in [22].

Lemma 2.4. The derivative of the solution z(s, t) of (1) with respect

to s and t satisfy

∣

∣

∣

∣

∂ iz(s, t)

∂si

∣

∣

∣

∣

≤ C

(

1+ ε−i exp

(

−
µ(1− s)

ε

))

, (s, t) ∈ �̄, i = 0(1)4,

∣

∣

∣

∣

∂ lz(s, t)

∂tl

∣

∣

∣

∣

≤ C, (s, t) ∈ �̄, l = 0(1)2,

(7)

where µ ≤ β(s, t).

Proof: The proof is considered in [7].

3. Numerical scheme

3.1. Temporal semi-discretization

The time domain [0,T] is discretized uniformly with step size

1t as �M
t = {tm = m1t,m = 0, 1, 2, ...,M, tM = T,1t = T/M, }

and �
j
t = {tm = m1t,m = 0, 1, 2, ..., j, tj = δ,1t = δ/j, } with

M + 1 mesh points in [0,T] and j + 1 mesh points in [−δ, 0]. We

have T = rδ for some positive integer r.

Applying the backward Euler scheme for time derivative, we get

Zm(s)− Zm−1(s)

1t
− ε

d2Zm(s)

ds2
+ β(s, tm)

dZm(s)

ds
+ α(s, tm)Z

m(s)

=− κ(s, tm)Z(s, tm−δ)+ γ (s, tm).

(8)

Simplifying (8), we have

L
1tZm(s) =























−κ(x, tm)ψb(s)+ γ (s, tm)+
Zm−1(s)
1t ,

for m = 0, 1, 2, ..., j, s ∈ �s,

−κ(s, tm)Z
m−j(s)+ γ (s, tm)+

Zm−1(s)
1t ,

for m = j+ 1, ...,M − 1, s ∈ �s,

(9)

where L1tZm(s) = −ε
d2Zm(s)

ds2
+ β(s, tm)

dZm(s)
ds

+ P(s, tm)Z
m(s) and

P(s, tm) = ( 1
1t + α(s, tm)) with the boundaries

Zm(0) = ψl(tm), Zm(1) = ψr(tm), m = 0(1)M. (10)

Now, (9) rewrite as

L
1tZ(s) =























−κ(s, tm)ψb(s)+ γ (s, tm)+
Zm−1(s)
1t ,

for m = 0, 1, 2, ..., j, s ∈ �s,

−κ(s, tm)Z
m−j(s)+ γ (s, tm)+

Zm−1(s)
1t ,

for m = j+ 1, ...,M − 1, s ∈ �s,

(11)

whereL1tZ(s) = −ε
d2Z(s)
ds2

+β(s, tm)
dZ(s)
ds

+P(s, tm)Z(s) and Z(s) =

Zm(s) ≈ z(s, tm) and Q(s) = Qm(s) = Q(s, tm).

The local truncation error in the time direction is given as

em(s) : = z(s, tm)− Zm(s), m = 0(1)M.

Lemma 3.1. The local error em at tm satisfies the bound

‖em‖ ≤ C(1t)2. (12)

Lemma 3.2. The global error Em at tm satisfies the bound

‖Em‖ ≤ C(1t), m = 1(1)M − 1. (13)

Proof: Using Lemma 3.1, the global error Em bound at mth time

step is given as

‖Em‖ =

∥

∥

∥

∥

m
∑

l=1

el

∥

∥

∥

∥

≤ ‖e1‖ + ‖e2‖ + ‖e3‖ + ...+ ‖em‖

≤C1T(1t), since (m)1t ≤ T

=C(1t), where C1T = C,
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Lemma 3.3. For every m = 0(1)M − 1, the solution Zm(s) of (9)-

(10) satisfies the estimate

∣

∣

∣

∣

diZm(s)

dsi

∣

∣

∣

∣

≤ C

(

1+ ε−i exp

(

−µ

ε
(1− s)

))

, s ∈ �̄s, i = 0(1)4.

(14)

Proof: From (11), −ε d
2Z(s)
ds2

+ β(s, tm)
dZ(s)
ds

= g, where g = Q(s)−

P(s, tm)Z(s).

Now, we integrate twice and we obtain

Z(s) = ZP(s)+ C1 + C2

∫ 1

s
exp(−ε−1(B(1)− B(y)))dy,

where ZP(s) = −
∫ 1
s u(y)dy, u(s) =

∫ 1
s ε

−1g(y) exp(−ε−1(B(y) −

B(s)))dy, B(s) =
∫ s
0 β(y)dy.

Using inequality

exp(−ε−1(B(y)− B(s))) ≤ exp(−ε−1µ(y− s)), s ≤ y,

and the bound

|u(s)| ≤Cε−1
∫ 1

s

(

exp(−ε−1µ(y− s))+ Cε−1 exp(−ε−1µ(1− s))
)

dy

≤C
(

1+ ε−2(1− s) exp(−ε−1µ(1− s))
)

.

Hence, |Zp(s)| ≤ C. Here, Z′(1) = −C2. The boundary

condition Z(1) = 0 yields C1 = 0. Now, the constants C1 and C2

must satisfy

C2

∫ 1

0
exp

(

− ε−1(B(1)− B(y))
)

dy = −Zp(0).

Since B(s) is bounded on (0, 1), B(1)− B(y) ≤ C(1− y). Then,

∫ 1

0
exp

(

− ε−1(B(1)− B(y))
)

dy ≥

∫ 1

0
exp

(

− ε−1 − µ(1− y)
)

dy ≥ Cε.

It follows that |C2| ≤ Cε−1. Hence, |Z′(1)| = |C2| ≤ Cε−1. Finally,

Z′(s) = u(s)− C2 exp(−ε
−1(B(1)− B(s)))

implies that

∣

∣

∣

∣

dZ(s)

ds

∣

∣

∣

∣

≤ C

(

1+ ε−1 exp

(

−µ

ε
(1− s)

))

, s ∈ �̄s.

The proof is done for i = 1. For i > 1 follows by induction and

repeated differentiation. For the details, refer [32].

3.2. Spatial discretization

We discretize the spatial domain [0, 1] into N equal number

of sub-intervals with the length of h as 0 = s0, s1, ..., sN = 1, and

sn = nh, n = 0(1)N. Consider a smooth function Z(s) in the

interval [0, 1]. From Taylor’s series approximation, we get

Zn+1 =Zn + hZ
′

n +
h2

2!
Z

′′

n +
h3

3!
Z

′′′

n +
h4

4!
Z(4)
n +

h5

5!
Z(5)
n +

h6

6!
Z(6)
n +

h7

7!
Z(7)
n +

h8

8!
Z(8)
n + O(h9),

Zn−1 =Zn − hZ
′

n +
h2

2!
Z

′′

n −
h3

3!
Z

′′′

n +
h4

4!
Z(4)
n −

h5

5!
Z(5)
n +

h6

6!
Z(6)
n −

h7

7!
Z(7)
n +

h8

8!
Z(8)
n − O(h9).

(15)

Following a similar relation of (15), it holds

Zn−1 − 2Zn + Zn+1 =
2h2

2!
Z

′′

n +
2h4

4!
Z(4)
n +

2h6

6!
Z(6)
n +

2h8

8!
Z(8)
n + O(h10),Z

′′

n−1−

2Z
′′

n + Z
′′

n+1 =
2h2

2!
Z(4)
n +

2h4

4!
Z(6)
n

+
2h6

6!
Z(8)
n +

2h8

8!
Z(10)
n + O(h12).

(16)

From (16), we have

h4

12
Z(6)
n = Z

′′

n−1−2Z
′′

n+Z
′′

n+1−h2Z(4)
n −

2h6

6!
Z(8)
n −

2h8

8!
Z(10)
n −O(h12).

(17)

Substituting (17) into (16) and simplifying, we obtain

Zn−1 − 2Zn + Zn+1 =
h2

30

(

Z
′′

n−1 + 28Z
′′

n + Z
′′

n+1

)

+ T, (18)

where T = h4

20Z
(4)
n − 13h8

302,400Z
(8)
n + O(h10).

From (11), we draw

− ε
d2Z(s)

ds2
= −β(s, tm)

dZ(s)

ds
− P(s, tm)Z(s)+ Q(s), (19)

where

Q(s) =



































−κ(s, tm)ψb(s)+ γ (s, tm)+
Zm−1(s)
1t ,

for m = 0, 1, 2, ..., j, s ∈ �s,

−κ(s, tm)Z
m−j(s)+ γ (s, tm)+

Zm−1(s)
1t ,

for m = j+ 1, ...,M − 1, s ∈ �s.

Using (19), we have

−εZ
′′

n+1 =− β(sn+1, tm)Z
′

n+1 − P(sn+1, tm)Zn+1 + Qn+1,

−εZ
′′

n =− β(sn, tm)Z
′

n − P(sn, tm)Zn + Qn,

−εZ
′′

n−1 =− β(sn−1, tm)Z
′

n−1 − P(sn−1, tm)Zn−1 + Qn−1.

(20)

From the Taylor series approximations of Z
′

n−1,Z
′

n and Z
′

n+1, we

get

Z
′

n =
Zn+1 − Zn−1

2h
,

Z
′

n+1 =
3Zn+1 − 4Zn + Zn−1

2h
− hZ

′′

n,

Z
′

n−1 =
−Zn+1 + 4Zn − 3Zn−1

2h
+ hZ

′′

n.

(21)
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Substituting (21) into (20), we have

− εZ
′′

n+1 = −β(sn+1, tm)

(

3Zn+1 − 4Zn + Zn−1

2h
− hZ

′′

n

)

− P(sn+1, tm)Zn+1 + Qn+1,

− εZ
′′

n = −β(sn, tm)
Zn+1 − Zn−1

2h
− P(sn, tm)Zn + Qn,

− εZ
′′

n−1 = −β(sn−1, tm)

(

−Zn+1 + 4Zn − 3Zn−1

2h
+ hZ

′′

n

)

− P(sn−1, tm)Zn−1 + Qn−1.

(22)

From (18), we draw

−ε

(

Zn−1 − 2Zn + Zn+1

h2

)

=
1

30

(

−εZ
′′

n−1−28εZ
′′

n−εZ
′′

n+1

)

+T.

(23)
Substituting (22) into (23) and rearranging, we obtain

−

(

ε −
hβ(sn−1, tm)

30
+

hβ(sn+1, tm)

30

)

(

Zmn−1 − 2Zmn + Zmn+1

h2

)

+
β(sn−1, tm)

60h

(

− 3Zmn−1 + 4Zmn − Zmn+1

)

+

28β(sn, tm)

60h

(

Zmn+1 − Zmn−1

)

+
β(sn+1, tm)

60h

(

Zmn−1 − 4Zmn + 3Zmn+1

)

+

P(sn−1, tm)

30
Zmn−1 +

28P(sn, tm)

30
Zmn

+
P(sn+1, tm)

30
Zmn+1 =

1

30

(

Qm
n−1 + 28Qm

n + Qm
n+1

)

+ T, (24)

where

Qm
n =























−κ(sn, tm)ψb(sn)+ γ (sn, tm)+
Zm−1
n
1t ,

for m = 0, 1, 2, ..., j, s ∈ �s,

−κ(sn, tm)Z
m−j
n + γ (sn, tm)+

Zm−1
n
1t ,

for m = j+ 1, ...,M − 1, s ∈ �s.

(25)

3.2.1. Computing the exponential fitting factor
We introduce the exponential fitting factor σ to handle the

effect of ε in the layer. From the singular perturbation theory stated

in [33], the zero order asymptotic solution of the problem of the

form
{

−εZ
′′
(s)+ β(s)Z

′
(s)+ α(s)Z(s) = q(s), s ∈ �s = (0, 1),

Z(0) = ωl, Z(1) = ωr

(26)

is given as

Z(s) ≈ Z0(s)+
β(0)

β(s)

(

ωr − Z0(1)

)

exp

(

−

∫ 1

s

(

β(s)

ε
−
α(s)

β(s)

)

ds

)

+ O(ε). (27)

From Taylor’s series, approximation for β(s) and α(s) restricting to

their first terms about s = 1 is given as

Z(s) ≈ Z0(s)+ (ωr − Z0(1)) exp

(

−β(1)(1− s)

ε

)

, (28)

where Z0(s) is the solution of reduced problem. Taking h → 0 and

solving (28) at sn−1, sn, and sn+1, we get

Z(sn) ≈Z0(0)+ (ωr − Z0(1)) exp(−β(1)(
1

ε
− nρ)),

Z(sn−1) ≈Z0(0)+ (ωr − Z0(1)) exp(−β(1)(
1

ε
− (n− 1)ρ)),

Z(sn+1) ≈Z0(0)+ (ωr − Z0(1)) exp(−β(1)(
1

ε
− (n+ 1)ρ)),

(29)

where ρ = h
ε
. Multiplying (24) by h and the term containing ε by σ

and evaluating the limit of the resulting equation as h → 0, we get

− σ
ρ
lim
h→0

(Zm
n−1 − 2Zm

n + Zm
n+1)

+
β(sn−1 ,tm)

60 lim
h→0

(−3Zm
n−1 +

4Zm
n − Zm

n+1)+
28β(sn ,tm)

60 lim
h→0

(Zm
n+1 − Zm

n−1)+

β(sn+1 ,tm)
60 lim

h→0
(Zm

n−1 − 4Zm
n + 3Zm

n+1) = 0. (30)

From (29), we have

lim
h→0

(Z((n− 1)h)− 2Z(nh)+ Z((n+ 1)h)) =

(ωr − Z0(1))e
−β(1)( 1−sn

ε
)(e−β(1)ρ + eβ(1)ρ − 2),

lim
h→0

(−3Z((n− 1)h)+ 4Z(nh)− Z((n+ 1)h)) =

(ωr − Z0(1))e
−β(1)( 1−sn

ε
)(−3e−β(1)ρ − eβ(1)ρ + 4),

lim
h→0

(Z((n− 1)h)− 4Z(nh)+ 3Z((n+ 1)h)) =

(ωr − Z0(1))e
−β(1)( 1−sn

ε
)(e−β(1)ρ + 3eβ(1)ρ − 4),

lim
h→0

(Z((n+ 1)h)− Z((n− 1)h)) =

(ωr − Z0(1))e
−β(1)( 1−sn

ε
)(eβ(1)ρ − e−β(1)ρ).

(31)

Substituting (31) into (30) and simplifying yields

σ

ρ

(

eβ(1)ρ + e−β(1)ρ − 2

)

=
β(sn, tm)

60

(

30eβ(1)ρ − 30e−β(1)ρ
)

.

Then, we get the fitting factor σ

σ =
ρβ(sn, tm)

2
coth(

ρβ(1)

2
). (32)

Therefore, the required scheme is taken as

L
1t,hZm

n =
1

30

(

Qm
n−1 + 28Qm

n + Qm
n+1

)

, (33)

where

L
1t,hZm

n =

−

(

εσ −
hβ(sn−1, tm)

30
+

hβ(sn+1, tm)

30

)

(

Zm
n−1 − 2Zm

n + Zm
n+1

h2

)

+
β(sn−1, tm)

60h

(

− 3Zm
n−1 + 4Zm

n − Zm
n+1

)

+
28β(sn, tm)

60h

(

Zm
n+1 − Zm

n−1

)

+
β(sn+1, tm)

60h

(

Zm
n−1 − 4Zm

n + 3Zm
n+1

)

+
P(sn−1, tm)

30
Zm
n−1

+
28P(sn, tm)

30
Zm
n +

P(sn+1, tm)

30
Zm
n+1.

(34)
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In the explicit form, it becomes

R−n Z
m
n−1 + R0nZ

m
n + R+n Z

m
n+1 = Hm

n , (35)

where

R−n = −
1

h2

(

εσ −
hβ(sn−1, tm)

30
+

hβ(sn+1, tm)

30

)

−

3β(sn−1, tm)

60h
+

P(sn−1, tm)

30

−
28β(sn, tm)

60h
+
β(sn+1, tm)

60h
,

R0n =
2

h2

(

εσ −
hβ(sn−1, tm)

30
+

hβ(sn+1, tm)

30

)

+

4β(sn−1, tm)

60h
−

4β(sn+1, tm)

60h

+
28P(sn, tm)

30
,

R+n = −
1

h2

(

εσ −
hβ(sn−1, tm)

30
+

hβ(sn+1, tm)

30

)

−

β(sn−1, tm)

60h
+

28β(sn, tm)

60h

+
3β(sn+1, tm)

60h
+

P(sn+1, tm)

30
,

Hm
n =

1

30

(

Qm
n−1 + 28Qm

n + Qm
n+1

)

.

(36)

3.3. Stability and uniform convergence
analysis

Lemma 3.4. (Discrete maximum principle). Assume that Zm
0 ≥

0,Zm
N ≥ 0 and L1t,hZm

n ≥ 0, ∀n = 1(1)N − 1, then Zm
n ≥ 0, ∀n =

0(1)N.

Proof: Assume that there is k ∈ {0, 1, 2, ...,N}, such that Zm
k

=

min0≤n≤N Zm
n < 0. Assume that Zm

k
< 0 and from the assumption,

it is shown that k /∈ {0, 1}. So, we have Zm
k+1

− Zm
k
> 0 and

Zm
k
− Zm

k−1
< 0. Then, we get L1t,hZm

k
< 0 for k = 1(1)N − 1. So,

the assumption Zm
n < 0 ∀n = 0(1)N is wrong. Therefore, Zm

n ≥ 0

and ∀n = 0(1)N.

Lemma 3.5. (Uniform stability result). Let Zm
n be the solution of

(33), then we have

∣

∣Zm
n

∣

∣ ≤
‖ L1t,hZm

n ‖

ζ
+max{|ψl(tm)|, |ψr(tm)|},

where P(sn, tm) ≥ ζ > 0.

Proof: Let R =
‖ L1t,hZmn ‖

ζ
+max{|ψl(tm)|, |ψr(tm)|} and define the

barrier functions ϑ±
n,m by ϑ±

n,m = R ± Zm
n . On the boundaries,

we get ϑ±
0,m = R ± Zm

0 =
‖ L1t,hZmn ‖

ζ
+ max{|ψl(tm)|, |ψr(tm)|}±

ψl(tm) ≥ 0 and ϑ±
N,m = R ± Zm

N =
‖ L1t,hZmn ‖

ζ
+

max{|ψl(tm)|, |ψr(tm)|} ± ψr(tm) ≥ 0. For sn, n = 1(1)N − 1, we

obtain

L1t,hϑn,m =

−

(

εσ −
hβ(sn−1 ,tm)

30 +
hβ(sn+1 ,tm)

30

)(

R±Zmn−1−2(R±Zmn )+R±Zmn+1

h2

)

+
β(sn−1 ,tm)

60h

(

− 3(R± Zm
n−1)+ 4(R± Zm

n )− (R± Zm
n+1)

)

+
28β(sn ,tm)

60h

(

R± Zm
n+1 − (R± Zm

n−1)

)

+
β(sn+1 ,tm)

60h

(

R± Zm
n−1 − 4(R± Zm

n )+ 3(R± Zm
n+1)

)

+
P(sn−1 ,tm)

30

(

R± Zm
n−1

)

+
28P(sn ,tm)

30

(

R± Zm
n

)

+

P(sn+1 ,tm)
30

(

R± Zm
n+1

)

=

(

P(sn−1 ,tm)
30 +

28P(sn ,tm)
30 +

P(sn+1 ,tm)
30

)

R± L1t,hZm
n

=

(

P(sn−1 ,tm)
30 +

28P(sn ,tm)
30 +

P(sn+1 ,tm)
30

)

(

‖ L1t,hZmn ‖

ζ

+max{|ψl(tm)|, |ψr(tm)|}

)

± 1
30

(

Qm
n−1 + 28Qm

n + Qm
n+1

)

≥ 0. (37)

By Lemma 3.4, we get ϑ±
n,m ≥ 0, n = 0(1)N. Therefore, the needed

bound is obtained.

From Taylor’s series expansion, we get

∣

∣

∣

∣

−

(

d
ds2

− δ2s

)

Zm(sn)

∣

∣

∣

∣

≤ Ch2
∥

∥

∥

∥

d4Zm(sn)
ds4

∥

∥

∥

∥

,

∣

∣

∣

∣

dZm(sn−1)
ds

−

(

−Zmn+1+4Zmn −3Zmn−1

2h
+ h d2Zm(sn)

ds2

)
∣

∣

∣

∣

≤ Ch2
∥

∥

∥

∥

d3Zm(sn)
ds3

∥

∥

∥

∥

,

∣

∣

∣

∣

dZm(sn+1)
ds

−

(

3Zmn+1−4Zmn +Zmn−1

2h
− h d2Zm(sn)

ds2

)
∣

∣

∣

∣

≤ Ch2
∥

∥

∥

∥

d3Zm(sn)
ds3

∥

∥

∥

∥

,

∣

∣

∣

∣

( d
ds

− δ0s )Z
m(sn)

∣

∣

∣

∣

≤ Ch2
∥

∥

∥

∥

d3Zm(sn)
ds3

∥

∥

∥

∥

,

∣

∣

∣

∣

δ2s Z
m(sn)

∣

∣

∣

∣

≤ C

∥

∥

∥

∥

d2Zm(sn)
ds2

∥

∥

∥

∥

, (38)

where ‖Z(k)(sn)‖ = maxsn∈(s0 ,sN ) |Z
(k)
m (sn)|, k = 2, 3, 4.

The next theorem provides the truncation error estimate for the

developed scheme.

Theorem 3.6. Let the coefficients α(s, tm), β(s, tm), and κ(s, tm) of

(9)-(10) be sufficiently smooth such that Zm(s) ∈ C4[0, 1]. Then, the
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solution Zm
n of (33) satisfies the next bound

∣

∣L
1t,h(Zm(sn)− Zm

n )
∣

∣ ≤
Ch2

h+ ε

(

1+ ε−3 exp

(

−µ(1− sn)

ε

))

.

(39)

Proof: The error estimate in the spatial direction is given as

∣

∣

∣

∣

L
1t,h(Zm(sn)− Zm

n )

∣

∣

∣

∣

=

∣

∣

∣

∣

− ε

(

d

ds2
− σδ2s

)

Zm(sn)+
β(sn−1, tm)

30
(

dZm(sn−1)

ds
−

(

−Zm
n+1 + 4Zm

n − 3Zm
n−1

2h
+ h

d2Zm(sn)

ds2

))

+
28β(sn, tm)

30

(

d

ds
− δ0s

)

Zm(sn)+
β(sn+1, tm)

30
(

dZm(sn+1)

ds
−

(

3Zm
n+1 − 4Zm

n + Zm
n−1

2h
− h

d2Zm(sn)

ds2

))
∣

∣

∣

∣

≤

∣

∣

∣

∣

ε(β(sn, tm)
ρ

2
coth(β(1)

ρ

2
)− 1)δ2s Z

m(sn)

∣

∣

∣

∣

+

∣

∣

∣

∣

ε

(

d2

ds2
− δ2s

)

Zm(sn)

∣

∣

∣

∣

+

∣

∣

∣

∣

β(sn−1, tm)

30
(

dZm(sn−1)

ds
−

(

−Zm
n+1 + 4Zm

n − 3Zm
n−1

2h
+ h

d2Zm(sn)

∂s2

))
∣

∣

∣

∣

+

∣

∣

∣

∣

28β(sn, tm)

30

(

d

ds
− δ0s

)

Zm(sn)

∣

∣

∣

∣

+

∣

∣

∣

∣

β(sn+1, tm)

30
(

dZn(sn+1)

ds
−

(

3Zm
n+1 − 4Zm

n + Zm
n−1

2h
− h

d2Zm(sn)

ds2

))
∣

∣

∣

∣

,

(40)

where σ = β(sn, tm)
ρ
2 coth(β(1)

ρ
2 ) and ρ = h

ε
.

For the constants C1 and C2, we have
∣

∣ρ coth(ρ) − 1
∣

∣ ≤ C1ρ
2

for ρ ≤ 1. For ρ → ∞, since limρ→∞ coth(ρ) = 1 which gives
∣

∣ρ coth(ρ)− 1
∣

∣ ≤ C1ρ.

Generally, ∀ρ > 0, we express as

C1
ρ2

ρ + 1
≤ ρ coth(ρ)− 1 ≤ C2

ρ2

ρ + 1
(41)

and we have

ε[β(sn, tm)
ρ

2
coth(β(1)

ρ

2
)− 1] ≤ ε

(h/ε)2

h/ε + 1
=

h2

h+ ε
. (42)

From the bounds in (38), (40), and (42), we have

∣

∣

∣

∣

L1t,h(Zm(sn)− Zm
n )

∣

∣

∣

∣

≤ Ch2

h+ε

∥

∥

∥

∥

d2Zm(sn)
ds2

∥

∥

∥

∥

+ Ch2
∥

∥

∥

∥

d3Zm(sn)
ds3

∥

∥

∥

∥

+Cεh2
∥

∥

∥

∥

d4Zm(sn)
ds4

∥

∥

∥

∥

.

By Lemma 3.3, we have

∣

∣

∣

∣

L
1t,h(Zm(sn)− Zm

n )

∣

∣

∣

∣

≤
Ch2

h+ ε

(

1+ ε−2 exp

(

−
µ(1− sn)

ε

))

+ Ch2
[(

1+ ε−3 exp

(

−
µ(1− sn)

ε

))

+

(

ε + ε−3 exp

(

−
µ(1− sn)

ε

))]

.

(43)

Obviously, ε−3 ≥ ε−2, then we draw

∣

∣

∣

∣

L
1t,h(Zm(sn)− Zm

n )

∣

∣

∣

∣

≤
Ch2

h+ ε

(

1+ ε−3 exp

(

−µ(1− sn)

ε

))

(44)

thus, it gives the wanted bound.

Lemma 3.7. For a fixed mesh and as ε → 0, it holds

lim
ε→0

max
i

exp(−µsn/ε)

εi
= 0,

lim
ε→0

max
i

exp(−µ(1− sn)/ε)

εi
=

0, i = 1, 2, 3, ...,

where sn = nh, 1 ≤ n ≤ N − 1.

Proof: The proof is in [22].

Theorem 3.8. Let Zm
n be the solution of (33), then we have the

following uniform error bound

sup
ε∈(0,1]

max
n

∣

∣Zm(sn)− Zm
n

∣

∣ ≤ Ch, n = 0(1)N. (45)

Proof: Substituting Lemma 3.7 into (39), we arrive at

∣

∣

∣

∣

L
1t,h(Zm(sn)− Zm

n )

∣

∣

∣

∣

≤
Ch2

h+ ε
. (46)

Hence, the result leads

∣

∣

∣

∣

Zm(sn)− Zm
n

∣

∣

∣

∣

≤
Ch2

h+ ε
. (47)

Using the sup over all ε ∈ (0, 1], we get

sup
ε∈(0,1]

max
n

∣

∣Zm(sn)− Zm
n

∣

∣ ≤ Ch, n = 0(1)N. (48)

From (46), when ε > h, the obtained method uniformly converges

uniformly with order two in the space direction. When ε≪ h, the

method converges uniformly with order one in the space direction.

Theorem 3.9. Let z and Z are the solutions of (1) and (33),

respectively, then we have the following uniform error bound

sup
ε∈(0,1]

∣

∣z − Z
∣

∣ ≤ C(h+ (1t)). (49)

Proof: The proof is considered by combining of Lemma 3.1 and

Theorem 3.8.

4. Numerical results

Considering two test examples we carry out some numerical

inquiries to confirm the developed scheme is ε-uniform

convergent. Since the exact solution of the examples are not

known, we used a variant of double mesh principle is applied

for the numerical inquiries. So, we calculate the maximum

pointwise error by EN,M
ε = maxn,m

∣

∣ZN,M
n,m − Z2N,2M

n,m

∣

∣, the ε-

uniform error by EN,M = maxn,m(E
N,M
ε ), the rate of convergence

by rN,M
ε = log 2(EN,M

ε /E2N,2M
ε ), and the ε-uniform rate of

convergence by rN,M = log 2(EN,M/E2N,2M).
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4.1. Example

Consider the problem [7]

∂z
∂t − ε

∂2z
∂s2

+ (2− s2) ∂z
∂s + su(s, t)+ u(s, t − δ) =

10t2 exp(−t)s(1− s),

(s, t) ∈ (0, 1) × (0, 2] with interval condition z(s, t) = 0, on

(s, t) ∈ [0, 1] × [−1, 0] and the boundary conditions z(0, t) = 0

and z(1, t) = 0, t ∈ [0, 2].

4.2. Example

Consider the problem [13]

∂z

∂t
− ε

∂2z

∂s2
+ (2− s2)

∂z

∂s
+ (s+ 1)(t + 1)z(s, t)+ z(s, t − δ) =

10t2 exp(−t)s(1− s),

TABLE 1 E
N,M
ε

,EN,M, rN,M
ε

, and r
N,M for Example 4.1.

ε ↓ Number of intervals N = M

16 32 64 128 256

20 2.1285e-04 1.4601e-05 2.7352e-05 2.0267e-05 1.1789e-05

3.8657 -0.9056 0.4325 0.7817 -

2−2 9.8466e-04 8.9095e-05 1.1378e-04 8.8529e-05 5.2297e-05

3.4662 -0.3528 0.3620 0.7594 -

2−4 3.6424e-03 5.2203e-04 2.1648e-04 1.6404e-04 9.7451e-05

2.8027 1.2699 0.4002 0.7513 -

2−6 1.2902e-02 3.8264e-03 7.1066e-04 3.0405e-04 1.5008e-04

1.7535 2.4288 1.2249 1.0186 -

2−8 1.5384e-02 7.4554e-03 3.1045e-03 9.0706e-04 2.8724e-04

1.0451 1.2639 1.7751 1.6589 -

2−10 1.5389e-02 7.6241e-03 3.7907e-03 1.8490e-03 7.7045e-04

1.0133 1.0081 1.0357 1.2630 -

2−12 1.5389e-02 7.6241e-03 3.7923e-03 1.8943e-03 9.4730e-04

1.0133 1.0075 1.0014 0.9998 -

2−14 1.5389e-02 7.6241e-03 3.7923e-03 1.8943e-03 9.4771e-04

1.0133 1.0075 1.0014 0.9992 -

2−16 1.5389e-02 7.6241e-03 3.7923e-03 1.8943e-03 9.4771e-04

1.0133 1.0075 1.0014 0.9992 -

2−18 1.5389e-02 7.6241e-03 3.7923e-03 1.8943e-03 9.4771e-04

1.0133 1.0075 1.0014 0.9992 -

2−20 1.5389e-02 7.6241e-03 3.7923e-03 1.8943e-03 9.4771e-04

1.0133 1.0075 1.0014 0.9992 -

EN,M 1.5389e-02 7.6241e-03 3.7923e-03 1.8943e-03 9.4771e-04

rN,M 1.0133 1.0075 1.0014 0.9992 −

(s, t) ∈ (0, 1) × (0, 2] with interval condition z(s, t) = 0, on

(s, t) ∈ [0, 1] × [−1, 0] and the boundary conditions z(0, t) = 0

and z(1, t) = 0, t ∈ [0, 2].

For distinguishable values of ε and N, the obtained results for

themodel Examples 4.1 and 4.2, respectively, EN,M
ε ,EN,M , rN,M

ε , and

rN,M of the developed scheme are delineated in Tables 1, 2. From

these tables, one can observe that the maximum absolute error

decreases as the step sizes decrease for every value of ε, and as ε

approaches to zero, the maximum absolute error after getting large

becomes constant, which displays ε-uniform convergence of the

proposed scheme regardless of ε. On the other hand, the calculated

EN,M and the corresponding rN,M using the proposed scheme are

given in the last two rows, which confirms that the theoretical

finding of the developed scheme is order one in both space and time

direction.

In Figures 1, 2, the numerical solutions of the method for

Examples 4.1 and 4.2 for different values of ε are given, respectively,

for N = 80 and M = 40. Figure 3 displays the effect ε on the

solutions profile of the developed scheme for Examples 4.1 and 4.2.

From the figures, we see that a strong boundary layer is created on

TABLE 2 E
N,M
ε

,EN,M, rN,M
ε

, and r
N,M for Example 4.2.

ε ↓ Number of intervals N = M

16 32 64 128 256

20 1.3602e-04 1.4927e-05 1.4266e-05 1.0773e-05 6.3185e-06

3.1878 0.0653 0.4052 0.7698 -

2−2 3.8939e-04 6.6953e-05 6.2477e-05 3.9473e-05 2.1855e-05

2.5400 0.0998 0.6625 0.8529 -

2−4 9.8460e-04 2.5366e-04 1.3556e-04 6.9903e-05 3.5485e-05

1.9566 0.9040 0.9555 0.9782 -

2−6 3.5833e-03 1.2258e-03 4.0647e-04 1.4312e-04 5.5885e-05

1.5476 1.5925 1.5059 1.3567 -

2−8 4.8773e-03 2.9551e-03 1.2250e-03 4.0706e-04 1.2709e-04

0.7229 1.2704 1.5895 1.6794 -

2−10 4.8804e-03 3.0579e-03 1.6631e-03 8.3185e-04 3.3471e-04

0.6745 0.8787 0.9995 1.3134 -

2−12 4.8804e-03 3.0579e-03 1.6641e-03 8.6096e-04 4.3655e-04

0.6745 0.8778 0.9507 0.9798 -

2−14 4.8804e-03 3.0579e-03 1.6641e-03 8.6096e-04 4.3682e-04

0.6745 0.8778 0.9507 0.9789 -

2−16 4.8804e-03 3.0579e-03 1.6641e-03 8.6096e-04 4.3682e-04

0.6745 0.8778 0.9507 0.9789 -

2−18 4.8804e-03 3.0579e-03 1.6641e-03 8.6096e-04 4.3682e-04

0.6745 0.8778 0.9507 0.9789 -

2−20 4.8804e-03 3.0579e-03 1.6641e-03 8.6096e-04 4.3682e-04

0.6745 0.8778 0.9507 0.9789 -

EN,M 4.8804e-03 3.0579e-03 1.6641e-03 8.6096e-04 4.3682e-04

rN,M 0.6745 0.8778 0.9507 0.9789 −

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2023.1244490
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Tesfaye et al. 10.3389/fams.2023.1244490

FIGURE 1

Numerical solution of Example 4.1 for ε = 2−6 and ε = 2−20, respectively.

FIGURE 2

Numerical solution of Example 4.2 for ε = 2−6 and ε = 2−20, respectively.

FIGURE 3

E�ect of ε on solution profiles for Examples 4.1 and 4.2, respectively.

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2023.1244490
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Tesfaye et al. 10.3389/fams.2023.1244490

FIGURE 4

Maximum point wise error in log-log scale plot for Examples 4.1 and 4.2, respectively.

TABLE 3 E
N,M and r

N,M for Example 4.1.

Number of intervals N = M

Schemes
↓

16 32 64 128 256

Present method

EN,M 1.5389e-

02

7.6241e-

03

3.7923e-

03

1.8943e-

03

9.4771e-

04

rN,M 1.0133 1.0075 1.0014 0.9992 −

Method in [23]

EN,M − 7.2307e-

03

3.8523e-

03

1.9892e-

03

1.0107e-

03

rN,M − 0.90842 1.0062 1.0155 0.98837

Method in [29]

EN,M 3.41e-02 1.84e-02 9.38e-03 4.67e-03 2.31e-03

rN,M 0.8901 0.9720 1.0062 1.0155 1.0063

the right side of the spatial domain as ε close to zero. Furthermore,

in Figure 4, the maximum point wise errors of the scheme is shown

by the log-log scale plot. From these figures, one can observe that

maximum absolute error decreases as the step sizes decrease for

every values of ε, which confirm ε-uniform convergence of the

proposed scheme.

In Table 3, the comparison with results of the developed

method with the existing recently published studies of [23, 29] are

given for Example 4.1. In Table 4, the comparison with results of the

developed method with the existing number of recently published

studies of [15, 24, 29, 30] are given for Example 4.2. As one follows,

the developed scheme holds more accurate.

5. Conclusion

We have developed a numerical method for solving singularly

perturbed parabolic convection-diffusion equation with a large

TABLE 4 E
N,M and r

N,M for Example 4.2.

Number of intervals N = M

Schemes
↓

16 32 64 128 256

Present method

EN,M 4.8804e-

03

3.0579e-

03

1.6641e-

03

8.6096e-

04

4.3682e-

04

rN,M 0.6745 0.8778 0.9507 0.9789 −

Method in [30]

EN,M 6.40e-03 3.43e-03 1.75e-03 8.85e-04 4.44e-04

rN,M 0.89986 0.97085 0.98361 0.99512 −

Method in [15]

EN,M 1.86e-2 1.00e-2 5.48e-3 2.86e-3 1.46e-3

rN,M 0.89 0.87 0.94 0.97 1.11

Method in [29]

EN,M 3.06e-02 1.72e-02 9.00e-03 4.58e-03 2.30e-03

rN,M 0.8311 0.9344 0.9746 0.9937 1.0000

Method in [24]

EN,M 4.9006e-

02

2.8622e-

02

1.5141e-

02

7.7173e-

03

3.8858e-

03

rN,M 0.775836 0.918608 0.972338 0.989898 0.995894

time delay. The solution of the problem exhibits a boundary

layer on the right side of the domain. The solution has a steep

gradient in the layer region due to the presence of ε. In the

rapidly changing behavior of the solution in the layer region,

one encounters computational difficulties to find the solution

using analytically or using classical numerical methods. To handle

this effect, we developed method comprises of the backward

Euler scheme in the time direction and an exponentially fitted
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higher order finite difference scheme in the spatial direction.

Using comparison principle, the stability of the discrete scheme is

analyzed. The stability and uniformly convergent of the method

are discussed theoretically. Numerical results are delineated

by applying maximum point wise error, ε-uniform error and

ε-uniform rate of convergence in tables which are in acceptable

agreement with the theoretical analysis. The developed method

contributes more accurate, stable, and ε-uniform with a linear

order of convergence in the spatial and in the time direction. The

proposed scheme can be extended for singularly perturbed turning

point problems.
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