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This paper presents a parameter-uniform numerical method to solve the time

dependent singularly perturbed delay parabolic convection-di�usion problems.

The solution to these problems displays a parabolic boundary layer if the

perturbation parameter approaches zero. The retarded argument of the delay term

made to coincide with a mesh point and the resulting singularly perturbed delay

parabolic convection-di�usion problem is approximated using the implicit Euler

method in temporal direction and extended cubic B-spline collocation in spatial

orientation by introducing artificial viscosity both on uniformmesh. The proposed

method is shown to be parameter uniform convergent, unconditionally stable, and

linear order of accuracy. Furthermore, the obtained numerical results agreed with

the theoretical results.
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1. Introduction

Singularly perturbed delay differential equations (SPDDEs) are differential equations

that involve diffusion parameter, known as the perturbation parameter ε, and at least a delay

term. SPDDEs arise in many practical phenomena, such as epidemiology [1], population

growth [2], chemostat models [3], circadian rhythms [4], the respiratory system [5], and

tumor growth [6]. The following is a typical example of SPDDEs, which is a mathematical

model of the overall control system [7] which models a furnace used to process metal sheets.

∂u(x, t)

∂t
− ε

∂2u(x, t)

∂x2
= υ

(
g
(
u(x, t − τ )

)) ∂u
∂x

+ C
[
f
(
u(x, t − τ )

)
− u(x, t)

]
,

defined on a one-dimensional spatial domain 0 < x < 1, where u(x, t) is the temperature

distribution in metal sheet moving at a velocity υ depending on a prescribed spatial average

of the time-delayed temperature distribution u(x, t − τ ) and f represents a distributed

temperature source function depending on u(x, t − τ ). The spatial temperature distribution

in the incoming and out coming material within the furnace is given as u(0, t) and u(1, t),

respectively. A controlling device monitoring the current temperature dynamically adapts

both υ and f . A fixed delay of length τ is induced by the finite speed of the controller. Another

typical example of SPDDEs is the following logistic equation [8]:
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∂u(x, t)

∂t
− ε

∂2u(x, t)

∂x2
= u(x, t)

(
1− u(x, t − τ )

)
,

which arise in mathematical ecology for the evolution of a

population with density u(x, t). A population u(x, t) depends on

the population at an earlier time, t − τ rather than t. The delay

τcan arise from a great variety of causes, such as duration of

gestation, hatching period, and slow replacement of food supplies.

Thus, u(x, t) depends on average past population u(x, t − τ ). The

initial and final spatial spread of the favored population are given

by u(0, t) and u(1, t), respectively. A set of examples is available in

Wu et al. [9] to illustrate the wide range of existing delay differential

equation models.

When the highest order term coefficient ε tends to zero, the

solution of SPDDE possesses a boundary layer. This layer is a thin

region at the right side of the domain where the solution has a

steep gradient. As the solution gets steeper, the classic methods

on the uniform mesh are unable to solve SPDDEs without using

an inadequately small mesh size, which is not practicable. This

motivated various researchers to develop ε-uniform non-classical

numerical methods. When the delay parameter τ is smaller than ε,

the given delay differential equation is reduced by means of Taylor

series expansion, but if the delay parameter is higher, this approach

does not work [10]. In such case, during developing the scheme the

point t− τ must coincide with a mesh point. In this study, we have

a numerical scheme for the problem with the large delay.

In the last few years, several numerical approaches have been

developed for the solution of time dependent singularly perturbed

differential equations [8]. However, in the case of these equations

with time delay, few numerical methods have been developed, and

studies are still at an early stage [8]. Some of them, which treat

time dependent singularly perturbed delay parabolic convection-

diffusion initial boundary value problems are listed here. Das and

Natesan [11] had proposed to a numeric scheme consisting of

an implicit-Euler scheme in the temporal direction, accompanied

by a hybrid scheme in the space direction. Negero and Duressa

[12] developed a second-order ε-uniform convergent scheme on

a uniform mesh. They discretize time and spatial derivatives by

the implicte Euler rule and Micken’s non-standard method with

extrapolation, respectively. In the same year, Negero and Duressa

[13] designed an efficient numerical approach which is uniformly

convergent of second order of convergent. They discretize time

and spatial derivatives, respectively, by Crank-Nicolson and

the exponentially fitted spline method. Woldaregay et al. [14]

developed a novel numerical scheme using by an exponentially

fitted operator which is ε-uniform convergent of linear order of

convergent. Kumar et al. [15] developed a graded mesh refinement

approach. The approach shows parameter uniform convergent

linear order. Abdelhakem and Youssri [16] proposed two spectral

Legendre’s derivative algorithms for Lane-Emden, Bratu equations,

and singular perturbed problems. They have shown the numerical

schemes are stable, convergent, and accurate. Abd-Elhameed

et al. [17] suggested and analyzed a new operational matrix

method based on shifted Legendre polynomials for obtaining

numerical spectral solutions of linear and non-linear second-order

boundary value problems. The authors showed that the method

has the following advantages. The method can be applied for

both linear and non-linear second-order boundary value problems

including some important singular perturbed equations and also

a Bratu-type equation. This method computes highly accurate

approximate solutions. Authors [18–24] also developed ε-uniform

convergent numerical methods for singularly perturbed delay

partial differential equation.

Nowadays, the use of the spline based approach has become

very popular among different numerical methods to solve SPDDEs.

Daba and Duressa [25] proposed a uniform convergent numerical

scheme for singularly perturbed parabolic convection- diffusion

equation with a small delay and advance parameter in the spatial

variable of reaction term using an extended cubic B-spline method.

They also suggested uniformly convergent numerical scheme for

this problem using cubic B-spline [26] on a uniform mesh. Kumar

and Kadalbajoo [27] proposed the parameter-uniform numerical

method for the problem using cubic B-spline on a Shishkin mesh.

Kumar [8] and Negero and Duressa [28] developed a parameter

uniform convergent method to solve time dependent singularly

perturbed delay parabolic convection-diffusion initial boundary

value problems using the cubic B-spline collocation method on a

piecewise uniform Shishkine mesh and uniformmesh, respectively.

The extended cubic B-spline collocation method is a generalization

of the cubic B-spline collocation method. It introduces a free

parameter to allow the cubic B-spline’s shape to alter while

maintaining the continuity in the order of three. Kumar and

Kumari [29] designed ε-uniform convergent numerical methods

using an extended cubic B-spline collocation method for singularly

perturbed delay parabolic convection-diffusion initial boundary

value problems on a piecewise uniform Shishkine mesh.

The main contribution of this study is to construct a parameter

uniform numerical method for singularly perturbed delay parabolic

convection-diffusion problems. Themethod consists of the implicit

Euler rule for temporal discretization and the extended cubic B-

spline collocation method for spatial discretization on a uniform

mesh using artificial viscosity. In this method, we use artificial

viscosity σ (x, ε) to substitute the perturbation parameter ε that

affects the highest derivative.

The rest of this article is organized as follows: in Section 2,

we discuss the continuous problem and show the boundedness

of the exact solution. The numerical scheme of the problem is

discussed in Section 3. In this section, the implicit Euler method,

the extended cubic B-spline collocation method, and the derivation

of artificial viscosity are briefly discussed. Section 4 describes

the convergence analysis of the proposed method. In Section

5, numerical illustrations are given to confirm the theoretical

investigation. Lastly, Section 6 gives conclusion of the article.

Notation

C,C1,C2: A generic positive constants independent of ε and

the mesh parameters N andM

Ck(D): The set of k times continuously differentiable function

on domain D

‖f ‖D sup(x,t)∈D |f (x, t)|
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2. Problem statement

Let �x = (0, 1), �t∗ = [−τ , 0] and �t = (0,T] for some fixed

positive time T. We define D = �x ×�t and ∂D = D0 ∪ Db ∪ D1,

where D0 = {(0, t), t ∈ �t}, D1 = {(1, t), t ∈ �t}, and Db =
�x × �t∗. We consider the following singularly perturbed delay

parabolic initial boundary value problem (IBVP):

(
∂

∂t
+ Lε

)
u(x, t) = −c(x, t)u(x, t − τ )+ f (x, t) (x, t) ∈ D

(1)

with

u(0, t) = ψ0(t), u(1, t) = ψ1(t) t ∈ �t (2)

and

u(x, t) = ψb(x, t), (x, t) ∈ Db (3)

where τ and 0 < ε ≪ 1 are delay and singular perturbation

parameter, respectively. The differential operator Lε in Eq. (1) is

defined as

Lεu(x, t) = −ε
∂2u(x, t)

∂x2
+ a(x)

∂u(x, t)

∂x
+ b(x, t)u(x, t).

The functions a(x), b(x, t), c(x, t), f (x, t),ψ0(t),ψ1(t), and ψb(x, t)

are assumed to be sufficiently smooth, bounded, and independent

of ε. It is also assumed that

a(x) ≥ α > 0, b(x, t) ≥ β > 0, c(x, t) ≥ γ > 0, (x, t) ∈ D

and terminal T, satisfy T = kτ for some positive integer k. We also

assume that the data satisfy the following compatibility conditions:

ψb(0, 0) = ψ0(0),

ψb(1, 0) = ψ1(0),

dψ0

dt

∣∣∣∣
t=0

− ε
∂2ψb

∂x2

∣∣∣∣
(0,0)

+ a(0)
∂ψb

∂x

∣∣∣∣
(0,0)

+ b(0, 0)ψb(0, 0) = −c(0, 0)ψb(0,−τ )+ f (0, 0),

dψ1

dt

∣∣∣∣
t=0

− ε
∂2ψb

∂x2

∣∣∣∣
(1,0)

+ a(1)
∂ψb

∂x

∣∣∣∣
(1,0)

+ b(1, 0)ψb(1, 0) = −c(1, 0)ψb(1,−τ )+ f (1, 0),

Under the above assumptions and conditions, the solution of IBVP

Eq. (1) is unique which has a parabolic boundary layer of width

O(ε) along x = 1. Compatibility conditions [30] are relationships

between the data of the problem and the differential operator

that ensure that derivatives of u(x, t) up to a desired order are

continuous on the closed domain D. They do not result from the

problem’s singularly perturbed nature because they only appear

at corners.

Lemma 2.1 (Continuous Maximum Principle). Suppose the

function ϕ(x, t) ∈ C2,1(D) satisfies
(
∂
∂t + Lε

)
ϕ(x, t) ≥ 0, ∀(x, t) ∈

D and ϕ(x, t) ≥ 0, ∀(x, t) ∈ ∂D, then ϕ(x, t) ≥ 0, ∀(x, t) ∈ D.

Proof. Let (x̃, t̃) ∈ D, such that ϕ(x̃, t̃) = min(x,t)∈D ϕ(x, t) and

suppose that ϕ(x̃, t̃) < 0. Clearly (x̃, t̃) /∈ ∂D. Then, it follows from

calculus that ∂ϕ(x̃,t̃)
∂x = 0, ∂ϕ(x̃,t̃)

∂t = 0 and ∂2ϕ(x̃,t̃)
∂x2

≥ 0. Therefore,

from Eq (1), we have

(
∂

∂t
+ Lε

)
ϕ(x̃, t̃) =

∂ϕ(x̃, t̃)

∂t
− ε

∂2ϕ(x̃, t̃)

∂x2
+ a(x̃)

∂ϕ(x̃, t̃)

∂x

+b(x̃, t̃)ϕ(x̃, t̃) ≤ 0,

which is a contradiction to the assumption made. Thus, ϕ(x̃, t̃) ≥ 0

which leads to ϕ(x, t) ≥ 0, ∀(x, t) ∈ D.

Lemma 2.2. [11] The solution u(x, t) of the IBVP Eq. (1) satisfies

the estimate

|u(x, t)− ψb(x, 0)| ≤ Ct, ∀(x, t) ∈ D (4)

Lemma 2.3. The solution u(x, t) of the IBVP Eq. (1) satisfies the

estimate

|u(x, t)| ≤ C, ∀(x, t) ∈ D. (5)

Proof. Since t ∈ (0,T], by Lemma 2.2, we get |u(x, t)− ψb(x, 0)| ≤
Ct ≤ CT. It follows that

|u(x, t)| = |u(x, t)− ψb(x, 0)+ ψb(x, 0)|
≤ |u(x, t)− ψb(x, 0)| + |ψb(x, 0)|,
≤ CT + |ψb(x, 0)|.

Since |ψb(x, 0)| ∈ C2,1(D), CT + |ψb(x, 0)| is bounded by some

positive constant C, |u(x, t)| ≤ C, ∀(x, t) ∈ D.

Lemma 2.4 (Uniform stability estimate). Let u(x, t) be solution of

the IBVP Eq. (1). Then, we obtain the bound:

|u(x, t)| ≤ β−1

∥∥∥∥
(
∂

∂t
+ Lε

)
u(x, t)

∥∥∥∥
+max{|ψ0(t)|, |ψ1(t)|, |ψb(x, t)|}. (6)

Proof. Let define barrier functions

9±(x, t) = β−1
∥∥(

∂
∂t + Lε

)
u(x, t)

∥∥ +
max{|ψ0(t)|, |ψ1(t)|, |ψb(x, t)|} ± u(x, t). By applying the

continuous maximum principle Lemma 2.1, we obtain the

required result.

Theorem 2.1. The solution u(x, t) of Eq (1) and its derivatives

satisfy the following bounds :

∣∣∣∣
∂ i+ju(x, t)

∂xj∂ti

∣∣∣∣ ≤ C(1+ ε−j exp(−α(1− x)/ε)), for all, (x, t) ∈ D,

(7)

where i and j are non-negative integers such that 0 ≤ i+ j ≤ 5.

Proof. See details of the proof in Mbroh et al. [31].

3. Numerical scheme

This section describes the semi-discretization and extended

cubic B-spline method on the uniform mesh by introducing

artificial viscosity.
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TABLE 1 Values ofQj ,Q
′

j ,Q
′′

j at knots.

i = j− 2 i = j− 1 i = j i = j+ 1 i = j+ 2

Qj(xi , η) 0 4−η
24

8+η
12

4−η
24

0

Q
′
j (xi , η) 0 − 1

2h
0 1

2h
0

Q
′′
j (xi , η) 0 2+η

2h2
− 2+η

h2
2+η
2h2

0

FIGURE 1

Numerical solution profile for Example 5.1, with N = 64,M = 80. (A)

ε = 2−4. (B) ε = 2−15.

3.1. The time semi-discretization

Here, we use Rothe’s technique [32, 33] to discretize the time

variable of equation Eq. (1) by means of the Euler implicit rule.We

make the argument t − τ as a nodal point for the uniform

mesh of step size 1t. Let �M
t = {ti = i1t = i(T/M), i =

0, 1, . . . ,M, tM = T} and �m
t = {−ti = i1t, i =

0, 1, . . . ,m, tm = τ } for the intervals [0,T] and [−τ , 0],
respectively. M and m are the number of mesh elements to

their respective intervals. After time discretization, we obtain the

FIGURE 2

Numerical solution profile for Example 5.2, with N = M = 64. (A)

ε = 2−4. (B) ε = 2−15.

following semi-discretized problem





L
M
ε U

i+1(x) = 8i(x), x ∈ �x, 0 ≤ i ≤ M − 1

U i+1(0) = ψ0(ti+1), 0 ≤ i ≤ M − 1

U i+1(1) = ψ1(ti+1), 0 ≤ i ≤ M − 1

U−i(x, t) = ψb(x,−ti), x ∈ �x, 0 ≤ i ≤ m

(8)

where L
M
ε U

i+1(x) ≡ −ε d
2U i+1(x)
dx2

+ a(x) dU
i+1(x)
dx

+ di+1U i+1(x),

di+1(x) =
1

1t
+ bi+1(x),8i(x) =

1

1t
U i(x)− ci+1(x)U i+1−m(x)+

f i+1(x).

U i+1(x) is the approximation of the exact solution u(x, ti+1) at

(i+ 1)th time level.

Lemma 3.1 (Semi-discrete maximum principle). Let yi+1(x) be a

sufficiently smooth function on�x such that y
i+1(0) ≥ 0, yi+1(1) ≥

0. Then, LM
ε y

i+1(x) ≥ 0, ∀x ∈ �x implies yi+1(x) ≥ 0, and ∀x ∈
�x.

Proof. Let x∗ ∈ �x such that min
x∈�x

yi+1(x) = yi+1(x∗) and assume

yi+1(x∗) < 0. It is clear that x∗ /∈ {0, 1}. From property of
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FIGURE 3

Numerical solution of Example 5.1 for di�erent values of ε and t with N = 64 and M = 80.

calculus, we have
dyi+1(x∗)

dx
= 0 and

d2yi+1(x∗)

dx2
≥ 0. This

yield L
M
ε y

i+1(x∗) < 0 which contradicts to the hypothesis made

L
M
ε y

i+1(x) ≥ 0. Therefore, we conclude that yi+1(x) ≥ 0, ∀x ∈
�x.

In the temporal semi-discretization, ei+1 = u(x, ti+1)−Û i+1(x)

defines the local truncation error, where Û i+1(x) is the solution

obtained after one step of the semi-discrete scheme taking the exact

solution U(x, ti) instead of U i(x) as the starting data. For each time

step, local error estimate contribute to the global error in temporal

discretization which is defined at the instant ti as Ei = u(x, ti) −
U i(x).

Lemma 3.2 (Local error estimate). The local error corresponding

to the semi-discretized problem Eq. (8) satisfies

‖ei+1‖ ≤ C(1t)2

Proof. Taylor’s series expansion on u(x, t) gives

u(x, ti+1)−1t
∂u(x, ti+1)

∂t
= u(x, ti)+O(1t)2 (9)

Substituting Eq. (1) in to Eq. (9), we get

u(x, ti+1)−1t

[
ε
∂2u(x, ti+1)

∂x2
− a(x)

∂u(x, ti+1)

∂t

−b(x, ti+1)u(x, ti+1)− c(x, ti+1)u(x, ti+1−m)+ f (x, ti+1)
]

= u(x, ti)+O(1t)2 (10)

In terms of the differential operator, we get

(1+1tLε)u(x, ti+1) = u(x, ti)+1t(−c(x, ti+1)u(x, ti+1−m)

+f (x, ti+1))+O(1t)2 (11)

Thus, Û i+1(x) satisfies

(1+1tLε)Û
i+1(x) = Û i(x)+1t(−c(x, ti+1)Û

i+1−m(x)+f (x, ti+1)).

(12)

From Eq. (11) and Eq. (12), the local error satisfy the following

boundary value problem:

{
(1+1tLε)ei+1 = O((1t)2)

ei+1(0) = 0 = ei+1(1).
(13)

An application of Lemma 3.1 on the operator (1 + 1tLε) gives

‖ei+1‖ ≤ C(1t)2, which completes the proof.

Lemma 3.3 (Global error estimate). The global error estimate at

ti+1 satisfies

‖Ei+1‖ ≤ C1t, i1t ≤ T.

Proof. By definition, we have

‖Ei+1‖ =
∥∥∥∥∥

i∑

s=1

es

∥∥∥∥∥

≤ ‖e1‖ + ‖e2‖ + · · · + ‖ei‖
≤ iC((1t)2), Lemma 3.2

= C(i1t)1t, i1t ≤ T

≤ C1t,

where C is a positive constant independent of ε and1t.

Lemma 3.4. The solution of Eq. (8) satisfies

∣∣∣∣
dnU i+1(x)

dxn

∣∣∣∣ ≤ C

(
1+ ε−n exp

(
−
α(1− x)

ε

))
,

x ∈ �x, n = 0, 1, 2, 3, 4.

Proof. See the proof in Kellogg and Tsan [34] and Clavero et al.

[35].

3.2. The spatial discretization

Here, we apply the extended cubic B-spline collocation for the

problem Eq. (8). Artificial viscosity shall be introduced to take into
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account the exponential properties of exact solution on the uniform

mesh. Therefore, the perturbation parameter ε, which affects the

highest derivative, is replaced by an artificial viscosity σ (x, ε). We

rewrite the problem Eq. (8) as





L
M
σ U

i+1(x) = 8i(x), x ∈ �x, 0 ≤ i ≤ M − 1

U i+1(0) = ψ0(ti+1), 0 ≤ i ≤ M − 1

U i+1(1) = ψ1(ti+1), 0 ≤ i ≤ M − 1

U−i(x, t) = ψb(x,−ti), x ∈ �x, 0 ≤ i ≤ m,

(14)

where L
M
σ U

i+1(x) ≡ −σ (x, ε) d
2U i+1(x)
dx2

+ a(x) dU
i+1(x)
dx

+

di+1U i+1(x), di+1(x) =
1

1t
+ bi+1(x), 8i(x) =

1

1t
U i(x) −

ci+1(x)U i+1−m(x) + f i+1(x). Now, U i+1(x) is the approximation

of the exact solution u(x, ti+1) at the (i + 1)th time level after

introducing artificial viscosity. The properties of all data in Eq. (8)

are retained in Eq. (14).

3.2.1. Extended cubic B-spline method
The interval [0, 1] is divided such that knots are equally

distributed as �N
x = {xi}N0 and mesh spacing h =

1

N
. Let η ∈ R,

then the blending function of degree 4 of extended cubic B-spline

Qj has the following form [36]:

Qj(x, η) =
1

24h4





4h(1− η)(x− xj−2)
3 + 3η(x− xj−2)

4, x ∈ [xj−2, xj−1)

h4(4− η)+ 12h3(x− xj−1)+ 6h2(2+ η)(x− xj−1)
2

−12h(x− xj−1)
3 − 3η(x− xj−1)

4, x ∈ [xj−1, xj)

h4(4− η)+ 12h3(xj+1 − x)+ 6h2(2+ η)(xj+1 − x)2

−12h(xj+1 − x)3 − 3η(xj+1 − x)4, x ∈ [xj, xj+1)

4h(1− η)(xj+2 − x)3 + 3η(xj+2 − x)4, x ∈ [xj+1, xj+2)

0, Otherwise

(15)

where η is a free parameter which is used to obtain different

form of extended cubic B-spline functions and satisfy [37] the

property, −8 ≤ η ≤ 1. When η = 0, Qj(x, η) degenerates

into exactly cubic B-spline functions. The extended cubic B-

spline is the generalization of the B-spline. The sequence 3 =
{Qj(x, η)}N+1

−1 forms a basis for the functions defined over the

interval [0, 1] andQj(x, η) ∈ C2(�x). The value ofQj(x, η),Q
′
j(x, η),

and Q
′′
j (x, η) at the knots xjs computed from Eq. (15) are

shown Table 1.

Now, suppose that the approximate solution S(x, η) ∈
Q̂3(�

N
x ) = span 3 to the exact solution u(x, ti+1) at (i + 1)th time

level given by

S(x, η) =
N+1∑

j=−1

δjQj(x, η), (16)

where δj are the parameters to be determined from the application

of the collocation method, initial and boundary conditions. Using

Table 1, evaluation of Eq. (16) and its first and second derivatives at

knots xj yield

S(xj, η) =
4− η
24

δj−1 +
8+ η
12

δj +
4− η
24

δj+1

S
′
(xj, η) = −

1

2h

(
δj−1 − δj+1

)

S
′′
(xj, η) =

2+ η
2h2

(
δj−1 − 2δj + δj+1

)
.

(17)

Using Eq. (17) at xj in Eq. (14), we get the system of N + 1 linear

equations in N + 3 unknown as

− σj
[
2+ η
2h2

(
δj−1 − 2δj + δj+1

)]
+ aj

[
−

1

2h

(
δj−1 − δj+1

)]

+ di+1
j

[
4− η
24

δj−1 +
8+ η
12

δj +
4− η
24

δj+1

]
= 8i(xj). (18)

This gives

R−j δj−1 + R0j δj + R+j δj+1 = h28i
j, 0 ≤ j ≤ N, (19)

where





R−j = −σj
(
2+ η
2

)
−

1

2
haj +

(
4− η
24

)
h2di+1

j

R0j = σj(2+ η)+
(
8+ η
12

)
h2di+1

j

R+j = −σj
(
2+ η
2

)
+

1

2
haj +

(
4− η
24

)
h2di+1

j

σj = σ (xj, ε), aj = a(xj),

3.2.2. Design of the artificial viscosity
The two-variable method [38] for boundary value problem Eq.

(14) with a(x) > 0 expresses the solution U i+1(x) as

U i+1(x) = U i+1
0 (x)+

a(1)

a(x)

(
ψ1(ti+1)− U i+1

0 (1)
)

exp

(
−

∫ 1

x

a2(s)+ εdi+1(s)

εa(s)
ds

)
+O(ε), (20)

where U i+1
0 (x) is solution of the reduced problem

a(x)
dU i+1(x)

dx
+ di+1(x)U i+1(x) = 8i(x), U i+1

0 (0) = U0(0).

With the Taylor series expanding a(x) and di+1(x) about “1," and

keeping the first term, we obtain

U i+1(x) = U i+1
0 (x)+

(
ψ1(ti+1)− U i+1

0 (1)
)

exp

(
−
(a2(1)+ εdi+1(1))(1− x)

εa(1)

)
+O(ε). (21)
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Eqs (19) and (21) at the nodal point xj are given by

[
−

(
2+ η
2

)
σj

h
−

a(xj)

2
+

(
4− η
24

)
hdi+1

j

]
δj−1+

[
(2+ η)

σj

h

+
(
8+ η
12

)
hdi+1

j

]
δj

+
[
−

(
2+ η
2

)
σj

h
+

a(xj)

2
+

(
4− η
24

)
hdi+1

j

]
δj+1 = h8i

j

and

4− η
24

δj−1 +
8+ η
12

δj +
4− η
24

δj+1 = U i+1
0 (x)

+
(
ψ1(ti+1)− U i+1

0 (1)
)
exp

(
−
(a2(1)+ εdi+1(1))(1− x)

εa(1)
ds

)
+O(ε).

In th limiting case as h → 0, we get

R =




R00 − 2
(
8+η
4−η

)
R−0 R+0 − R−0

R−1 R01 R+1
. . .

. . .
. . .

R−j R0j R+j
. . .

. . .
. . .

R−N−1 R0N−1 R+N−1

R−N − R+N R0N − 2
(
8+η
4−η

)
R+N




lim
h→0

σj

h
=

a(0)

2+ η

(
δj−1 − δj+1

δj−1 − 2δj + δj+1

)
(22)

and

4− η
24

δj−1 +
8+ η
12

δj +
4− η
24

δj+1 = U i+1
0 (jh)

+
(
ψ1(ti+1)− U i+1

0 (1)
)
exp

(
−
(a2(1)+ εdi+1(1))(1/ε − iρ)

a(1)

)
,

(23)

where ρ = h/ε. Similarly, computing the values of lim
h→0

σj

h

at xj−1, xj, xj+1 and adding in the proportion 4−η
24 , 8+η12 , 4−η24 ,

respectively, and removing δj’s using Eq. (23), we define

σj = ε
a(xj)ρ

2+ η
coth

(
a(xj)ρ

2

)
(24)

Since, coth x − 1
x = x

3 + O(x3) as x → 0 and coth x − 1
x =

1+O( 1x ) as x → ∞. We have

C1
x2

x+ 1
≤ x coth x− 1 ≤ C2

x2

x+ 1
, ε

(h/ε)2

h/ε + 1
=

h2

h+ ε

Thus, |x coth x− 1| ≤ C
x2

x+ 1
, which implies

|σj − ε| ≤ C
h

h+ ε
(25)

For 0 ≤ j ≤ N, Eq. (19) is a system of (N + 1) linear equation in

(N+3) unknown δ−1, δ0, δ1, . . . , δN+1. Now, by applying boundary

conditions, at i = 0 and i = N, for Eq. (19) and first equation of Eq.

(17), we can eliminate δ−1 and δN+1. Therefore, we get

(
R00 − 2

(
8+ η
4− η

)
R−0

)
δ0 +

(
R+0 − R−0

)
δ1

= h28i
0 −

(
24

4− η

)
R−0 ψ0(ti+1), (26)

(
R−N − R+N

)
δN−1 +

(
R0N − 2

(
8+ η
4− η

)
R+N

)
δN

= h28i
N −

(
24

4− η

)
R+Nψ1(ti+1). (27)

Finally, in (N + 1) unknowns δ0, δ1, . . . , δN ,, we find a system of

(N + 1) equations with a matrix form as

Rδ = 8 (28)

where

δ =




δ0

δ1
...
...
...

δN−1

δN




, 8 =




h28i
0 −

(
24
4−η

)
R−0 ψ0 (ti+1)

h28i
1

...

...

...

h28i
N−1

h28i
N −

(
24
4−η

)
R+Nψ1 (ti+1)




As h → 0, R is diagonally dominant tridiagonal matrix, non-

singular. Therefore, we can compute the values of δj’s, then

substituted in Eq. (16), to obtain the approximate solution to Eq.

(14).

4. Parameter-uniform convergence
analysis

In this section, we establish the parameter-uniform

convergence of the extended cubic B-spline collocation method.

The following lemma will be used in the convergence analysis.

Lemma 4.1. The extended cubic B-spline set 3 =
{Q−1,Q0,Q1, . . . ,QN+1} defined in Eq. (15), satisfy the inequality

N+1∑

j=−1

|Qj(x, η)| ≤ 1.75, 0 ≤ x ≤ 1.

Proof. We know that

∣∣∣∣∣∣

N+1∑

j=−1

Qj(xi, η)

∣∣∣∣∣∣
≤

N+1∑

j=−1

|Qj(xi, η)|.
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FIGURE 4

Numerical solution of Example 5.2 for di�erent values of ε and t with N = M = 64.

Let x = xi be a nodal point. Then, by the definition of Qj(x, η),

we have

N+1∑

j=−1

|Qj(xi, η)| = |Qi−1(xi, η)| + |Qi(xi, η)| + |Qi+1(xi, η)|

=
4− η
24

+
8+ η
12

+
4− η
24

= 1 < 1.75.

Now, for xj−1 < x < xj, from Table 1, we get

Qj(x, η) <
8+ η
12

, Qj−1(x, η) =
8+ η
12

Qj+1(x, η) <
4− η
24

, Qj−2(x, η) =
4− η
24

Thus,

N+1∑

j=−1

|Qj(x, η)| = |Qj−1(x, η)| + |Qj(x, η)| + |Qj+1(x, η)|

+ |Qj−2(x, η)| ≤
20+ η
12

Since, −8 ≤ η ≤ 1,max
η

{
20+ η
12

}
= 1.75,, which completes

the proof.

We will use the following error bound lemma for spline

interpolation by Hall [39]. For π : a = x0 < x1 <, . . . ,< xN =
b, let h = min

j
{xj − xj−1}, h = max

j
{xj − xj−1}, and ν = h/h. For

simplicity, we write U i+1(x) = Ũ(x) and8i(x) = 8̃

Lemma 4.2 ([39]). Let Y be the cubic spline associate with Ũ ∈
C4[a, b] and the partitioning π . Then,

∥∥∥Ũ(r) − Y(r)
∥∥∥ ≤ λr

∥∥∥Ũ(4)
∥∥∥

(
h
)4−r

, r = 0, 1, 2,

where λ0 = 5/384, λ1 = (1/216)(9+
√
3), λ2 = (1/12)(3ν + 1)

Since the mesh we have used is uniform, h = h = h.

Theorem 4.1. Let S(x, η) be the collocation approximation from

the space of cubic spline Q̂3(�
N
x ) to the solution Ũ(x) of ordinary

differential equation. If 8̃(xj) ∈ C2[0, 1], the parameter uniform

error is given by

sup
0<ε≤1

max
0≤j≤N

∣∣Û(xj)− S(xj, η)
∣∣ ≤ C

h2

ε + h

where h is sufficiently small and C is a positive constant

independent of ε and N.

Proof. Let Ys(x) be unique spline interpolation from Q̂3(�
N
x ) to the

solution Û(x) for boundary value problem Eq. (14) given by

Ys(x) =
N+1∑

j=−1

δjQj(x). (29)

If 8̃(x) ∈ C2(�x), then Ũ(x) ∈ C4(�x), and so using Lemma 4.2,

we have

∥∥∥Ũ(r)(x)− Y(r)
s (x)

∥∥∥ ≤ λr

∥∥∥Ũ(4)(x)
∥∥∥ h4−r , r = 0, 1, 2 (30)

where λr ’s are independent of h and N. From the estimate Eq. (30),

we obtain

∣∣LM
σ S(xj)− L

M
σ Ys(xj)

∣∣ =
∣∣LM
ε Û(xj)− L

M
σ Ys(xj)

∣∣

≤ |σj − ε||Ũ(2)(x)|

+ (|ε|λ2h2 + ‖a‖λ1h3 + ‖d‖λ0h4)|Ũ(4)(x)|.

Now, from Lemma (3.4), estimate Eq. (25) and using the argument

that since ε≪1 and ε−n exp
(
− α(1−x)

ε

)
→ 0 as ε → 0,∀x ∈ �x,we

easily obtain

∣∣LM
σ S(xj)− L

M
σ Ys(xj)

∣∣ ≤ C
h2

h+ ε
(31)
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FIGURE 5

Log-log plot of maximum point wise error (A) for Example 5.1 and

(B) for Example 5.2.

Let LM
σ Ys(xj) = 8(xj), ∀0 ≤ j ≤ N with boundary conditions

Ys(0) = ψ0(ti+1),Ys(1) = ψ1(ti+1) leads to Rδ = 8. Then, it

follows with Eq. (28) that

R(δ − δ) = 8−8, (32)

where

δ − δ = (δ0 − δ0, δ1 − δ1, . . . , δN − δN)t

8−8 = (h2(8i
0 −8

i
0), h

2(8i
1 −8

i
1), . . . , h

2(8i
N −8i

N))
t

It is obvious from inequality Eq. (31) that

8−8 = C
h4

h+ ε
(33)

In Eq. 19, |R0j | > {|R−j |+|R+j |} implies (2+η)
(
2σj ± h2

di+1
j

6

)
> 0.

Therefore for η > −2 and sufficiently small values of h, matrix R is

strictly diagonally dominant, thus non singular. So by the estimate

given [40], we get

‖R−1‖ ≤
C

h2
(34)

Combining of Eq. (32)–Eq. (34) gives

|δ − δ| ≤ C
h2

h+ ε
(35)

Using Eq. (26) and Eq. (27), we have

|δ−1 − δ−1| ≤ C
h2

h+ ε
and |δN+1 − δN+1| ≤ C

h2

h+ ε

Therefore,

max
−1≤j≤N+1

|δj − δj| ≤ C
h2

h+ ε
(36)

We define e∗j = |δj − δj|. Then,

e∗ = max
−1≤j≤N+1

{e∗j } → 0 as h → 0.

This proves that the proposed finite difference scheme is

unconditionally stable. The above inequality Eq. (36) together with

Lemma 4.1 enables us to estimate |S(x) − Ys(x)|; hence, |Ys(x) −
Ũ(x)|. We have

|S(x)− Ys(x)| =

∣∣∣∣∣∣

N+1∑

j=−1

(δj − δj)Qj(x, η)

∣∣∣∣∣∣

≤ max
−1≤j≤N+1

|δj − δj|
N+1∑

j=−1

∣∣Qj(x, η)
∣∣

≤ C
h2

h+ ε

This gives max
0≤j≤N

|S(xj)− Ys(xj)| ≤ C
h2

h+ ε
. Therefore, using the

triangular inequality, we obtain

sup
0<ε≤1

max
0≤j≤N

∣∣Û(xj)− S(xj, η)
∣∣ ≤ C

h2

ε + h
,

hence the result.

Theorem 4.2. Let u(x, t) be the solution of problem Eq. (1) and

S(x, ti+1) be the collocation approximation from the space Q̂3(�
N
x )

to the solution u(x, ti+1) at the (i + 1)th time level of the fully

discretized scheme after the temporal discretization. If8(x, ti+1) ∈
C2(�x), the uniform error estimate is given by

‖u(xj, ti+1)− S(xj, ti+1)‖ ≤ C

(
1t +

h2

ε + h

)

Proof. The proof is the consequence of Lemma 3.3 and

Theorem 4.1.

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2023.1255672
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Hassen and Duressa 10.3389/fams.2023.1255672

FIGURE 6

E�ect of ε on the solution behavior at T = 1.5. (A) Example 5.1. (B) Example 5.2.

5. Numerical examples, results, and
discussions

In this section, we will see the applicability of the proposed

method by considering two test problems. For each η = −1 value in

the range [−8, 1], the computation was carried out to find the most

valuable free parameter, which will give a minimum error. The least

absolute errors were found for η = −1. For the remainder of the

calculation, we have set up η = −1.

Example 5.1 ([41]). Consider the following test problem

∂u(x, t)

∂t
− ε

∂2u(x, t)

∂x2
+ (2− x2)

∂u(x, t)

∂x
+ xu(x, t)

= −u(x, t − 1)+ 10t2 exp(−t)x(1− x), (x, t) ∈ �x ×�t ,

u(x, t) = 0, (x, t) ∈ �x ×�t∗,

u(0, t) = 0, u(1, t) = 0, t ∈ �t

We employ the following double mesh principle to determine the

absolute error in the solution because the test problem’s exact

solution is unknown. For each ε, the maximum point wise error

is given as

EN,M
ε = max

i

(
max

j
|S2N,2M
x2j ,t2i

− SN,M
xj ,ti

|
)

(37)

where SN,M and S2N,2M are the computed solutions obtained on two

different meshes DN,M and D2N,2M respectively. D2N,2M obtained

from DN,M by the interpolation technique. The corresponding

order of convergence is computed as

PN,M
ε = log2

(
EN,M
ε

E2N,2M
ε

)
(38)

The ε-uniform point wise error EN,M is estimated as

EN,M = max
ε

EN,M
ε (39)

and the ε-uniform order of convergence is calculated as

PN,M = log2

(
EN,M

E2N,2M

)
(40)

Example 5.2. Consider the following problem

∂u(x, t)

∂t
− ε

∂2u(x, t)

∂x2
+ (1+ x(1− x))

∂u(x, t)

∂x

= −u(x, t − 1)+ f (x, t), (x, t) ∈ �x ×�t ,

u(x, t) = ψb(x, t), (x, t) ∈ �x ×�t∗,

u(0, t) = 0, u(1, t) = 0, t ∈ �t

We choose the initial dataψb(x, t) and the source function f (x, t) to

fit with the exact solution

u(x, t) = exp(−t){p1 + p2x− exp(−(1− x)/ε)},

where p1 = exp(−1/ε) and p2 = 1− p1.

As we know the exact solution, we compute the point-wise error as

ẼN,M
ε = max

i

(
max

j
|uN,M

xj ,ti
− SN,M

xj ,ti
|
)
, (41)

where uN,M
xj ,ti

and SN,M
xj ,ti

denote the exact and numerical solution

obtained on DN,M . The corresponding computed order of

convergence is calculated as

P̃N,M
ε = log2

(
ẼN,M
ε

Ẽ2N,2M
ε

)
(42)

The ε- uniform point wise error ẼN,M and the corresponding order

of convergence P̃N,M are calculated as

ẼN,M = max
ε

ẼN,M
ε (43)

P̃N,M = log2

(
ẼN,M

Ẽ2N,2M

)
(44)
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TABLE 2 Values of EN,M
ε

,PN,M
ε

,EN,M, and PN,M for Example 5.1.

ε ↓
N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

M = 20 M = 40 M = 80 M = 160 M = 320 M = 640

20 4.6449e-04 2.3848e-04 1.2558e-04 6.4465e-05 3.2658e-05 1.6435e-05

0.96176 0.92532 0.96199 0.98106 0.99068

2−4 4.2088e-03 1.6245e-03 8.9197e-04 4.6704e-04 2.3903e-04 1.2093e-04

1.3734 0.86496 0.93346 0.96636 0.98303

2−8 8.5881e-03 5.5246e-03 2.6723e-03 9.6933e-04 3.4836e-04 1.7992e-04

0.63647 1.0478 1.4630 1.4764 0.95324

2−12 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7294e-04 4.3580e-04

0.61867 0.81645 0.90868 0.95465 1.0022

2−16 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7310e-04 4.4348e-04

0.61867 0.81645 0.90868 0.95438 0.97728

2−20 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7310e-04 4.4348e-04

0.61867 0.81645 0.90868 0.95438 0.97728

2−24 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7310e-04 4.4348e-04

0.61867 0.81645 0.90868 0.95438 0.97728

2−28 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7310e-04 4.4348e-04

0.61867 0.81645 0.90868 0.95438 0.97728

2−32 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7310e-04 4.4348e-04

0.61867 0.81645 0.90868 0.95438 0.97728

EN,M
8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7310e-04 4.4348e-04

PN,M
0.61867 0.81645 0.90868 0.95438 0.97728

The numerical solution profiles for Example 5.1 and Example

5.2 at N = 64 and different values ε are graphically represented

in Figures 1, 2, respectively. These figures shows the existence

of boundary layer at x = 1, and it is clearly observed that

width of the boundary layer decreases as perturbation parameter

ε decreases,which is the effect of ε. Figures 3, 4 provide the

numerical solution for test problem Example 5.1 and Example 5.2

for different values of t for fixed value of perturbation parameter

ε at η = −1, where N = 64. Figure 5 provides the log-log plot

of maximum absolute errors for Example 5.1 and Example 5.2.

Figure 6 represents the graphs of the solution for various values

of ε. Since the plots follow a straight line, this shows us that the

maximum absolute point-wise error changes as a constant power of

mesh parameterN. In addition, the negative slope of the lines states

that the maximum absolute error decreases as the number of mesh

points increases. In these figures, the plots are parallel, which shows

the parameter-uniform convergence of the scheme. The maximum

point wise error (EN,M
ε , ẼN,M

ε ), ε-uniform errors (EN,M , ẼN,M), rate

of convergence (PN,M
ε , P̃N,M

ε ), and ε-uniform rate of convergence

(PN,M , P̃N,M) for Example 5.1 and Example 5.2 are presented in

Tables 2, 3, respectively, at η = −1. The numerical results presented

in Tables 2, 3 show that the proposed method is ε-uniformly

convergent as for fixed value of ε. When N and M are increases,

the maximum point wise error (EN,M
ε , ẼN,M

ε ) and the maximum

nodal errors (EN,M , ẼN,M) decreases. We see that the maximum

point wise error and the rate of convergence stabilize as ε → 0

for each N and M. A comparison of maximum point wise error

for 5.1 calculated by the proposed method at η = −1 and for in

Kumar [8] is presented in Table 4. Computational results in Table 4

shows the proposed method provide more accurate solutions than

in Kumar [8]. Furthermore, we note that all computations have

been performed using MATLAB R© R2022b software package (The

Mathworks, Inc.), on a 64 bit Windows 11 hp CPU PC machine,

with Intel(R) Core(TM) i3-3110M processor running at 2.40 GHz

and 4.00 Gb RAM.

6. Conclusion

In this study, we provided a parameter uniform numerical

scheme is developed to solve singularly perturbed parabolic

convection-diffusion initial boundary value problems with large

delay. The method is based on the implicit Euler method for

temporal discretization and extended cubic B-spline collocation

method with a blending function of degree four for spatial

discretization using artificial viscosity both on the uniform

mesh. The theoretical results which show the parameter-uniform

convergence of the method are established and the proposed
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TABLE 3 ẼN,M
ε

, P̃N,M
ε

, ẼN,M, and P̃N,M for Example 5.2.

ε ↓ N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

20 1.5781e-03 8.1606e-04 4.1596e-04 2.1023e-04 1.0571e-04 5.3012e-05

0.95141 0.97223 0.9845 0.99183 0.99573

2−4 5.0072e-02 2.5376e-02 1.2803e-02 6.4244e-03 3.2190e-03 1.6113e-03

0.98056 0.98694 0.99487 0.99696 0.99841

2−8 6.2628e-02 3.4545e-02 1.8358e-02 9.4499e-03 4.6823e-03 2.3290e-03

0.85831 0.91206 0.95806 1.0131 1.0075

2−12 6.2628e-02 3.4523e-02 1.8243e-02 9.4010e-03 4.7750e-03 2.4080e-03

0.85922 0.92025 0.95644 0.97732 0.98766

2−16 6.2628e-02 3.4523e-02 1.8243e-02 9.4010e-03 4.7750e-03 2.4066e-03

0.85922 0.92025 0.95644 0.97732 0.98853

2−20 6.2628e-02 3.4523e-02 1.8243e-02 9.4010e-03 4.7750e-03 2.4066e-03

0.85922 0.92025 0.95644 0.97732 0.98853

2−24 6.2628e-02 3.4523e-02 1.8243e-02 9.4010e-03 4.7750e-03 2.4066e-03

0.85922 0.92025 0.95644 0.97732 0.98853

2−28 6.2628e-02 3.4523e-02 1.8243e-02 9.4010e-03 4.7750e-03 2.4066e-03

0.85922 0.92025 0.95644 0.97732 0.98853

ẼN,M
6.2628e-02 3.4545e-02 1.8358e-02 9.4499e-03 4.7750e-03 2.4080e-03

P̃N,M
0.85831 0.91206 0.95806 0.9848 0.98766

TABLE 4 Comparison of the maximum point-wise error for Example 5.1.

ε ↓
N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

M = 20 M = 40 M = 80 M = 160 M = 320 M = 640

Results in proposed scheme

2−4 4.2088e-03 1.6245e-03 8.9197e-04 4.6704e-04 2.3903e-04 1.2093e-04

2−8 8.5881e-03 5.5246e-03 2.6723e-03 9.6933e-04 3.4836e-04 1.7992e-04

2−12 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7294e-04 4.3580e-04

2−16 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7310e-04 4.4348e-04

2−28 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7310e-04 4.4348e-04

2−32 8.5885e-03 5.5934e-03 3.1761e-03 1.6918e-03 8.7310e-04 4.4348e-04

Results in Kumar [8]

2−4 6.56e-03 3.15e-03 1.52e-03 6.97e-04 2.95e-04 1.12e-04

2−8 9.93e-03 5.89e-03 3.13e-03 1.59e-03 7.89e-04 3.87e-04

2−12 1.11e-02 7.19e-03 4.17e-03 2.00e-03 1.04e-03 5.26e-04

2−16 1.12e-02 7.20e-03 4.35e-03 2.40e-03 1.22e-03 5.70e-04

2−28 1.12e-02 7.20e-03 4.33e-03 2.36e-03 1.24e-03 6.33e-04

2−32 1.12e-02 7.20e-03 4.33e-03 2.36e-03 1.24e-03 6.33e-04

method is shown order O

(
1t + h2

ε+h

)
. The scheme is also

unconditionally stable. The appropriate choice of the free

parameter η minimizes the error. To validate the theoretical

results two test examples are presented. Graphical and tabular

representations of the solutions and accuracy of the examples’

results are provided. The numerical results obtained by the

proposed method are compared with the numerical results in some

existing literature.
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As future directions of this study, we extend the proposed

scheme for solving non-linear and higher dimensional singularly

perturbed delay partial differential equations with Dirichlet

boundary conditions.
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