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A non-linear model of oxygen transport from a capillary to tissue is considered.

The model takes into account the convection of oxygen in the blood, its di�usion

transfer through the capillary wall, and the di�usion and consumption of oxygen

in tissue. In the current work, a boundary value problem for the oxygen transport

model is studied. The existence theorem is proved and a numerical algorithm is

constructed and implemented. The numerical experiments studying the e�ect of

low hematocrit and reduced blood flow rate on cerebral hypoxia in preterm infants

are conducted.

KEYWORDS
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1 Introduction

Mathematical modeling of the supply of brain tissue with oxygen is very important

in the context of analyzing the risks of hypoxia, especially in premature infants, who

have additional factors that negatively affect oxygen transport. These factors include low

hematocrit [1] and reduced blood flow rate [2, 3], which, as noted in [4], leads to impaired

oxygen supply to tissues and possible hypoxia. To simulate the oxygen transport, the brain

is considered to consist of two parts: blood and tissue subdomains. The corresponding

mathematical model is a system of two differential equations [5–7]: the diffusion equation

describing the oxygen transport and its consumption in the tissue and the first order

differential equation simulating the oxygen transport in the blood. Both differential

equations are non-linear. The partial pressures of oxygen in blood and tissue are related

by boundary conditions of conjugation at the vessel walls. A numerical implementation of

the oxygen transport model on the base of Green’s function method is performed in [5].

This allows one to study the influence of blood flow rate and oxygen consumption rate on

the distribution of partial pressure of oxygen in the tissue surrounding a vascular network. A

similar numerical approach is utilized in [6] to find and analyze the oxygen levels in skeletal

muscle, brain, and tumor tissues. A fast numerical method for the simulation of oxygen

supply in tissue with a large-scale complex vessel network is developed and implemented in

[7]. Note that the oxygen transport model can be applied to simulations in various parts of

the body. Its application to the modeling of oxygen transport in the brain is characterized by

the choice of appropriate model parameters.

Another approach to the modeling of oxygen transport in the brain is associated with

the so-called continuum models in which, due to spatial homogenization, blood and tissue

domains occupy the same region [8, 9]. Theoretical and numerical analysis of the steady-

state continuum model is performed in [8], and the non-stationary model is studied in [9],

where it is shown that the use of the non-stationary continuummodel allows one to evaluate

the rate of tissue oxygen saturation after hypoxia.
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A series of works are devoted to models of oxygen transport

for a simplified domain consisting of a capillary and surrounding

tissue [10–13]. In the framework of the simplified model, the

inhomogeneous structure of blood flow is taken into account

in [10, 11]. This allows one to quantify the impact of blood

flow heterogeneity on the partial pressure of oxygen in tissue.

Particularly, the authors study the relative influence of capillary

hematocrit and RBC velocity on tissue oxygenation [11] and

the impact of instantaneous variations of capillary hematocrit on

fluctuations of the partial pressure of oxygen in the tissue [10]. On

the basis of a simplified 1D model in [13], the ratio of cerebral

blood flow and cerebral metabolic rate of oxygen is evaluated.

Note that simplified models of oxygen transport in the tissue

surrounding a capillary can be applied in the simulation of oxygen

transport in the brain on the base of the vascular system proposed

in [14], in which capillaries have the parallel topology.

Using the simplified model of oxygen transport allows one

to evaluate the influence of various model parameters on tissue

oxygenation and to determine risk factors leading to hypoxia.

Although there are many numerical approaches to find the partial

pressure of oxygen in the tissue by the simplified oxygen transport

model, its theoretical analysis has not been yet carried out. To

evaluate risk factors of hypoxia in preterm infants, we consider an

oxygen transport model consisting of a 1D non-linear differential

equation describing the oxygen convection in a capillary and a

3D non-linear reaction-diffusion equation describing the oxygen

transport and its consumption in the surrounding tissue. The

model can be considered as a boundary value problem for the

non-linear reaction-diffusion equation, in which the boundary

conditions on the capillary wall also are non-linear because they

depend on the solution of a non-linear differential equation

describing the oxygen transport in the blood. Due to the specific

non-linear boundary conditions, the boundary value problem is

not standard. Accordingly, some theoretical aspects such as the

existence and uniqueness of a solution are open and have a scientific

interest. In the current work, the existence of a weak solution

of the boundary value problem is proved and the numerical

algorithm based on the finite element method is constructed and

implemented. The numerical experiments simulating the influence

of different risk factors on cerebral hypoxia in preterm infants are

conducted. It has been shown that low levels of hematocrit and

cerebral blood flow (CBF) are risk factors for hypoxia.

2 Statement of the problem

The oxygen transport in the tissue surrounding a capillary is

simulated in the domain� ⊂ R
3 such that

� = {x = (x1, x2, z) : r
2 < x21 + x22 < R2, 0 < z < L}.

The boundary Ŵ = ∂� consists of two parts Ŵ1 and Ŵ2,

Ŵ1 = {x = (x1, x2, z) : 0 < z < L, x21 + x22 = r2}, Ŵ2 = Ŵ \ Ŵ1.

We assume that Ŵ1 describes the external capillary wall and the

domain � fully consists of tissue surrounding the capillary. Thus,

r is the radius of the capillary and L is its length. The projection of

FIGURE 1

Projection of the model domain � onto the x1Ox2 plane.

the domain� onto the x1Ox2 plane is shown in Figure 1. The figure

shows the main phenomena that the model describes: the passage

of oxygen through the capillary wall, diffusion, and consumption of

oxygen in tissues. Additionally, the oxygen transfer in the capillary

is taken into account.

To formalize the oxygen transport model, we introduce the

functions M, f : R → R which are odd, increasing, and on the

positive semiaxis defined as follows:

M(t) =
M0t

t + p0
, f (t) = at +

bth

th + c
, h > 1, t ≥ 0,

whereM0, p0, a, b, and c are positive constants.

Using these notations, in the domain �, we consider the

following oxygen transport model [6]:

− κ1p+M(p) = 0, x ∈ �, (1)

p|Ŵ1 = pc(z)− γ q(z), z ∈ (0, L); ∂np|Ŵ2 = 0. (2)

Here, p and pc describe the partial pressure of oxygen (PO2) in

the tissue and capillary, respectively. The symbol 1 denotes the

Laplace operator and ∂n denotes the derivative in the direction of

the outward normal n to the domain�. The function

q(z) = κr
∫ 2π

0
∂np|Ŵ1dθ

is interpreted as the diffusive oxygen flux entering the domain �

from the capillary. The function pc is determined from the equation

−df (pc(z))/dz = q(z) (3)

and the initial condition

pc(0) = p+. (4)

Here, θ is the polar angle on a circle. Positive parameters

γ , κ , M0, p0, a, b, c, h, and p+ are given. In more detail, γ is the
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intravascular resistance to the radial oxygen diffusion; a = αQ,

where α is the effective solubility of oxygen in the blood, Q is the

rate of blood flow; b = C0HDQ, where C0 is the concentration

of hemoglobin-bound oxygen in a fully saturated red blood cell,

HD is the discharge hematocrit; c is the partial oxygen pressure at

50% saturation; p0 is the partial pressure of oxygen at half-maximal

consumption; M0 is the rate of oxygen consumption when oxygen

supply is not limiting, h is the Hill coefficient. Values of the basic

parameters of the model and their physical units are presented in

Section 5.2 (Table 1).

The non-linear termM(p) in Equation (1) is the rate of oxygen

consumption in tissue presented above by the Michaelis–Menten

relationship [6]. The function f (pc) is the rate of convective oxygen

transport along a vessel segment and q is the rate of diffusive

oxygen efflux per unit vessel length. Accordingly, conservation of

oxygen implies Equation (3) that describes the change in the partial

pressure of oxygen in the capillary. The first equality in (2) with (3)

and (4) describes the oxygen supply from the capillary.

Remark 1. In the case of a finite number of disjoint vessels, the

boundary value problem is formulated in a similar way.

The system (1)–(4) can be considered as a boundary value

problem in the domain� for the non-linear diffusion Equation (1).

At the part of the boundary Ŵ2, the Neumann boundary conditions

are set, at the part of the boundary Ŵ1 coinciding with the capillary

wall, the tissue PO2 depends on a solution of the non-linear Cauchy

problem (3), (4) describing the oxygen transport in the blood. Thus,

the equalities (2)–(4) represent non-linear boundary conditions for

Equation (1).

Due to the specific non-linear boundary conditions (2)–(4), the

considered problem is not a standard boundary value problem for

an elliptic equation. Accordingly, some theoretical aspects such as

the existence and uniqueness of a solution are open and of scientific

interest.

3 Formalization of the problem

By Ls, 1 ≤ s ≤ ∞, we denote Lebesgue space of s - integrable

functions, by H the Lebesgue space L2(�), and by H1 the Sobolev

spaceW1
2 . Let

W = {w ∈ C∞(�) : w|Ŵ1 = wb(z),

i.e. it depends only on z, z ∈ (0, L)},

and V be the closure ofW with respect to the norm inH1(�). Here

and below, for the boundary values on Ŵ1 of functions w from W

and V , depending only on z, we use the notation wb. Following

these notations, for example, for p ∈ V , p|Ŵ1 = pb. By (f , v)

we denote the inner product in H, by 〈f , v〉 the inner product in

L2(0, L), and by ‖v‖ the norm in H, ‖v‖2 = (v, v).

Let us define the operator T : L2(0, L) → H1(0, L) such that

ζ = Tη if

γ
df (ζ (z))

dz
+ ζ (z) = η(z), z ∈ (0, L), (5)

and ζ (0) = p+.

Lemma 1. The following estimate meaning the continuity of the

operator T is valid:

‖Tη1 − Tη2‖C[0,L] ≤
2L1/2

γ a
‖η1 − η2‖L2(0,L). (6)

Proof. Let ζ1,2 = Tη1,2, y1,2 = f (ζ1,2), η = η1 − η2, y = y1 − y2.

Then

γ y′(z)+ g(y1(z))− g(y2(z)) = η(z), z ∈ (0, L), y(0) = 0. (7)

Here, g is the inverse function to f , which is continuously

differentiable, odd, and increasing. Taking into account that f ′ ≥ a,

we have 0 < g′ ≤ 1/a. Also, note that due to the monotonic

increase of g, the inequality (g(y1)− g(y2))(y1 − y2) ≥ 0 holds.

Multiplying the equality (7) by y and integrating over (0, z), we

obtain

∫ z

0
η(s)y(s)ds = γ

∫ z

0
y′(s)y(s)ds+

∫ z

0
(g(y1(s))− g(y2(s)))(y1(s)− y2(s))ds ≥

γ

2
y2(z).

On the other hand

∫ z

0
η(s)y(s)ds ≤ ‖η‖L2(0,L)‖y‖L2(0,L) ≤ L1/2‖η‖L2(0,L)‖y‖C[0,L].

Therefore,

γ

2
‖y‖C[0,L] ≤ L1/2‖η‖L2(0,L). (8)

Further,

‖ζ1 − ζ2‖C[0,L] = ‖g(y1)− g(y2)‖C[0,L]

≤ max |g′| ‖y1 − y2‖C[0,L] ≤
1

a
‖y‖C[0,L]. (9)

As a result, the estimate (6) follows from inequalities (8) and (9).

Lemma 2.

‖Tη‖2
L2(0,L)

≤ ‖η‖2
L2(0,L)

+ 2γ p+f (p+). (10)

Proof. Let ζ = Tη. Multiplying the equality (5) in the sense of the

inner product in L2(0, L) by ζ , we obtain

γ 〈df (ζ )/dz, ζ 〉 + ‖ζ‖2
L2(0,L)

= 〈η, ζ 〉.

Note that

〈df (ζ )/dz, ζ 〉 = 〈f ′(ζ )dζ/dz, ζ 〉 =
∫ L

0
f ′(ζ )

dζ

dz
ζdz

= p−f (p−)− p+f (p−)−
∫ p−

p+
f (ζ )dζ ≥ −p+f (p+).

Here, p− = ζ (L). Therefore,

‖ζ‖2
L2(0,L)

≤ 〈η, ζ 〉 + γ p+f (p+)

≤
1

2
‖ζ‖2

L2(0,L)
+

1

2
‖η‖2

L2(0,L)
+ γ p+f (p+).

This implies the estimate (10).
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To derive a weak formulation of the boundary value problem

(1) – (4), we multiply the Equation (1) by a test function v ∈ V and

integrate by parts in�. As a result

κ(∇p,∇v)+ (M(p), v)− κ
∫

Ŵ1

∂np|Ŵ1vbdŴ = 0 ∀v ∈ V . (11)

Using (2), (3), and the definition of the operator T, we obtain the

equality

q(z) =
1

γ
(Tpb(z)− pb(z)).

Further, note that

κ

∫

Ŵ1

∂np|Ŵ1vbdŴ =
∫ L

0
κr

∫ 2π

0
∂np(r, z, θ)vb(z)dθdz =

∫ L

0
q(z)vb(z)dz

=
1

γ

∫ L

0
(Tpb(z)− pb(z))vb(z)dz =

1

γ
〈Tpb − pb, vb〉. (12)

Taking into account (11) and (12), we come to the

following weak formulation of the boundary value problem

(1)–(4).

Definition 1. Function p ∈ V is a weak solution of the boundary

value problem (1)–(4) if

κ(∇p,∇v)+ (M(p), v)+
1

γ
〈pb − Tpb, vb〉 = 0 ∀v ∈ V . (13)

4 Existence theorem of a weak
solution

Let us define the Galerkin approximations pm of a solution

for the boundary value problem (1)–(4) and derive a priori

estimates sufficient for the solvability of the problem. In

the space V , we introduce a basis consisting of functions

of the class W: w1, w2, . . . . Further, consider the following

problem:

pm =
m

∑

j=1
ξj,mwj ∈ Vm, Vm : = span{w1,w2, ...,wm},

κ(∇pm,∇w)+ (M(pm),w)+
1

γ
〈pmb − Tpmb,wb〉 = 0 ∀w ∈ Vm.

(14)

The equalities (14) give a system of non-linear equations

with respect to the coefficients ξ1,m, . . . , ξm,m of the

Galerkin approximation pm. To prove its solvability, it

is convenient to use the following simple corollary from

Brouwer’s fixed point theorem [15, Ch. 2, Lemma 1.4].

Lemma 3. Let X be a finite-dimensional Hilbert space with an

inner product [·, ·] and a norm [·], and F :X → X be a continuous

mapping such that [F(ξ ), ξ ] > 0 for [ξ ] = k. Then there is an

element ξ∗ ∈ X, [ξ∗] ≤ k, for which F(ξ∗) = 0.

Take as X the space Vm with the inner product

[ϕ,ψ] = (∇ϕ,∇ψ)+
(∫

�

ϕdx

) (∫

�

ψdx

)

.

We define a continuous mapping F as follows: ∀ϕ,ψ ∈ Vm

[F(ϕ),ψ] = κ(∇ϕ,∇ψ)+ (M(ϕ),ψ)+
1

γ
〈ϕb − Tϕb,ψb〉.

Then for ϕ ∈ Vm

[F(ϕ),ϕ] = κ‖∇ϕ‖2+ (M(ϕ),ϕ)+
1

γ

(

‖ϕb‖2L2(0,L) − 〈Tϕb,ϕb〉
)

≥ κ‖∇ϕ‖2 + (M(ϕ),ϕ)+
1

2γ

(

‖ϕb‖2L2(0,L) − ‖Tϕb‖
2
L2(0,L)

)

.

Therefore, by Lemma 2,

[F(ϕ),ϕ] ≥ κ‖∇ϕ‖2 + (M(ϕ),ϕ)− p+f (p+).

Taking into account the oddness of functionM, we obtain that

(M(ϕ),ϕ) = M0

∫

�

(|ϕ| − p0 + p20/(|ϕ| + p0))dx

> M0

∫

�

(|ϕ| − p0)dx ≥ M0

∣

∣

∣

∣

∫

�

ϕdx

∣

∣

∣

∣

−M0p0|�|.

This allows us to get the following estimate:

[F(ϕ),ϕ] > κ‖∇ϕ‖2 +M0

∣

∣

∣

∣

∫

�

ϕdx

∣

∣

∣

∣

− C1,

C1 = p+f (p+)+M0 p0|�|.

From the last inequality, it follows that

[F(ϕ),ϕ] > 0 for ‖∇ϕ‖2 +
∣

∣

∣

∣

∫

�

ϕdx

∣

∣

∣

∣

2

= k2

if k is large enough, for example, k2 > 2max{C1/κ ,C
2
1/M

2
0}.

Indeed, in the case

‖∇ϕ‖2 +
∣

∣

∣

∣

∫

�

ϕdx

∣

∣

∣

∣

2

= k2,

either ‖∇ϕ‖2 ≥ k2/2 and then [F(ϕ),ϕ] > κk2/2− C1, or

∣

∣

∣

∣

∫

�

ϕdx

∣

∣

∣

∣

2

≥ k2/2

and then [F(ϕ),ϕ] > M0k/
√
2 − C1. Therefore, if k2 >

2max{C1/κ ,C
2
1/M

2
0}, then [F(ϕ),ϕ] > 0.

By virtue of Lemma 3, there exists a solution pm of the problem

(14) such that

0 = [F(pm), pm] > κ‖∇pm‖2 +M0

∣

∣

∣

∣

∫

�

pmdx

∣

∣

∣

∣

− C1.

Therefore, for the Galerkin approximations, the following estimate

is valid:

[pm]
2 = ‖∇pm‖2 +

∣

∣

∣

∣

∫

�

pmdx

∣

∣

∣

∣

2

≤ C2, (15)
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where C2 does not depend onm. As C2 we can take C1/min{κ ,M0}.
Since the norm [·] in (15) is equivalent to the norm of H1(�) [16,

Lemma 7.1], passing to a subsequence, we conclude that there exists

p ∈ V such that

pm → p weakly in V , strongly in H,

pm|Ŵ1 → p|Ŵ1 strongly in L2(Ŵ1). (16)

Taking into account the boundedness of the derivative of the

functionM and the continuity of the operator T, the results on the

convergence (16) are sufficient to justify the passage to the limit in

Equation (14). Indeed,

|(M(pm)−M(p),wj)| ≤
M0

p0
max |wj|

∫

�

|pm − p|dx→ 0,

and taking into account (6),

‖Tpmb − Tpb‖C[0,L] ≤
2L1/2

γ a
‖pmb − pb‖L2(0,L) → 0.

Moreover, (∇pm,∇wj) → (∇p,∇wj). Setting w = wj, j < m, in

Equation (14) and passing to the limit as m → +∞, we conclude

that Equation (13) is valid for v = w1,w2, . . ., as well as for any

function v that is a linear combination of w1,w2, . . .. Because these

combinations are dense in V , then we obtain Equation (13).

Theorem 1. There exists a weak solution p ∈ V of the problem

(1)–(4) such that

κ‖∇p‖2 +M0

∣

∣

∣

∣

∫

�

pdx

∣

∣

∣

∣

≤ p+f (p+)+M0p0|�|.

5 Numerical experiments

5.1 Iterative algorithm

To find a solution to the boundary value problem (1)–(4),

we build an iterative algorithm that yields a functional series

{ p(m) }∞m=0 such that p(m) → p as m → ∞. At m + 1 step of the

iterative algorithm, we find the approximation p(m+1) as a solution

of the following boundary value problem:

− κ1p(m+1) +
M0 p

(m+1)

p(m) + p0
= 0, x ∈ �, (17)

p(m+1)|Ŵ1 = p(m)
c (z)− γ q(m)(z), z ∈ (0, L); ∂np

(m+1)|Ŵ2 = 0,

(18)

where

q(m)(z) = κr
∫ 2π

0
∂np

(m)|Ŵ1dθ , z ∈ (0, L), (19)

− df (p(m)
c (z))/dz = q(m)(z), z ∈ (0, L); p(m)

c (0) = p+. (20)

Here, p(m) is an approximation obtained at the previous step of the

iterative algorithm.

Computational domain in cylindrical coordinates, taking into

account axial symmetry, is shown in Figure 2. To implement each

step of the iterative algorithm, the FreeFEM++ software is utilized

[17]. In more detail, the description of the iterative algorithm is

below (see Algorithm 1).

5.2 Risk factors of hypoxia in preterm
infants

The problem parameters used in [5, 6] to simulate the oxygen

transport in the brain are set to conduct numerical experiments

(see Table 1). Additionally, we set r = 3µm, R = 30µm, and

L = 60µm.

Consider risk factors for hypoxia in preterm infants. The first

is a low hematocrit. An analytical approximation presented in

[1] gives the systemic hematocrit value of 0.46 for term infants

of 40 gestational weeks (GW) on the 7th day after birth and

0.36 for preterm infants of 25 gestational weeks on the 7th day

TABLE 1 Problem parameters [5, 6].

Name Description Value Physical units

α Effective O2 solubility in blood 3.1× 10−5
cm3O2

cm3 mmHg

M0 O2 consumption rate when oxygen supply is not limiting 2.3× 10−3
cm3O2

cm3 s

Q Rate of blood flow 2.16× 10−8
cm3

s

κ Diffusion coefficient 6× 10−10
cm3O2

cm · s ·mmHg

C0 Concentration of hemoglobin-bound O2 in a fully saturated red

blood cell

0.5
cm3O2

cm3

γ Intravascular resistance to radial O2 diffusion 2.5× 108
cm · s ·mmHg

cm3O2

c PO2 at 50% saturation 38 mmHg

p0 PO2 at half-maximal consumption 1 mmHg

p+ Inflow PO2 50 mmHg

h Hill coefficient 3 –
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FIGURE 2

Computational domain in cylindrical coordinates, taking into

account the axial symmetry.

1: Set a relative accuracy of calculation δ.

2: Set the initial approximation p(0) of the tissue

PO2

3: Initialize the counter: m← 0.

4: Find an approximation q(m)(z) from (19)

5: Find a solution p
(m)
c (z) of the problem (20).

6: Find a solution p(m+1)(z) of the problem (17), (18).

7: if ‖(p(m+1) − p(m))/p(m+1)‖ < δ then Stop.

8: else m← m+ 1; Go to 4.

Algorithm 1. Iterative algorithm.

after birth. Further, on the basis of data from different sources

analyzed in [18], the tube hematocrit in capillaries is 26–42% of

the systemic hematocrit. By setting the reduction factor for the

systematic hematocrit as 0.34, we get the capillary hematocrit equal

to 0.16 for term (40 GW) and 0.12 for preterm (25 GW) infants. To

obtain the discharge hematocrit in capillaries with a given diameter,

an analytical approximation presented in [19] can be applied. As

a result, the discharge hematocrit in capillaries with a diameter of

6µm is evaluated as 0.22 for term (40 GW) and 0.17 for preterm

(25 GW) infants.

For the discharge hematocrit equal to 0.22, the distribution

of the tissue PO2 in the plane zOx2 is shown in Figure 3. Here,

the bottom side of the computational domain corresponds to the

capillary wall. The drop in the discharge hematocrit from 0.22

to 0.17, i.e., by 23%, leads to a decrease in the tissue PO2. The

corresponding relative reduction of the tissue PO2 is shown in

Figure 4. Due to the decrease in the discharge hematocrit, the tissue

PO2 drops up to 13%.

Another risk factor of hypoxia is a low rate of blood flow. Note

that some medical data show that preterm infants have a lower

rate of CBF compared to measurements in term infants [2, 3].

For example, on the base of data reported in [2], the mean CBF

in preterm infants was 4.9–23 ml / l00g /min. At the same time

the range of mean CBF in term infants was 9.0–73 ml/100 g/min.

Also, note that for ventilated preterm infants 30% decrease in CBF

is observed compared to healthy preterm infants [20]. Thus, the

reduction in the blood flow rate in preterm infants can be quite

FIGURE 3

PO2 distribution in the tissue (mmHg). The bottom side of the

computational domain corresponds to the capillary wall.

FIGURE 4

Relative reducing the tissue PO2, when the discharge hematocrit

drops from 0.22 to 0.17.

significant. In the numerical simulation, we consider the case of its

40% drop. In the next numerical experiment in addition to the drop

in the discharge hematocrit (from 0.22 to 0.17), the rate of blood

flow decreased by 40%. The relative reduction of the tissue PO2,

when the discharge hematocrit drops from 0.22 to 0.17 and the rate

of blood flow drops from 2.16×10−8 to 1.30×10−8 cm3/s, is shown

in Figure 5. Due to the decrease in the discharge hematocrit and the

rate of blood flow, the tissue PO2 drops up to 43%.

Note that the results obtained are consistent with numerical

simulations based on a similar model proposed in [10] and

developed in subsequent work [11], but unlike the present work,

intravascular oxygen transport is modeled there in more detail

and requires taking into account the spatial distribution of red
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FIGURE 5

Relative reducing the tissue PO2, when the discharge hematocrit

drops by 23% from 0.22 to 0.17 and the rate of blood flow drops by

40% from 2.16× 10−8 to 1.30× 10−8 cm3/s.

blood cells. In [11], the authors showed that a decrease in the

linear density of RBCs and their velocity leads to a decrease in

the tissue PO2. This is in agreement with the results presented in

the current article since a decrease in the linear density of RBCs

and their velocity means a decrease in hematocrit level and blood

flow rate.

6 Conclusion

The numerical modeling of oxygen transport in the simplified

domainmakes it possible to quantify the influence of various factors

on the partial pressure of oxygen at different distances from the

capillary. Low levels of hematocrit and cerebral blood flow, often

observed in preterm infants, are risk factors for cerebral tissue

hypoxia. In the numerical simulation performed, with a typical

decrease in hematocrit and cerebral blood flow rate in premature

infants by 23 and 40%, respectively, the decrease in the tissue

PO2 is about 43% or more in some areas of the model domain.

As further calculations showed, with a decrease in the blood flow

rate by 50 and 60%, which is possible according to the medical

data presented in [2], the tissue PO2 drops up to 53 and 66%,

respectively.

Based on the numerical simulations carried out, it can be

concluded that levels of the hematocrit and cerebral blood flow rate

have an important effect on the tissue PO2 in the brain, their critical

decrease leading to hypoxia can be estimated on the basis of the

simplified model of oxygen transport and medical data. This will

allow, in the event of a critical decrease in the hematocrit and rate

of blood flow, to carry out therapeutic measures in advance to avoid

possible irreversible consequences in the brain tissue.
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