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In the past few decades, multi-linear algebra also known as tensor algebra has

been adapted and employed as a tool for various engineering applications. Recent

developments in tensor algebra have indicated that several well-known concepts

from linear algebra can be extended to a multi-linear setting with the help of

a special form of tensor contracted product, known as the Einstein product.

Thus, the tensor contracted product and its properties can be harnessed to

define the notions of multi-linear system theory where the input, output signals,

and the system are inherently multi-domain or multi-modal. This study provides

an overview of tensor algebra tools which can be seen as an extension of

linear algebra, at the same time highlighting the di�erences and advantages

that the multi-linear setting brings forth. In particular, the notions of tensor

inversion, tensor singular value, and tensor eigenvalue decomposition using

the Einstein product are explained. In addition, this study also introduces the

notion of contracted convolution for both discrete and continuous multi-linear

system tensors. Tensor network representation of various tensor operations is

also presented. In addition, application of tensor tools in developing transceiver

schemes for multi-domain communication systems, with an example of MIMO

CDMA system, is presented. This study provides a foundation for professionals

whose research involves multi-domain or multi-modal signals and systems.

KEYWORDS

tensors, contracted product, Einstein product, contracted convolution, multi-linear

systems

1 Introduction

Tensors are multi-way arrays that are indexed by multiple indices and the number of

indices is called the order of the tensor [1]. Subsequently, matrices and vectors can be

seen as order two and order one tensors respectively. Higher-order tensors are inherently

capable of mathematically representing processes and systems with dependency on more

than two indices. Hence, tensors are widely employed for several applications in many

engineering and science disciplines. Tensors were initially introduced for applications in

Physics during the early nineteenth century [2]. Later with the study of Tucker [3], tensors

were used in Psychometrics in the 1960s for extending two-way data analysis to higher-

order datasets and further in Chemometrics in the 1980s [4, 5]. The last few decades

have witnessed a surge in their applications in areas such as data mining [6, 7], computer

vision [8, 9], neuroscience [10], machine learning [11], signal processing [12–14], multi-

domain communications [15, 16], and controls system theory [17, 18]. When appropriately

employed, tensors can help in developing models that capture interactions between various

parameters of multi-domain systems. Such tensor-based system representation can enhance

the understanding of the mutual effects of various system domains.
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Given the wide scope of applications that tensors support, there

have been many recent publications summarizing the essential

topics in tensor algebra. One such primary reference is Kolda

and Bader [1] where the fundamental tensor decompositions

such as Tucker, PARAFAC, and their variants are discussed in

great detail with applications. Another useful reference is Comon

[2] which presents tensors as a mapping from one linear space

to another, along with a discussion on tensor ranks. A more

signal processing oriented outlook on tensors is considered in

Cichocki et al. [12], including applications such as Big Data

storage and Compressed sensing. A more recent and exhaustive

tutorial style study is Sidiropoulos et al. [11] which presents a

detailed overview of up-to-date tensor decomposition algorithms,

computations, and applications in machine learning. Similarly,

Chen et al. [19] presents such an overview with applications in

multiple-inputmultiple-output (MIMO)wireless communications.

In addition, Kisil et al. [20] provides a detailed review of

many tensor decompositions with a focus on the needs of Data

Analytics community. However, all these studies do not consider in

particular the notions of tensor contracted product and contracted

convolution, which are the crux of this study. With the help of a

specific form of contracted product, known as the Einstein product

of tensors, various tensor decompositions and properties can be

established which may be viewed as an intuitive and meaningful

extension of the corresponding linear algebra concepts.

The most popular and widely used decompositions in the case

of matrices are the singular value and eigenvalue decompositions.

In order to consider their extensions to higher-order tensors, it is

important to note there is no single generalization that preserves all

the properties of the matrix case [21, 22]. The most commonly used

generalization of the matrix singular value decomposition is known

as a higher-order singular value decomposition (HOSVD) which

is basically the same as Tucker decomposition for higher-order

tensors [23]. Similarly, several definitions exist in the literature for

tensor eigenvalues as a generalization of the matrix eigenvalues

[24]. More recently, in order to solve a set of multi-linear equations

using tensor inversion, a specific notion of tensor singular value

decomposition and eigenvalue decomposition was introduced in

Brazell et al. [25], which generalizes the matrix SVD and EVD to

tensors through a fixed transformation of the tensors into matrices.

The authors in Brazell et al. [25] establish the equivalence between

the Einstein product of tensors and the matrix product of the

transformed tensors, thereby proving that a tensor group endowed

with the Einstein product is structurally similar or isomorphic to a

general linear group ofmatrices. The notion of equivalence between

the Einstein product of tensors and the corresponding matrix

product of the transformed tensors is important and relevant as it

helps in developing many tools and concepts from matrix theory

such as matrix inverse, ranks, and determinants for tensors. Hence

as a follow-up to Brazell et al. [25], several other studies explored

different notions of linear algebra which can be extended to multi-

linear algebra using the Einstein product [26–32].

The purpose of this study is 2-fold. First, we intend to present

an overview of tensor algebra concepts developed in the past

decade using the Einstein product. Since there is a natural way

of extending linear algebra concepts to tensors, in this paper we

present a summary of the most commonly used and relevant

concepts which can equip the reader with tools to define and

prove other properties more specific to their intended applications.

Second, this study introduces the notion of contracted convolutions

for both discrete and continuous system tensors. The theory of

linear time invariant (LTI) systems has been an indispensable

tool in various engineering applications such as communication

systems, and controls. Now with the evolution of these subjects

to multi-domain communication systems and multi-linear systems

theory, there is a need to better understand the classical topics

in a multi-domain setting. This study intends to provide such

tools through a tutorial style presentation of the subject matter

leading to a mechanism to develop more tools needed for research

and applications in any multi-domain/multi-dimensional/multi-

modal/multi-linear setting.

The organization of this study is as follows: In Section 2,

we present basic tensor definitions and operations, including the

concept of signal tensors and contracted convolutions. In Section

3, we present the tensor network representation of various tensor

operations. Section 4 presents some tensor decompositions based

on the Einstein product. Section 5 defines the notions of multi-

linear system tensors and discusses their stability in both time and

frequency domains. It also includes a detailed discussion on the

application of tensors to multi-linear system representation with

an example of MIMO CDMA system. The study is concluded in

Section 6.

2 Fundamentals of tensors and
notation

A tensor is a multi-way array whose elements are indexed

by three or more indices. Each index may correspond to a

different domain, dimension, or mode of the quantity being

represented by the array. The order of the tensor is the number

of such indices or domains or dimensions or modes. A vector

is often referred to as a tensor of order-1, a matrix as a tensor

of order-2 and tensors of order greater than 2 are known as

higher-order tensors.

2.1 Notations

In this study, we use lowercase underline fonts to represent

vectors, e.g., x, uppercase fonts to represent matrices, e.g., X and

uppercase calligraphic fonts to represent tensors, e.g., X. The

individual elements of a tensor are denoted by the indices in

subscript, e.g., the (i1, i2, i3)th element of a third-order tensor

X is denoted by Xi1 ,i2 ,i3 . A colon in subscript for a mode

corresponds to every element of that mode corresponding to

fixed other modes. For instance, X:,i2 ,i3 denotes every element

of tensor X corresponding to i2th second and i3th third mode.

The nth element in a sequence is denoted by a superscript

in parentheses, e.g., A(n) denotes the nth tensor in a sequence

of tensors. We use C and Ck to denote a set of complex

numbers and a set of complex numbers which are a function of

k, respectively.
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2.2 Definitions and tensor operations

Definition 1. Tensor linear space : The set of all tensors of size

I1×· · ·×IK overC forms a linear space, denoted asTI1 ,...,IK (C). For

A,B ∈ TI1 ,...,IK (C) and α ∈ C, the sum A + B = C ∈ TI1 ,...,IK (C)

where Ci1 ,...,ik = Ai1 ,...,ik+Bi1 ,...,ik , and scalar multiplication α ·A =

D ∈ TI1 ,...,IK (C) whereDi1 ,...,ik = αAi1 ,...,ik [14].

Definition 2. Fiber: Fiber is defined by fixing every index in a

tensor but one. A matrix column is a mode-1 fiber, and a matrix

row is a mode-2 fiber. Similarly, a third-order tensor has column

(mode-1), row (mode-2), and tube (mode-3) fibers [1].

Definition 3. Slices: Slices are two-dimensional sections of a tensor

defined by fixing all but two indices.

Definition 4. Norm: The p−norm of an order N tensor X ∈

C
I1×I2×···×IN is defined as

‖X‖p =
( I1∑

i1=1

I2∑

i2=1

......

IN∑

iN=1

| Xi1 ,i2 ,....,iN |p
)1/p

. (1)

Subsequently, the 2−norm or the Frobenius norm of X is

defined as the square root of the sum of the square of absolute

values of all its elements:

‖X‖2 =

√
√
√
√

I1∑

i1=1

I2∑

i2=1

......

IN∑

iN=1

| Xi1 ,i2 ,....,iN |2. (2)

In addition, the 1−norm and∞−norm of a tensor are defined as

‖X‖1 =
∑

i1 ,...,iN

| Xi1 ,i2 ,....,iN |, (3)

‖X‖∞ = max
i1 ,...,iN

| Xi1 ,i2 ,....,iN | . (4)

Definition 5. Kronecker product of Matrices: The Kronecker

product of two matrices A of size I× J and B of size K× L, denoted

by A⊗ B, is a matrix of size (IK)× (JL) and is defined as

A⊗ B =









A1,1B A1,2B . . . A1,JB

A2,1B A2,2B . . . A2,JB
...

...
. . .

...

AI,1B AI,2B . . . AI,JB









. (5)

Definition 6. Matricization transformation : Let us denote the

linear space of P × Q matrices over C as MP,Q(C). For an order

K = N + M tensor A ∈ C
I1×···×IN×J1×···×JM , the transformation

fI1 ,...,IN |J1 ,...,JM :TI1 ,...,IN ,J1 ,...,JM (C) ⇒ MI1·I2···IN−1·IN ,J1·J2···JM−1·JM (C)

with fI1 ,...,IN |J1 ,...,JM (A) = A is defined component-wise as [25]

Ai1 ,i2 ,...,iN ,j1 ,j2 ,...,jM

fI1,...,IN |J1,...,JM
−−−−−−−−→

A
i1+

∑N
k=2(ik−1)

∏k−1
l=1 Il ,j1+

∑M
k=2(jk−1)

∏k−1
l=1 Jl

. (6)

This transformation is essentially a matrix unfolding of

a tensor by partitioning its indices into two disjoint subsets

corresponding to rows and columns [33]. The widely used

vectorization operation as defined in [34] is a specific case of

Equation (6) where J1 = · · · = JM = 1. The bar notation in

subscript of fI1 ,...,IN |J1 ,...,JM denotes the partitioning after N modes

of an N + M order tensor. The first N modes correspond to the

rows, and the last M modes correspond to the columns of the

representing matrix. This transformation is bijective [28], and

it preserves addition and scalar multiplication operations, i.e.,

for A,B ∈ TI1 ,...,IN ,J1 ,...,JM (C) and any scalar α ∈ C, we have

fI1 ,...,IN |J1 ,...,JM (A + B) = fI1 ,...,IN |J1 ,...,JM (A) + fI1 ,...,IN |J1 ,...,JM (B)

and fI1 ,...,IN |J1 ,...,JM (αA) = αfI1 ,...,IN |J1 ,...,JM (A). Hence, the linear

spaces TI1 ,...,IN ,J1 ,...,JM (C) and MI1·I2···IN−1·IN ,J1·J2···JM−1·JM (C)

are isomorphic, and the transformation fI1 ,...,IN |J1 ,...,JM is an

isomorphism between the linear spaces. For a matrix, the

transformation (6) does no change when N = M = 1, creates

a column vector when N = 2,M = 0 and a row vector when

N = 0,M = 2.

2.2.1 Tensor products
Tensors have multiple modes; hence, a product between two

tensors can be defined in various ways. In this section, we present

definitions of the most commonly used tensor products.

Definition 7. Tensor Contracted product [33]: Consider

two tensors X ∈ C
I1×I2×···×IM×J1×J2×···×JN and Y ∈

C
I1×I2×···×IM×K1×K2×···×KP . We can multiply both tensors

along their common M modes, and the resulting tensor

Z ∈ C
J1×J2×···×JN×K1×K2×···×KP is given by

Z = {X,Y}{1,...,M;1,...,M} (7)

where

Zj1 ,...,jN ,k1 ,...,kP =

I1∑

i1=1

· · ·

IM∑

iM=1

Xi1 ,...,iM ,j1 ,...,jNYi1 ,...,iM ,k1 ,...,kP . (8)

It is important to note that the modes to be contracted need not

be consecutive. However, the size of the corresponding dimensions

must be equal. For example, tensors A ∈ C
K×L×M×N and B ∈

C
K×M×Q×R can be contracted along the first and third mode of

A and first and second mode of B as C = {A,B}{1,3;1,2} where

C ∈ C
L×N×Q×R. Matrix multiplication between A ∈ C

I×J and

B ∈ C
J×K can be seen as a specific case of the contracted product as

A · B = {A, B}{2;1} where · represents usual matrix multiplication.

Several other tensor products can be defined as specific cases of

contracted products. One such commonly used tensor product is

the Einstein product where themodes to be contracted are at a fixed

location as defined next.

Definition 8. Einstein product : The Einstein product between

tensors A ∈ C
I1×···×IP×K1×···×KN and B ∈ C

K1×···×KN×J1···×JM is

defined as a contraction between their N common modes, denoted

by ∗N , as [25]:

(A ∗N B)i1 ,...,iP ,j1 ,...,jM =
∑

k1 ,...,kN

Ai1 ,i2 ,...,iP ,k1 ,...,kNBk1 ,...kN ,j1 ,j2 ,...,jM .

(9)

In Einstein product, contraction is over N consecutive modes

and can also be written using the more general notation with
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contracted modes in subscript. For instance, for sixth-order tensors

H, S ∈ C
I×J×K×I×J×K , we have

(H ∗3 S)i,j,k,î,ĵ,k̂ =

I
∑

u=1

J
∑

v=1

K
∑

w=1

Hi,j,k,u,v,wSu,v,w,î,ĵ,k̂

= ({H, S}{4,5,6;1,2,3})i,j,k,î,ĵ,k̂. (10)

Note that one can define Einstein product for several specific

mode orderings. For instance, in [17], Einstein product is defined

as contraction over N alternate modes and not consecutive modes.

However, that would not change the concepts presented here, so far

as we remain consistent with the definition.

Definition 9. Inner product: The inner product of two tensors

X ∈ C
I1×I2×···×IN and Y ∈ C

I1×I2×···×IN of the same order N with

all the dimensions of same length is given by

〈X,Y〉 =

I1∑

i1=1

I2∑

i2=1

· · ·

IN∑

iN=1

Xi1 ,i2 ,...,iNYi1 ,i2 ,...,iN . (11)

It can also be seen as the Einstein product of tensors where

contraction is along all the dimensions, i.e., 〈X,Y〉 = X ∗N Y =

Y ∗N X.

Definition 10. Outer product: Consider two tensors X ∈

C
I1×I2×···×IN and Y ∈ C

J1×J2×···×JM of order N andM, respectively.

The outer product between X and Y denoted by X ◦ Y is given

by a tensor of size I1 × I2 × · · · × IN × J1 × J2 × · · · × JM with

individual elements as

(X ◦ Y)i1 ,i2 ,...,iN ,j1 ,j2 ,...,jM = Xi1 ,i2 ,...,iNYj1 ,j2 ,...,jM . (12)

It can also be seen as a special case of the Einstein product of

tensors in Equation (9) with N = 0.

Definition 11. n-mode product: The n-mode product of a tensor

A ∈ C
I1×I2×···×IN with a matrix U ∈ C

J×In is denoted by A×nU

and is defined as [23]:

(A×nU)i1 ,i2 ,...,in−1 ,j,in+1 ,...,iN =

In∑

in=1

Xi1 ,i2 ,...,iNUj,in . (13)

Each mode-n fiber is multiplied by the matrix U. The result

of n-mode product is a tensor of the same order but with a

new nth mode of size J. The resulting tensor is of the size

I1 × I2 × · · · × In−1 × J × In+1 × . . . IN .

Definition 12. Square tensors : A tensor A ∈ C
I1×···×IN×J1×···×JM

is called a square tensor if N = M and Ik = Jk for k = 1, . . . ,N

[28].

For order-4 tensors A,B of size I × J × I × J, it was shown in

Brazell et al. [25] that fI,J|I,J(A ∗2 B) = fI,J|I,J(A) · fI,J|I,J(B). This

result was further extended to a tensor of any order and size in

Wang and Xu [32] as the following lemma:

Lemma 1. For tensors A ∈ C
I1×···×IN×J1×···×JM and B ∈

C
J1×···×JM×K1×···×KP using the matrix unfolding from Equation (6),

we get

fI1 ,...,IN |K1 ,...,KP (A ∗M B) = fI1 ,...,IN |J1 ,...,JM (A) · fJ1 ,...,JM |K1 ,...,KP (B).

(14)

Definition 13. Pseudo-diagonal tensors : Any tensor D ∈

C
I1×···×IN×J1×···×JM of order N +M is called pseudo-diagonal if its

transformationD = fI1 ,...,IN |J1 ,...,JM (D) yields a diagonal matrix such

that Di,j is non-zero only when i = j [35].

Since the mapping (6) is bijective, one can establish that a diagonal

matrix D ∈ C
I×J under inverse transformation f−1

I1 ,...,IN |J1 ,...,JM
(D)

will yield a pseudo-diagonal tensor where I = I1 · · · IN and J =

J1 · · · JM . A square tensor D ∈ C
I1×···×IN×I1×···×IN is pseudo-

diagonal if all its elements Di1 ,...,iN ,j1 ,...,jN are zero except when

i1 = j1, i2 = j2, . . . , iN = jN . Such a tensor is referred to as a

diagonal tensor in Brazell et al. [25] and Sun et al. [27] and as a U-

diagonal tensor in [17]. However, we define it as pseudo-diagonal in

this study, so as to distinguish it from the diagonal tensor definition

more widely found in the literature which states that a diagonal

tensor is one where elements Di1 ,...,iN are zero except when i1 =

i2 = · · · = iN [1]. This can be seen as a stricter diagonal rule as non-

zero elements exist only when all the modes have the same index

whereas in a pseudo-diagonal tensor, say of order 2N, elements are

non-zero when every ith and (i + N)th mode have the same index

for i = 1, . . . ,N. An illustration of order-4 tensor showing the

difference between diagonal and pseudo-diagonal structures can

be found in Pandey et al. [16]. For a matrix, which has just two

modes, the diagonal and pseudo-diagonal structures are the same.

The notion of pseudo-diagonality can be defined with respect to

partition after any number of modes. For instance, for a third-

order pseudo-diagonal tensor, it is important to specify whether

the pseudo-diagonalilty is with respect to partition after the first

mode or the secondmode. For simplicity, in this study wherever we

write a pseudo-diagonal tensor explicitly as orderN+M or 2N, the

pseudo-diagonality is with respect to partition after first N modes.

Definition 14. Pseudo-triangular tensor [15]: A tensor A ∈

C
I1×···×IN×I1×···×IN is defined to be pseudo-lower triangular if

Ai1 ,...,iN ,i
′
1 ,...,i

′
N
=









0 if (i′1 +
N∑

k=2

(i′k − 1)
k−1∏

l=1

Il) ≥ (i1 +
N∑

k=2

(ik − 1)
k−1∏

l=1

Il)

ai1 ,...,iN ,i′1 ,...,i
′
N

otherwise

(15)

where ai1 ,...,iN ,i′1 ,...,i
′
N
are arbitrary scalars. Similarly, the tensor is

said to be pseudo-upper triangular if

Ai1 ,...,iN ,i
′
1 ,...,i

′
N
=









0 if (i′1 +
N∑

k=2

(i′k − 1)
k−1∏

l=1

Il) ≤ (i1 +
N∑

k=2

(ik − 1)
k−1∏

l=1

Il)

ai1 ,...,iN ,i′1 ,...,i
′
N

otherwise.

(16)

An illustration of an upper triangular tensor of size J1 × J2 ×

I1 × I2 with I1 = I2 = J1 = J2 = 3 is presented in Figure 1 and

its pseudo-upper triangular elements highlighted in gray along with

its pseudo-diagonal elements shown in black. A similar illustration

of a lower triangular tensor can be found in Venugopal and Leib

[15]. It can be readily seen that a lower triangular tensor becomes a

lower triangular matrix under the tensor-to-matrix transformation

defined in Equation (6), and a pseudo-upper triangular tensor

becomes an upper triangular matrix.

Definition 15. Identity tensor [15]: An identity tensor IN ∈

C
I1×···×IN×I1×···×IN is a pseudo-diagonal tensor of order 2N such
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FIGURE 1

Pseudo-upper triangular tensor.

that for any tensor A ∈ C
I1×···×IN×I1×···×IN , we have A ∗N IN =

IN ∗N A = A and in which all non-zero entries are 1, i.e.,

(IN)i1 ,i2 ,...,iN ,j1 ,j2 ,...,jN =

N
∏

k=1

δikjk , where δpq =

{

1, p = q

0, p 6= q.
(17)

2.2.2 Transpose, Hermitian, and inverse of a
tensor

The transpose of a matrix is a permutation of its two indices

corresponding to rows and columns. Since elements of a higher-

order tensor are indexed by multiple indices, there are several

permutations of such indices, and hence, there can bemultiple ways

to write the transpose or Hermitian of a tensor. Such permutation-

dependent transpose of a tensor is defined in Pan [36].

Assume the set SN = {1, 2, . . . ,N} and σ is a permutation of

SN . We denote σ (j) = ij for j = 1, 2, . . . ,N where {i1, i2, . . . , iN} =

{1, 2, . . . ,N} = SN . Since SN is a finite set with N elements,

it has N! different permutations. Hence, discounting the identity

permutation σ (j) = [1, 2, . . . ,N], there are N! − 1 different

transposes for a tensor with N dimensions or modes. For a tensor

A ∈ C
I1×···×IN , we define its transpose associated with a certain

permutation σ asATσ ∈ C
Iσ (1)×···×Iσ (N) with entries

ATσ
iσ (1) ,iσ (2) ,...,iσ (N)

= Ai1 ,i2 ,...,iN . (18)

Similarly, the Hermitian of a tensor A ∈ C
I1×···×IN associated

with a permutation σ is defined as the conjugate of its transpose

and is denoted asAHσ = (ATσ )∗ ∈ C
Iσ (1)×···×Iσ (N) with entries

AHσ
iσ (1) ,iσ (2) ,...,iσ (N)

= (ATσ
iσ (1) ,iσ (2) ,...,iσ (N)

)∗ = (Ai1 ,i2 ,...,iN )
∗. (19)

For example, a transpose of a third-order tensor X ∈ C
I1×I2×I3

such that its third mode is transposed with the first can be written

as XTσ where σ = [3, 2, 1] with components XTσ
i3 ,i2 ,i1

= Xi1 ,i2 ,i3 . For

two tensorsA ∈ C
I1×···×IN andB ∈ C

I1×···×IN , we have [36]

〈A,B〉 = 〈ATσ ,BTσ 〉. (20)

Consider a tensor Y ∈ C
I1×···×IN×J1×···×JM and its transposition

YTσ where the last M modes are swapped with the first N modes.

Such a permutation can be denoted as σ = [(N + 1), . . . (N +

M), 1, . . . N] where YTσ
j1 ,...,jM ,i1 ,...iN

= Yi1 ,...,iN ,j1 ,...,jM . Since we will

use tensors to define system theory elements with fixed order M

output and order N input, the most often encountered case of

transpose or Hermitian in this study would be after N modes of an

N + M or 2N tensor, i.e., σ = [(N + 1), . . . (N + M), 1, . . . N].

Henceforth, in such a case we drop the superscript σ for ease

of representation and represent such a transpose by YT and its

conjugate by YH .

Furthermore, a square tensor U ∈ C
I1×···×IN×I1×···×IN is called

a unitary tensor if UH ∗N U = U ∗N UH = IN .

The tensor A−1 ∈ C
I1×···×IN×I1×···×IN is an inverse of a

square tensor of same size, A ∈ C
I1×···×IN×I1×···×IN if A ∗N

A−1 = A−1 ∗N A = IN [28]. The inverse of a tensor exists

if its transformation fI1 ,...,IN |I1 ,...,IN (A) is invertible [25]. Several

algorithms using the Einstein product such as Higher-order Bi-

conjugate Gradient method [25] or Newton’s method [37] can be

used to find tensor inverse without relying on actually transforming

the tensor into a matrix.

As a generalization of the matrix Moore-Penrose inverse, the

Moore-Penrose inverse of a tensor A ∈ C
I1×···×IN×J1×···×JN is

defined as a tensorA+ ∈ C
J1×···×JN×I1×···×IN that satisfies [27, 38]:

A ∗N A+ ∗N A = A,

A+ ∗N A ∗N A+ = A+,

(A ∗N A+)H = A ∗N A+,

(A+ ∗N A)H = A+ ∗N A.

For a tensor A ∈ C
I1×···×IN×J1××···×JN , the Moore-Penrose

inverse always exists and is unique [27].

Based on the definition of tensor inverse, Hermitian, and the

Einstein product, several tensor algebra relations and properties

can be derived. Here, we present a few properties that are often used

and can be easily derived:

1. Associativity: For tensors A ∈ C
I1×···×IP×J1×···×JN , B ∈

C
J1×···×JN×K1×···×KM , and C ∈ C

K1×···×KM×T1×···×TQ , we have

(A ∗N B) ∗M C = A ∗N (B ∗M C) (21)

2. Commutativity: The Einstein product is not commutative in all

cases. However, for the specific case where the contraction is

taken over all the N modes of one of the tensors, say for tensors

A ∈ C
I1×···×IP×J1×···×JN andB ∈ C

J1×···×JN , we get

A ∗N B = B ∗N AT . (22)

3. Distributivity: For tensors, A,B ∈ C
I1×···×IP×J1×···×JN and C ∈

C
J1×···×JN×K1×···×KM , we have

(A+B) ∗N C = (A ∗N C)+ (B ∗N C). (23)

4. For tensors A ∈ C
I1×···×IM×J1×···×JN and B ∈

C
J1×···×JN×K1×···×KP , we have

(A ∗N B)H = BH ∗N AH . (24)

5. For square invertible tensorsA andB ∈ C
I1×···×IN×I1×···×IN , we

have

(A ∗N B)−1 = B−1 ∗N A−1. (25)
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2.2.3 Function tensors
A function tensor A(x) ∈ C

I1×···×IN
x is an order N tensor whose

components are functions of x. Using a third-order function tensor

as an example, each component of A(x) is written as Ai,j,k(x). If x

takes discrete values, we represent the function tensor using square

bracket notation asA[x].

A generalization of the function tensor would be the

multivariate function tensor A(x1, . . . , xp) ∈ C
I1×···×IN
x1 ,...,xp , which

is an order N tensor whose components are functions of the

continuous variables x1, . . . , xp. If the variables take discrete values,

we denote the function tensor as A[x1, · · · , xp]. Using the same

example of a third-order tensor, each component can be written as

Ai,j,k(x1, x2, . . . , xp).

A linear system is often expressed as Ax = b where A ∈

C
M×N is a matrix operating upon the vector x ∈ C

N to

produce another vector b ∈ C
M [25]. Essentially, the matrix

defines a linear operator L :C
N → C

M between two vector

linear spaces C
N and C

M . A multi-linear system can be thus

defined as a linear operator between two tensor linear spaces

C
I1×···×IN and C

J1×···×JM , i.e., ML :C
I1×···×IN → C

J1×···×JM .

Multi-linear systems model several phenomena in various science

and engineering applications. However, often in literature, a multi-

linear system is degenerated into a linear system by mapping the

tensor linear space C
I1×···×IN into a vector linear space C

I1···IN

through vectorization. The vectorization process allows one to

use tools from linear algebra for convenience but also leads to

a representation where the distinction between different modes

of the system is lost. Thus, possible hidden patterns, structures,

and correlations cannot be explicitly identified in the vectorized

tensor entities. With the help of tensor contracted product, one can

develop signals and system representation without having to rely

on vectorization, at the same time extending tools from linear to

multi-linear setting intuitively.

2.3 Discrete time signal tensors

A discrete time signal tensor X[n] ∈ C
I1×···×IN
n is a function

tensor whose components are functions of the sampled time index

n. A discrete tensor signal can also be called a tensor sequence

indexed by n.

A multi-linear time invariant discrete system tensor is an order

N+M tensor sequenceH[k] ∈ C
J1×···×JM×I1×···×IN
k

that couples an

input tensor sequence X[k] ∈ C
I1×···×IN
k

of order N with an output

tensor sequence Y[k] ∈ C
J1×···×JM
k

of order M through a discrete

contracted convolution defined as

Y[k] =
∑

n

{H[n],X[k− n]}{M+1,...,M+N;1,...,N}. (26)

Most often the ordering of the modes while defining such

system tensors is fixed, where the system tensor contracts over all

the input modes. Hence for amore compact notation, we can define

the contracted convolution using the Einstein product as

Y[k] =
∑

n

H[n] ∗N X[k− n]. (27)

In scalar signals and systems notations, a convolution between

two functions is often represented using an asterisk (∗). However,

to make a distinction with the Einstein product notation which

also uses the asterisk symbol, we denote the contracted convolution

using the notation •N , i.e.,

Y[k] = H[k] •N X[k] =
∑

n

H[n] ∗N X[k− n]. (28)

The complex frequency domain representation of discrete

signal tensors can be given using the z-transform of the signal

tensors, as discussed next.

Definition 16. z-transform of a Discrete Tensor Sequence: The

z-transform of X[n] ∈ C
I1×...IN
n denoted by X̆(z) = Z(X[k]) ∈

C
I1×···×IN
z is a tensor of the z-transform of its components

defined as

X̆(z) = Z(X[k]) =
∑

n

X[n]z−n (29)

with components X̆i1 ,...,iN (z) =
∑

n
Xi1 ,...,iN [n]z

−n.

The discrete time Fourier transform denoted by X̄(ω) = F(X[k])

of a tensor sequence can be found by substituting z = ejω in its

z-transform as

X̄(ω) = X̆(z)

∣
∣
∣
∣
z=ejω

=
∑

n

X[n]z−n

∣
∣
∣
∣
z=ejω

=
∑

n

X[n]e−jωn. (30)

Taking the z-transform of Equation (28), we get

Y̆(z) =
∑

k

Y[k]z−k

=
∑

k

(
∑

n

H[n] ∗N X[k− n]

)

z−k

=
∑

k

(
∑

n

H[n] ∗N X[k− n]

)

zn−kz−n

=
∑

n

H[n] ∗N

(
∑

k

X[k− n]zn−k

)

z−n

=
∑

n

H[n]z−n ∗N X̆(z)

=

(
∑

n

H[n]z−n

)

∗N X̆(z)

= H̆(z) ∗N X̆(z). (31)

which shows that the discrete contracted convolution between

two tensors in the time domain as given by Equation (28) leads to

the Einstein product between the tensors in the z-domain.

2.4 Continuous time signal tensors

A continuous time signal tensor X(t) ∈ C
I1×···×IN
t is a function

tensor whose components are functions of the continuous time

variable t.

A multi-linear time invariant continuous system tensor is an

order N + M tensor H(t) ∈ C
J1×···×JM×I1×···×IN
t that couples an

order N input continuous tensor signal X(t) ∈ C
I1×···×IN
t with
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an order M output tensor signal Y(t) ∈ C
J1×···×JM
t through a

continuous contracted convolution defined as

Y(t) =

∫

{H(u),X(t − u)}{M+1,...,M+N;1,...,N}du. (32)

In cases where the mode sequence is fixed, similar to the

discrete case, we can define a more compact notation using the

Einstein product as:

Y(t) = H(t) •N X(t) =

∫

H(u) ∗N X(t − u)du. (33)

The frequency domain representation of continuous signal

tensors can be given using the Fourier transform of the signal tensor

as defined next.

Definition 17. Fourier transform: The Fourier transform of

X(t) ∈ C
I1×···×IN
t denoted by X̄(ω) = F(X(t)) is a tensor of the

Fourier transform of its components defined as

X̄(ω) = F(X(ω)) =

∫

X(t)e−jωtdt (34)

with components X̄i1 ,...,iN (ω) =
∫

Xi1 ,...,iN (t)e
−iωtdt.

Using similar line of derivation as for Equation (31), it can be

shown that Equation (33) can be written in frequency domain as

Ȳ(ω) = H̄(ω) ∗N X̄(ω).

3 Tensor networks

Tensor network (TN) diagrams are a graphical way of

illustrating tensor operations [39]. A TN diagram uses a node to

represent a tensor, and each outgoing edge from a node represents

a mode of the tensor. As such, a vector can be represented through

a node with a single edge, a matrix through a node with double

edges, and an order N tensor through a node with N edges. This

is illustrated in Figure 2. Any form of tensor contraction can be

visually presented through a TN diagram.

3.1 Illustration of contracted products

A contraction between two modes of a tensor is represented

in TN by connecting the edges corresponding to the modes that

are to be contracted. Hence, the number of free edges represents

the order of the resulting tensor. As such any contracted product

can be illustrated through a TN diagram, and a few examples are

shown in Figure 3. In Figure 3A, the mode-n product of a tensor

A ∈ C
I1×···×IN with U ∈ C

J×In , i.e., A ×n U from Equation (13)

is depicted where the nth edge of A is connected with the second

edge of U to represent the contraction of these modes of the same

dimension. Figure 3B shows the inner product between two third-

order tensorsA,B ∈ C
I×J×K where all the edges of both the tensors

are connected. Since there is no free edge remaining, the result

is a scalar. In Figure 3C, a fifth-order tensor A ∈ C
I×J×K×L×M

contracts with a fourth-order tensor B ∈ C
J×P×L×N along its

two common modes as {A,B}{2,4;1,3}. The resulting tensor is an

order-5 tensor as there are a total of five free edges in the diagram.

Finally, Figure 3D shows the Einstein product between tensors

from Equation (9) where the common N modes are connected and

we have P +M free edges.

3.2 Illustration of contracted convolutions

A contracted convolution is an operation between tensor

functions. A function tensor in a TN diagram is represented

by a node which is a function of a variable. To represent a

function tensor in a TN, we use a rectangular node rather than

a circular node. For a given value of the time index k, the

contracted convolution from Equation (28) can be depicted using

a TN diagram as shown in Figure 4. Note that each Y[k] is

calculated by computing the Einstein product for all the values

of n. Hence, the TN diagram contains a sequence of Einstein

product representations between H[n] and X[k − n]. We suggest

a compact representation of the contracted convolution similar to

the contracted product, where we connect the edges of the function

tensor using a dashed line to represent a contracted convolution

as shown in Figure 5. This creates a distinction between the two

representations. If the corresponding edges are connected via solid

lines, it represents a contracted product, and if they are connected

via dashed lines, it represents a contracted convolution.

To the best of our knowledge, a diagrammatic representation

of contracted convolution operation has not been proposed in the

literature yet. However, we suggest this representation as it allows

an easy way to illustrate multi-domain systems and capture their

interactions visually. Note that various contracted products have

already been widely depicted in the literature using TN for ease

of illustration. Even though a contracted convolution can be seen

as a sum of contracted products, depicting it using contracted

products in a TN, such as in Figure 4, would lead to a rather

complicated representation. Moreover, when considering multiple

systems spanning multiple domains interacting with each other,

such complicated illustrations would be challenging to interpret

and analyze mathematically. Hence, our choice of illustration

for contracted convolution in a TN provides an elegant and

interpretable visualization of multi-domain systems interaction.

In Section 5.3.2, we consider an example of a multi-domain

communication system that can be modeled using contracted

convolutions, represented through a TN, to illustrate the ease of

system representation using our proposed method.

Very often, TN diagrams are used to represent tensor

operations as they provide a better visual understanding and

thereby aid in developing algorithms to compute tensor operations

by making use of elements from graph theory and data structures.

Furthermore, a TN diagram can also be used to illustrate

how a tensor is formed from several other component tensors.

Hence, most tensor decompositions studied in literature are often

represented using a TN. In the next section, we discuss some

tensor decompositions.

4 Tensor decompositions

Several tensor decompositions such as the Tucker

decomposition, Canonical Polyadic (CP) or the Parallel Factor

(PARAFAC) decomposition, Tensor Train decomposition, and

many more have been extensively studied in the literature

[1, 11, 20]. However, in the past decade with the help of Einstein

product and its properties, a generalization of matrix SVD

and EVD has been proposed in the literature which has found

applications in solving multi-linear system of equations and
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FIGURE 2

TN diagram representation of (A) vector of size I1, (B) matrix of size I1 × I2, (C) order-3 tensor of size I1 × I2 × I3, and (D) order N tensor of size

I1 × · · · × IN.

FIGURE 3

TN representation of contracted product (A) mode-n product between A ∈ C
I1×···×IN and U ∈ C

J×IN , (B) between tensor A,B ∈ C
I×J×K over all the

three modes (inner product), (C) between A ∈ C
I×J×K×L×M and B ∈ C

J×P×L×N as {A,B}{2,4;1,3}, and (D) Einstein product between tensors

A ∈ C
I1×···×IP×K1×···×KN and B ∈ C

K1×···×KN×J1×···×JM .

systems theory [18, 25, 26]. In this section, we present some such

decompositions using the Einstein product of tensors.

4.1 Tensor singular value decomposition
(SVD)

Tucker decomposition of a tensor can be seen as a higher-

order SVD [23] and has found many applications, particularly in

extracting low-rank structures in higher dimensional data [40]. A

more specific version of tensor SVD is explored in Brazell et al.

[25] as a tool for finding tensor inversion and solving multi-linear

systems. Note that Brazell et al. [25] presents SVD for square

tensors only. The idea of SVD from Brazell et al. [25] is further

generalized for any even order tensor in Sun et al. [27]. However,

it can be further extended for any arbitrary order and size of the

tensor. We present a tensor SVD theorem here for any tensor of

order N +M.

Theorem 1. For a tensor, A ∈ C
I1×···×IN×J1×···×JM , the SVD of A

has the form:

A = U ∗N D ∗M VH (35)
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FIGURE 4

TN representation of contracted convolution from Equation (28).

FIGURE 5

Compact TN representation of contracted convolution from Equation (28).

where U ∈ C
I1×···×IN×I1×···×IN and V ∈ C

J1×···×JM×J1×···×JM are

unitary tensors, and D ∈ C
I1×···×IN×J1×···×JM is a pseudo-diagonal

tensor whose non-zero values are the singular values ofA.

Proof. For tensors A ∈ C
I1×···×IN×J1×···×JM and B ∈

C
J1×···×JM×K1×···×KP , from Equation (14), we get

A ∗M B = f−1
I1 ,...,IN |K1 ,...,KP

[fI1 ,...,IN |J1 ,...,JM (A) · fJ1 ,...,JM |K1 ,...,KP (B)].

(36)

If A ∈ C
I1I2···IN×J1J2···JM and B ∈ C

J1J2···JM×K1K2···KP are
transformedmatrices fromA andB, respectively, then substituting
fI1 ,...,IN |J1 ,...,JM (A) = A and fJ1 ,...,JM |K1 ,...,KP (B) = B in Equation (36)
gives us

f−1
I1 ,...,IN |K1 ,...,KP

(A · B) = A ∗M B = f−1
I1 ,...,IN |J1 ,...,JM

(A) ∗M f−1
J1 ,...,JM |K1 ,...,KP

(B). (37)

Hence if A = U · D · VH (obtained from matrix SVD),

then based on Equation (37), for an order N + M tensor A ∈

C
I1×···×IN×J1×···×JM , we have

A = f−1
I1 ,...,IN |J1 ,...,JM

(A) = f−1
I1 ,...,IN |J1 ,...,JM

(U · D · VH)

= f−1
I1 ,...,IN |I1 ,...,IN

(U) ∗N f−1
I1 ,...,IN |J1 ,...,JM

(D) ∗M f−1
J1 ,...,JM |J1 ,...,JM

(VH) =

U ∗N D ∗M VH . (38)

Note that for a tensor of order N + M, we will get different

SVDs for different values of N and M, but for a given N and

M, the SVD is unique which depends on the matrix SVD of

fI1 ,...,IN |J1 ,...,JM (A) = A. A proof of this theorem for 2N order

tensors with N = M using transformation defined in Equation

(6) is provided in [25]. This SVD can be seen as a specific case of

Tucker decomposition by expressing the unitary tensors in terms

of the factor matrices obtained through Tucker decomposition.

Let us consider an example of a fourth-order tensor. For a tensor

A ∈ C
I1×I2×K1×K2 , the Tucker decomposition has the form:

A = D×1B
(1)×2B

(2)×3B
(3)×4B

(4) (39)

where B(i) are factor matrices along all four modes of the tensor and

×n denotes the n-mode product. Now, Equation (39) can be written

in matrix form as follows [26]:

A = (B(1) ⊗ B(2))
︸ ︷︷ ︸

U

·D · (B(3)T ⊗ B(4)T)
︸ ︷︷ ︸

VH

. (40)

Now using the transformation from Equation (6), we can map

the elements of matrix U to a tensor U as

Ui,j,k,l = Ui+(j−1)I1 ,k+(l−1)K1
. (41)
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Also since U = (B(1) ⊗ B(2)) and Kronecker product when written

element-wise can be expressed as [12]

Ui+(j−1)I1 ,k+(l−1)K1
= B

(1)
j,l

· B
(2)
i,k

⇒ Ui,j,k,l = B
(1)
j,l

· B
(2)
i,k
.

(42)

This relation can be seen as the unitary tensor U being the

outer product of matrices B(1) and B(2) [25] but with different mode

permutation. Similar relation can be established for V in terms of

B(3) and B(4).

4.2 Tensor eigenvalue decomposition
(EVD)

As a generalization of matrix eigenvalues to tensors, several

definitions exist in the literature for tensor eigenvalues [24].

But most of these definitions apply to super-symmetric tensors

which are defined as a class of tensors that are invariant under

any permutation of their indices [41]. Such an approach has

applications in Physics and Mechanics [41], but there is no single

generalization to a higher-order tensor case that preserves all the

properties of matrix eigenvalues [21]. Here, we present a particular

generalization from Liang et al.[28], Cui et al. [26], and Chen

et al. [18] which can be seen as the extension of the matrix

spectral decomposition theorem and has applications in multi-

linear system theory.

Definition 18. LetA ∈ C
I1×···×IN×I1×···×IN ,X ∈ C

I1×···×IN , λ ∈ C,

where X and λ satisfy A ∗N X = λX, then we call X and λ as

eigentensor and eigenvalue ofA, respectively [26].

Using the definition of Hermitian tensor and tensor eigenvalues,

the following lemma can be readily established:

Lemma 2. The eigenvalues of a complex Hermitian tensor A ∈

C
I1×···×IN×I1×···×IN are always real.

Theorem 2. The EVD of a Hermitian tensor A ∈

C
I1×···×IN×I1×···×IN is given as [25]

A = U ∗N D ∗N UH (43)

where U ∈ C
I1×···×IN×I1×···×IN is a unitary tensor, and

D ∈ C
I1×···×IN×I1×···×IN is a square pseudo-diagonal tensor, i.e.,

Di1 ,...,iN ,j1 ,...,jN = 0 if (i1, . . . , iN) 6= (j1, . . . , jN) with its non-zero

values being the eigenvalues ofA andU containing the eigentensors

ofA.

This theorem can be proven using Lemma 1, and details are

provided in Brazell et al., and Liang et al. [25, 28]. The eigenvalues

of A are same as the eigenvalues of fI1 ,...,IN |I1 ,...,IN (A) [42]. We will

refer to a tensor A ∈ C
I1×···×IN×I1×···×IN as positive semi-definite,

denoted by A � 0 if all its eigenvalues are non-negative, which is

same as fI1 ,...,IN |I1 ,...,IN (A) being a positive semi-definite matrix. A

tensor is positive definite, A ≻ 0, if all its eigenvalues are strictly

greater than zero. A positive semi-definite pseudo-diagonal tensor

D will have all its components non-negative. Its square root can

be denoted as D1/2 which is also pseudo-diagonal positive semi-

definite whose elements are the square root of elements of D

such that D1/2 ∗N D1/2 = D. Similarly, if D is positive definite,

its inverse can be denoted as D−1 which is also pseudo-diagonal

whose non-zero elements are the reciprocal of the corresponding

elements of D. Based on tensor EVD, we can also write the square

root of any Hermitian positive semi-definite tensor as A1/2 =

U ∗N D1/2 ∗N UH and inverse of any Hermitian positive definite

tensor as A−1 = U ∗N D−1 ∗N UH . It is straightforward to see

that the singular values of a tensor A ∈ C
I1×···×IN×J1×···×JM are

the square root of the eigenvalues of tensor AH ∗N A. From SVD,

ifA = U ∗N D ∗M VH , then

AH ∗N A = (V ∗M DH ∗N UH) ∗N (U ∗N D ∗M VH) =

V ∗M DH ∗N D ∗M VH (44)

where DH ∗N D is the pseudo-diagonal tensor with eigenvalues of

AH ∗N A on its pseudo-diagonal which are square of the singular

values obtained from the SVD ofA.

Definition 19. Trace: The trace of a tensor A ∈

C
I1×···×IN×I1×···×IN is defined as the sum of its

pseudo-diagonal entries:

tr(A) =
∑

i1 ,...,iN

Ai1 ,i2 ,...,iN ,i1 ,i2 ,...,iN . (45)

Definition 20. Determinant: The determinant of a tensor A ∈

C
I1×···×IN×I1×···×IN is defined as the product of its eigenvalues, i.e.,

ifA = U ∗N D ∗N UH , then

det(A) =
∏

i1 ,...,iN

Di1 ,i2 ,...,iN ,i1 ,i2 ,...,iN . (46)

The eigenvalues of A are the same as that of its matrix

transformation, hence det(A) = det(fI1 ,...,IN |I1 ,...,IN (A)). Note that

there exist other definitions in the literature for determinants based

on how one chooses to define the eigenvalues of tensors [43]. The

definition presented here is the same as the unfolding determinant

in [28].

4.2.1 Some properties of trace and determinant
The following properties can be easily shown by writing the

tensors component-wise or using Lemma 1.

1. For two tensors A ∈ C
I1×···×IN and B ∈ C

I1×···×INof same size

and order N,

A ∗N B = B ∗N A = tr(A ◦B) = tr(B ◦A). (47)

2. For tensors A ∈ C
I1×···×IN×J1×···×JM and B ∈

C
J1×···×JM×I1×···×IN , we have

tr(A ∗M B) = tr(B ∗N A), (48)

det(IN +A ∗M B) = det(IM +B ∗N A). (49)

where IN and IM are identity tensors of order 2N and 2M,

respectively. To prove Equation (49), we can use Lemma 1 and

Sylvester’s matrix determinant identity [44].
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3. For tensorsA,B ∈ C
I1×···×IN×I1×···×IN , we have

det(A ∗N B) = det(B ∗N A) = det(A) · det(B). (50)

4. Trace of a square tensor is the sum of its eigenvalues.

5. The absolute value of the determinant of a unitary tensor is 1,

and the determinant of a square pseudo-diagonal tensor is the

product of its pseudo-diagonal entries.

4.3 Tensor LU decomposition

LU decomposition is a powerful tool in linear algebra that

can be used for solving systems of equations. In order to solve

systems of multi-linear equations, Liang et al. [28] proposed an LU

decomposition form for tensors. For A ∈ C
I1×···×IN×I1×···×IN , the

LU factorization takes the form:

A = L ∗N U (51)

where L,U ∈ C
I1×···×IN×I1×···×IN are pseudo-lower and pseudo-

upper triangular tensors, respectively. In order to solve a system of

multi-linear equation A ∗N X = B to find X, LU decomposition

of A can be used to break the equation into two pseudo-triangular

equations U ∗N X = Y and L ∗N Y = B. These two equations

can be solved using forward and backward substitution algorithms

proposed in Liang et al. [28]. When B is an identity tensor, this

method can also be used for finding the inverse of a tensor.

More details on computing LU decomposition and the required

conditions for its existence can be found in Liang et al. [28].

Note that all these tensor decompositions represent a given

tensor in terms of a contracted product between factor tensors.

Hence, they all can be represented using tensor network diagrams.

For example, we show the TN diagram corresponding to tensor

SVD in Figure 6. A detailed TN representation of several other

tensor decompositions such as Tucker, PARAFAC, and Tensor

Train Decomposition is also presented in Cichocki [39].

5 Multi-linear tensor systems

Using the tools presented so far, we will now present the notions

of multi-linear system theory using tensors.

5.1 Discrete time multi-linear tensor
systems

A discrete time multi-linear tensor system is characterized by

an order N + M system tensor H[k] ∈ C
J1×···×JM×I1×···×IN
k

which

produces an order M output tensor sequence Y[k] ∈ C
J1×···×JM
k

from an input tensor sequence X[k] ∈ C
I1×···×IN
k

through a

discrete contracted convolution as defined in Equation (28). The

system tensor can be seen as an impulse response tensor whose

(j1, . . . , jM , i1, . . . , iN)th entry is the impulse response from the

(i1, . . . , iN)th input to the (j1, . . . , jM)th output.

A system tensor is considered p−stable if corresponding to

every input of finite p−norm, the system produces an output which

is also finite p−norm. When p → ∞, this notion is known as

Bounded Input Bounded Output (BIBO) stability. The ∞−norm

of a signal tensor X is essentially its peak amplitude evaluated over

all the tensor components and all times, i.e.,

‖X‖∞ = sup
k

‖X[k]‖∞ = sup
k

max
i1 ,...,iN

| Xi1 ,i2 ,....,iN [k] | . (52)

Theorem 3. For a discrete multi-linear time invariant system with

order N input and order M output with an order N + M impulse

response system tensorH[k] ∈ C
J1×···×JM×I1×···×IN
k

, is BIBO stable

if and only if

max
j1 ,...,jM

∑

i1 ,...,iN

∑

k

| Hj1 ,...,jM ,i1 ,...,iN [k] |< ∞. (53)

Proof. If the input signal tensor X[k] satisfies ‖X‖∞ < ∞, then

output is given via discrete contracted convolution as

Y[k] =
∑

l

H[k− l] ∗N X[l] (54)

and thus,

max
j1 ,...,jM

| Yj1 ,...,jM [k] |=

max
j1 ,...,jM

|
∑

l

∑

i1 ,...,iN

Hj1 ,...,jM ,i1 ,...,iN [k− l]Xi1 ,...,iN [l] | (55)

≤
(

max
j1 ,...,jM

∑

l

∑

i1 ,...,iN

| Hj1 ,...,jM ,i1 ,...,iN [k− l] |
)

(56)

max
i1 ,...,iN

sup
l

| Xi1 ,...,iN [l] |

=
(

max
j1 ,...,jM

∑

l

∑

i1 ,...,iN

| Hj1 ,...,jM ,i1 ,...,iN [k− l] |
)

‖X‖∞. (57)

Hence we get,

‖Y‖∞ = sup
k

‖Y[k]‖∞ = sup
k

max
j1 ,...,jM

| Yj1 ,....,jM [k] | (58)

≤
(

max
j1 ,...,jM

∑

i1 ,...,iN

∑

k

| Hj1 ,...,jM ,i1 ,...,iN [k] |
)

‖X‖∞ < ∞.

(59)

which proves that output is bounded if (53) is satisfied. To

prove the converse of the theorem, it suffices to show any example

where if (53) is not satisfied, there exists a bounded input which

leads to an unbounded output. For this, we can simply consider the

case where input and output are scalars which is a special case of the

tensor formulation. Equation (53) in that case translates to BIBO

condition for SISO LTI system, i.e.,
∑

k |h[k]| < ∞. Hence, it can

be readily verified that a signum input defined as x[n] = sgn(h[−n])

which is bounded will lead to an unbounded output if the impulse

response sequence is not absolutely summable [45].

The BIBO stability condition for a MIMO LTI system requires

that every element of the impulse response matrix must be

absolutely summable. The condition from Equation (53) can be

seen as an extension to the tensor case, where every element

of the impulse response tensor must be absolutely summable.
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FIGURE 6

TN representation of tensor SVD from Equation (35).

Furthermore, we extend the definitions of poles and zeros from

matrix-based systems to tensors. A matrix transfer function H̆(z)

has a pole at frequency ν if some entry of H̆(z) has a pole at z = ν

[46]. In addition, H̆(z) has a zero at frequency γ if the rank of

H̆(z) drops at z = γ [46]. Similarly, a tensor transfer function

H̆(z) has a pole at frequency ν if some entry of H̆(z) has a pole

at z = ν. In addition, H̆(z) has a zero at frequency γ if the rank of

fJ1 ,...,JM |I1 ,...,IN (H̆(z)) drops at z = γ . Such a rank is also sometimes

referred to as the unfolding rank of the tensor [18, 28].

A tensor system is BIBO stable if all its components are BIBO

stable. This implies that every pole of every entry of its transfer

function has a magnitude less than 1, i.e., all the poles lie within

the unit circle on the z-plane.

5.2 Continuous time multi-linear tensor
systems

A continuous time multi-linear tensor system is characterized

by an order N + M system tensor H(t) ∈ C
J1×···×JM×I1×···×IN
t

which produces an order M output tensor signal Y(t) ∈ C
J1×···×JM
t

from an input tensor signal X(t) ∈ C
I1×···×IN
t through a contracted

convolution as defined in Equation (33). The system tensor can be

seen as an impulse response tensor whose (j1, . . . , jM , i1, . . . , iN)th

entry is the impulse response from the (i1, . . . , iN)th input to the

(j1, . . . , jM)th output.

Similar to the discrete case, a continuous system tensor is

considered p−stable if corresponding to every input of finite

p−norm, the system produces an output which is also finite

p−norm. This notion is known as Bounded Input Bounded Output

(BIBO) stability if p = ∞. The ∞−norm of a continuous signal

tensor X is essentially its peak amplitude evaluated over all the

tensor components and all times, i.e.,

‖X‖∞ = sup
t

‖X(t)‖∞ = sup
t

max
i1 ,...,iN

| Xi1 ,i2 ,....,iN (t) | . (60)

Theorem 4. For a continuous multi-linear time invariant system

with order N input and order M output with an order M + N

impulse response system tensor H(t) ∈ C
J1×···×JM×I1×···×IN
t , is

BIBO stable if and only if

max
j1 ,...,jM

∑

i1 ,...,iN

∫

| Hj1 ,...,jM ,i1 ,...,iN (t) | dt < ∞. (61)

The condition from Equation (61) implies that every element of the

impulse response tensor must be absolutely integrable. The proof

of Theorem 4 follows the same line of proof as of Theorem 3.

Furthermore, a continuous system tensor with transfer function

H̄(ω) is BIBO stable if all its components are BIBO stable. This

implies that every pole of every entry of its transfer function has

a real part less than 0.

5.3 Applications of multi-linear tensor
systems

A tensor multi-linear (TML) system can be used to model and

represent processes where two tensor signals are coupled through a

multi-linear functional. Among various other applications, the use

of tensors is ubiquitous in modern communication systems where

the signals and systems involved have an inherent multi-domain

structure. The physical layer model of modern communication

systems invariably spans more than one domain of transmission

and reception such as space, time, and frequency to name a few.

Consequently, the associated signal processing at the transmitter

and receiver has to be cognizant of the multiple domains and

their mutual effect on each other for efficient resource utilization.

Hence, the signals and the systems involved are best represented

using tensors.

5.3.1 System model for multi-domain
communication systems

The domains of transmission and reception in modern

communication systems depend on specific system configuration.

A few examples of possible domains include time slots, sub-

carriers, antennas, code sequences, propagation delays, and

users. Thus, a generic communication system model which is

agnostic to the physical interpretation of the domains, using

contracted convolution, was proposed in Venugopal and Leib [15].

Furthermore, a discrete version of the model from Venugopal and

Leib [15] using the Einstein product has been proposed in Pandey

and Leib [35] where the capacity analysis of higher-order tensor

channels is presented.

Consider a multi-domain communication system where the

input signal is an order N tensor X(t) ∈ C
I1×···×IN
t , which

passes through an order M + N multi-linear channel, H(t) ∈

C
J1×···×JM×I1×···×IN
t . The received signal, or the channel output,
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in this case can be defined as an order M tensor obtained from

the contracted convolution between the channel and the input as

Venugopal and Leib [15]:

Y(t) = H(t) •N X(t)+N (t) (62)

where N (t) denotes the additive noise tensor of the same size as

Y(t). Based on the relation between time and frequency domain as

discussed in Section 2.4, the frequency domain system model can

be specified using the Einstein product as

Ȳ(ω) = H̄(ω) ∗N X̄(ω)+ N̄ (ω). (63)

Note that such a system model is domain-agnostic and can

be used to model several systems. For more illustrative examples,

we direct readers to [15] which shows that several systems such

as Multi-Input Mulitple-Output (MIMO) Orthogonal Frequency

Division Multiplexing (OFDM), Generalized Frequency Division

Multiplexing (GFDM), and Frequency Bank Multi-carrier (FBMC)

can be modeled using Equation (62). A more detailed discussion

on the multi-domain communication system modeling can also be

found in Pandey et al.[16] and Pandey and Leib [35]. In this study,

we present an example of MIMO Code Division Multiple Access

(CDMA) system in Section 5.3.3 modeled using tensor contraction.

However, first we show the TN representation of higher-order

channels in the next section.

5.3.2 TN representation of TML systems
The channel is expressed as a TML system, and its coupling with

the input in both frequency and time domain can be represented in

a TN diagram as shown in Figure 7. Note that each edge of the input

is connected with the common edge of the channel via a dashed line

in the time domain and via a solid line in the frequency domain.

Instead of a regular block diagram representation of such systems,

the TN diagram has the advantage that it graphically details all the

modes of the input and the channel. Thus, just by looking at the

free edges of the overall TN diagram, one can determine the modes

of the output. The linearity of the system is reflected in the fact that

any given edge of the channel is connected with a single edge of

the input. Thus, a TML system is easy to identify visually in a TN

diagram by observing the presence of one-on-one edge connections

between the system and the input.

Note that in a communication system, the input signal is

often precoded before transmission by a transmit filter and the

output signal is processed via a receive filter. The transmit and

receiver filters can also be considered system tensors. Thus, the

TML channel H(t) can be seen as a cascade of three system

tensors. Let the transmit filter be represented by HT(t) ∈

C
K1×···×KQ×I1×···×IN
t which transforms the order N input into

an order Q transmit signal. The physical channel between the

source and destination is modeled as an order P + Q tensor

HC(t) ∈ C
L1×···×LP×K1×···×KQ

t , and the receive filter is represented

by HR(t) ∈ C
J1×···×JM×L1×···×LP
t . In this case, the equivalent

channelH(t) is obtained via a cascade of the three system tensors as

H(t) = HR(t) •P HC(t) •Q HT(t). (64)

A detailed derivation of such a channel representation can be

found in Venugopal and Leib [15]. A cascade of TML systems is

conveniently represented in a TN diagram as shown in Figure 8

which illustrates the coupling of the receive filter, physical channel,

and transmit filter system tensors in both time and frequency

domains. Hence, the nodes for H(t) and H̄(ω) in Figure 7 can

be broken down into component system tensors from Figure 8. A

tensor system has multiple modes, and the contraction can be along

various combinations of suchmodes. Hence, the TN representation

becomes extremely useful as opposed to regular block diagrams,

since it allows depiction of the state and coupling of each mode.

5.3.3 Example of Tensor Contraction for MIMO
CDMA systems

Code Division Multiple Access (CDMA) is a spread spectrum

technique used in communication systems where multiple

transmitting users can send information simultaneously over a

single communication channel, thereby enabling multiple access.

Each user employs the entire bandwidth along with a distinct

pseudo-random spreading code to transmit information which is

used to distinguish the users at the receiver. More details on CDMA

can be found in Proakis and Salehi [47].

Consider an uplink scenario where K users are transmitting

information to a single base station (BS). Assume a simple additive

white Gaussian Noise (AWGN) channel. Each user is assigned a

distinct spreading sequence denoted by vector s(k) ∈ C
L of length L

which transmits a symbol x(k) for user k. The received signal at the

BS can be written as [48]:

y =

K
∑

k=1

x(k)s(k) + z, (65)

where z ∈ C
L represents the noise vector. Now consider the

extension of such a system model in the presence of flat fading

channel and multiple antennas. Assume K users each with NT

transmit antennas are transmitting simultaneously to a BS with

NR receive antennas. To allow multiple access, all the transmit

antennas of all different users are assigned different spreading

sequences of length L. Let s(k,i) ∈ C
L denotes the length L

spreading vector for the data transmitted by the ith antenna of

the kth user, x(k,i). Transmit symbols are assumed to have zero

mean and energy Es = E[|x(k,i)|2], and the transmit vector from

each user and each antenna is generated as x(k,i)s(k,i). The MIMO

communication channel between user k and the BS is defined as

a matrix H(k) ∈ C
NR×NT where the random channel matrix has

independent and identically distributed (i.i.d.) zero mean circular

symmetric complex Gaussian entries with variance 1/NR. The

distribution is denoted as CN (0, 1/NR). The received signal Y ∈

C
NR×L can be written as [48, 49]:

Y =

K
∑

k=1

H(k)X(k)S(k) + Z, (66)

where X(k) is an NT × NT diagonal matrix defined as

diag(x(k,1), x(k,2), . . . , x(k,NT )) and S(k) is anNT×Lmatrix defined as

(s(k,1)T , s(k,2)T , . . . , s(k,NT )T)T . Also Z representsNR×L noise matrix

with i.i.d. components distributed as CN (0,N0). In [48], a per-user

matched filter receiver is considered for such a system by assuming

the interference from other users as noise. It is shown in [48] that
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FIGURE 7

TN representation of TML system in time and frequency domain.

FIGURE 8

TN representation of equivalent multi-linear channel in time and frequency domain.

such a receiver underperforms as compared to a multi-user receiver

which detects the transmit symbols for all the users together. Hence,

several multi-user receivers are presented in Nordio and Taricco

[48] by rewriting the system model from Equation (66) as

Y = HX̄S+ Z, (67)

where H = (H(1), . . . , H(K)) ∈ C
NR×K·NT , X̄ =

diag(x(1,1), . . . , x(1,NT ), . . . , x(K,1), . . . , x(K,NT )) ∈ C
K·NT×K·NT ,

and S = (S(1)T , . . . , S(K)T)T ∈ C
K·NT×L. Based on this, a multi-user

receiver that aims to mitigate the effects of H (spatial interference)

and S (multiple access interference) is considered. The received

signal is linearly processed in two stages as Y → AY → AYB, and

the transmit signal is decoded as [48]:

x̂(k,i) = arg max
x∈D

|(AYB)j,j − x|2, where j = (k− 1)NT + i. (68)

The set D denotes the set of symbols in the transmit

constellation map. Essentially AYB represents an estimated version

of matrix X̄, whose diagonal elements at index j are used to decode

the transmitted symbols and map them back to index (k, i). The

matrices A and B separately aim to mitigate the effects of spatial

interference and multiple access interference on the received signal

and are defined as

A ,







(HHH)−1HH , ZF.

(HHH+
N0

Es
IKNT )

−1HH , LMMSE.
(69)

and

B ,







SH(SSH)−1, DECOR.

SH(SSH +
N0

Es
IKNT )

−1, LMMSE.
(70)

where IKNT is an identity matrix of size K · NT × K · NT . The

zero forcing (ZF) receiver ignores the impact of noise and only

tries to counter the effect of the channel, while the linear minimum

mean square error (LMMSE) receiver tries to reduce the noise
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while simultaneously aiming to mitigate the effect of channel. The

DECOR choice represents a multi-user decorrelator receiver. At

high SNR value, i.e., as N0/Es → 0, the LMMSE option reduces

to ZF and DECOR.

Such a receiver based on jointly processing all the users gives

better performance than a per-user receiver [48]. However, it still

has a drawback in that it tries to combat spatial interference and

multiple access interference separately in two stages. Moreover,

while the input in Equation (67) is represented as a matrix X̄, only

its diagonal contains the transmit elements which is formed from

the concatenation of various x(k,i). Thus, such a system model does

not fully exploit the multi-linearity of the system and tries to force

a linear structure by manipulating the entities involved in order to

fit the vector-based well-known LMMSE, ZF, or DECOR solutions.

In fact, the tensor framework can be ideally used to represent such

a system model while keeping the natural structure of the system

intact and developing a tensor multi-linear (TML) receiver.

Since the input symbol x(k,i) is indexed by two indices k and i, it

is natural to represent the input as a matrix X of size K × NT with

elements Xk,i = x(k,i). Furthermore, the input signal is transmitted

as a vector x(k,i) of length L corresponding to each user index k and

antenna index i. Hence, the transmitted signal through the channel

can be represented as a third-order tensor X of size K × NT × L

where Xk,i,l = x
(k,i)
l

. To generate X from X, we define the spreading

sequences as an order-5 tensor S ∈ C
K×NT×L×K×NT with elements

Sk,i,l,k′ ,i′ = s
(k,i)
l

when k = k′, i = i′, for all l, and 0 elsewhere. Then,

we have X = S ∗2 X. Note that here we assume that the elements

of X are mapped one to one with a spreading sequence; hence, the

entries of S corresponding to k 6= k′, i 6= i′ are zero. In certain

applications, a linear combination of the input symbols might be

transmitted, in which case the structure of S which represents a

transmit filtering operation will change accordingly. The channel

matrices H(k) corresponding to each user can be represented as a

slice in a third-order tensor H ∈ C
NR×K×NT where H:,k,: = H(k).

Thus, the system model can be given as

Y = H ∗2 S
︸ ︷︷ ︸

H̄

∗2X+ Z (71)

where H̄ ∈ C
NR×L×K×NT represents the equivalent fourth-order

TML channel between the order two input X and order two

output Y.

Note the advantage of modeling the system model through

(71) is that all the associated entities retain their natural structure,

and a joint TML receiver can be designed to combat the effect

of all the interferences of all the users simultaneously. A multi-

linear minimum mean square error receiver that acts across all the

domains simultaneously can be represented through a tensor R ∈

C
K×NT×NR×L which produces an estimate of the input X by acting

upon the received tensor Y as X̃ = R ∗2 Y. Thus, each element of

the estimated input at the receiver is a linear combination of all the

elements of Y, where the coefficients of the linear combinations are

encapsulated in R. An optimal choice of R which minimizes the

mean square error between X and X̃, defined as E[||X − X̃||22], is

given as [14]:

R = H̄H ∗2 (H̄ ∗2 H̄
H +

N0

Es
I)−1, (72)

FIGURE 9

BER performance for di�erent receivers against SNR for

L = 32,K = 4,NR = 32, and NT = 4.

where I is an identity tensor of size K × NT × K × NT .

The estimated symbol X̃ can be used to detect the transmit

symbols as

x̂(k,i) = arg max
x∈D

|X̃k,i − x|2. (73)

We will refer to such a receiver as a TML MMSE receiver.

Since a TML MMSE receiver jointly acts upon symbols across all

domains, it aids in detecting the transmit symbol by exploiting the

multi-domain interference terms. Through simulation results, we

compare the performance of TML MMSE receiver with Equation

(68). In Equation (68), we assume A to be the LMMSE matrix

from Equation (69), and for B, we simulate both the DECOR and

LMMSEmatrices fromEquation (70). Hence, we simulate LMMSE-

DECOR and LMMSE-LMMSE cases from [48]. We will refer to the

former as LMMSE1 and the latter as LMMSE2 for our discussion

going forward. The simulation parameters used are the same as in

Nordio and Taricco [48] where entries of H(k) are i.i.d. which are

CN (0, 1/NR). It is assumed that the channel realizations are known

at the receiver. We assume uncoded transmission with 4QAM

modulation where symbols are normalized to have unit energy, i.e.,

Es = 1. The spreading sequences are generated with i.i.d. symbols

equiprobable over the set {±L−1/2,±jL−1/2}. We use bit error rate

(BER) and normalized mean square error (NMSE) as performance

measures. All the results are plotted against Eb/N0 in dB where Eb
is the energy per bit defined as Es/2. Thus, Eb/N0 represents the

received SNR per bit. We perform Monte Carlo simulations where

the results are averaged over 100 different channel realizations, and

at least 100-bit errors were collected for each SNR to calculate

BER. The mean square error is normalized with respect to the
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FIGURE 10

Normalized MSE for di�erent receivers against SNR for

L = 32,K = 4,NT = 32, and NT = 4.

number of elements in X and is thus defined as NMSE = ||X −

X̃||2F/(NT · K). To compare the performance difference between

TML MMSE, LMMSE1, and LMMSE2 against SNR, we plot the

BER and NMSE for the three receivers in Figures 9, 10, respectively.

We take L = 32,K = 4,NT = 4,NR = 32. It can be clearly

seen in both the figures that the BER and the NMSE decrease as

SNR increases. In particular, the TML MMSE leads to a much

lower BER and NMSE compared to the other two receivers as

it exploits the multi-linearity of the equivalent channel to jointly

combat interference across all the domains. Within LMMSE1 and

LMMSE2, it can be observed that LMMSE2 performs better as

the choice of DECOR for B from Equation (70) is sub-optimal as

compared to LMMSE.

Furthermore, the advantage of TML MMSE can be clearly seen

when BER and NMSE are observed for a fixed SNR per bit and a

variable number of users. Consider L = 64,NR = 64,NT = 2

and number of users K is variable. Figures 11, 12 present BER

and NMSE performance against K for two fixed values of SNR

per bit. The solid lines correspond to a 5dB SNR per bit, and

dashed lines correspond to an 8dB SNR per bit. It can be clearly

seen that for a fixed SNR per bit, the BER and NMSE curves

for TML MMSE case remain almost flat as the number of users

increases. On the other hand, the performance of LMMSE1 and

LMMSE2 significantly degrades with an increase in the number

of users. As the number of users increases, the interference across

domains also increases which is only efficiently utilized in the TML

MMSE receiver.

Note that Equation (71) can be re-written as a system of

linear equations by using vectorization of the input, output,

FIGURE 11

BER performance for di�erent receivers against number of users.

FIGURE 12

Normalized MSE for di�erent receivers against number of users.

and noise, and considering the channel as a concatenated

matrix fNR ,L|K,NT (H̄). Subsequently, a joint receiver can
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also be designed using the transformed matrix channel, as

presented in Nordio and Taricco [48], which is conceptually

equivalent to the TML MMSE approach presented in this

study. However, the concatenation of various domains obscures

the different domain representations (indices) in the system.

Such an approach makes it difficult to incorporate domain-

specific constraints at the transceiver. For instance, a common

transmit constraint is the power budget which in most practical

cases would be different for different users. Thus, designing a

transmission scheme with per-user power constraints becomes

important and can be achieved using the tensor framework as

it maintains the identifiability of domains. Such a consideration

has been presented in Pandey et al. [16] and Pandey and

Leib [35].

5.3.4 Other examples
In Venugopal and Leib [15], several multi-domain

communication systems such as MIMO OFDM, GFDM, and

FBMC are represented using the tensor contracted convolution

and contracted product. In addition, Venugopal and Leib [15]

develops tensor-based receiver equalization methods which are

used to combat interference in communication systems using the

notion of tensor inversion. A tensor-based receiver and precoder

are presented in Pandey and Leib [50] for a MIMO GFDM system

where the channel is represented as a sixth-order tensor. The

tensor EVD presented in this study is used to design transmit

coding operations and perform an information theoretic analysis

of the tensor channel [35] leading to the notion of multi-domain

water filling power allocation method. In addition, the discrete

multi-linear contracted convolution is used to design tensor partial

response signaling (TPRS) systems to shape the spectrum and

cross-spectrum of transmit signals [16]. The tensor inversion

method can also be used to develop estimation techniques for

various signal processing applications such as in big data or

wireless communications as shown in Pandey and Leib [14].

Another example of the use of tensor Einstein product is for

image restoration and reconstruction applications where the

objective is to retrieve an image affected by noise, a focal-field

distribution, and aperture function [26]. The image data are stored

as a three-dimensional tensor, and an order-6 tensor acts as a

channel obtained from the point spread function [26], such that

output is given using the Einstein product between the input and

channel. Another area where the Einstein product properties have

been used is the multi-linear dynamical system theory [17, 18].

In Chen et al. [17], a generalized multi-linear time invariant

system theory is developed using the Einstein product which can

be applied to dynamical systems such as the human genome,

social networks, and cognitive sciences. The notion of tensor

eigenvalue decomposition presented in this study is used in Chen

et al. [17] to derive conditions for stability, reachability, and

observability for dynamical systems. The Einstein product has this

distinct advantage that it lets us develop tensor algebra notions

similar to linear algebra at the same time without disturbing or

reshaping the structure of tensors. In addition, the more general

tensor contracted product and contracted convolution can be

used to model multi-domain systems with any mode ordering

as well.

5.3.5 Discussion
The tensor algebra concepts presented in this study provide

a structured, intuitive, and mathematically sound framework

to characterize and analyze multi-linear systems. Traditionally,

matrix-based methods have been used for this purpose by

ignoring the signal variability across multiple domains and thereby

converting the inherently higher-domain signals and systems into

a single concatenated domain with no physical interpretation. Such

obfuscated representations are heavily motivated by the ease of

employing well-known tools from linear algebra. Several software

packages and tools still employ matrix numerical methods for

computation. Moreover, since matrix algebra is a standard topic

in most engineering programs, engineers are better equipped to

handle vectors and matrices than tensors. One primary objective

of this study is to provide an easy transition from matrix algebra

to tensor algebra for engineering students and researchers. With

a proper understanding of the tools from multi-linear algebra, it

is straightforward to see the inherent advantages in the tensor

formalism. The tensor framework retains the natural structure of

the signals and systems involved, thereby capturing the mutual

effect of various domains in the system model. The proposed

solutions developed with such a framework remain domain-aware

and are interpretable.

In addition, sometimes matrix-based representations are

offered as a low-complexity solution to tensor-based methods.

For instance, in a multi-carrier communication system, a per-

subcarrier receive processing using matrix methods is much

more computationally efficient as opposed to a tensor-based

receiver acting jointly across all users. However, it should be

noted that a matrix-based method in itself would not reduce

the computational complexity unless some additional assumptions

on inter-domain interferences are assumed. For instance, a per-

subcarrier receiver assumes zero inter-carrier interference.Without

such an assumption, even the degenerate matrix-based formulation

of the problem would lead to a large matrix-based model with

similar complexity as the equivalent tensor model but with

additional loss of distinction between domains. The tensor method

provides a structured manner to incorporate all the inter-domain

interferences in the system design without resorting to any

restructuring. Moreover, the restructuring of data may not be

possible in certain applications. With growing big data and IoT

applications, even large vector-based data are often stored using

tensorization for reducing its storage complexity [39] through

tensor train decompositions. Thus, the tensor structure plays a

crucial role, and all the mathematical operations for data analysis

are expected to be performed while keeping the structure intact.

This could be done by resorting to tools from tensor algebra as

discussed in this study.

6 Summary and concluding remarks

This study presented a review of tensor algebra concepts

developed using the contracted product, more specifically the

Einstein product, extending the common notions in linear algebra

to a multi-linear setting. In particular, the notion of tensor inverse,

singular, and eigenvalue decompositions, LU decomposition were

discussed. We also studied the tensor network representations
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of tensor contractions and convolutions. The notions of time

invariant discrete and continuous multi-linear systems which can

be defined using the contracted convolutions were also presented.

We presented an application in a multi-domain communication

system where the channel is modeled as a multi-linear system.

The multi-linearity of the channel allowed us to develop a receiver

that jointly combats interference across all the domains, thereby

giving much better BER and MSE performance as compared to

linear receivers which act on a specific domain at a time. The

tensor algebra notions discussed in this study have extensive

applications in various fields such as communications, signals

and systems, controls, and image processing, to name a few. In

the presence of several other tensor tutorial studies in literature,

this study by no means intends to summarize all the multi-

linear algebra concepts but provides an introduction to the

main concepts from a signals and systems perspective in a

tensor setting.

Author contributions

DP: Investigation, Methodology, Software, Writing—

original draft, Writing—review & editing. AV: Investigation,

Methodology, Writing—original draft. HL: Conceptualization,

Funding acquisition, Investigation, Resources, Supervision,

Writing—review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

work was supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC) for project titled “Tensor

modulation for space-time-frequency communication systems”

under Grant RGPIN-2016-03647.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Review.
(2009) 51:455–500. doi: 10.1137/07070111X

2. Comon P. Tensors: a brief introduction. IEEE Signal ProcessMag. (2014) 31:44–53.
doi: 10.1109/MSP.2014.2298533

3. Tucker LR. The extension of factor analysis to three-dimensional matrices. In:
Gulliksen H, Frederiksen N, editors. Contributions to Mathematical Psychology. New
York: Holt, Rinehart and Winston (1964). p. 110–27.

4. Appellof CJ, Davidson ER. Strategies for analyzing data
from video fluorometric monitoring of liquid chromatographic
effluents. Anal Chem. (1981) 53:2053–6. doi: 10.1021/ac00236
a025

5. Bro R. Review onmultiway analysis in Chemistry 2000-2005. Crit Rev Anal Chem.
(2006) 36:279–93. doi: 10.1080/10408340600969965

6. Li X, Ng MK, Ye Y. MultiComm: finding community structure in
multi-dimensional networks. IEEE Trans Knowl Data Eng. (2014) 26:929–41.
doi: 10.1109/TKDE.2013.48

7. Papalexakis EE, Faloutsos C, Sidiropoulos ND. Tensors for data mining and data
fusion: Models, applications, and scalable algorithms. ACM Trans Intell Syst. (2017)
8:1–44. doi: 10.1145/2915921

8. Shashua A, Hazan T. Non-negative Tensor Factorization with Applications to
Statistics and Computer Vision. In: Proceedings of the 22nd International Conference
on Machine Learning. New York, NY: ACM (2005). p. 792–799.

9. Guerrero JJ, Murillo AC, Sags C. Localization and matching using the planar
trifocal tensor with bearing-only data. IEEE Transact Robot. (2008) 24:494–501.
doi: 10.1109/TRO.2008.918043

10. Latchoumane CFV, Vialatte F, Sol-Casals J, Maurice M, Wimalaratna S, Hudson
N. et al. Multiway array decomposition analysis of EEGs in Alzheimer’s disease. J
Neurosci Methods. (2012) 207:41–50. doi: 10.1016/j.jneumeth.2012.03.005

11. Sidiropoulos ND, Lathauwer LD, Fu X, Huang K, Papalexakis EE, Faloutsos
C. Tensor decomposition for signal processing and machine learning. IEEE Transact
Signal Process. (2017) 65:3551–82. doi: 10.1109/TSP.2017.2690524

12. Cichocki A, Mandic D, De Lathauwer L, Zhou G, Zhao Q, Caiafa C,
et al. Tensor Decompositions for Signal Processing Applications: From two-way

to multiway component analysis. IEEE Signal Process Mag. (2015) 32:145–63.
doi: 10.1109/MSP.2013.2297439

13. Sidiropoulos ND, Bro R, Giannakis GB. Parallel factor analysis in sensor array
processing. IEEE Transact Signal Process. (2000) 48:2377–88. doi: 10.1109/78.852018

14. Pandey D, Leib H, A. Tensor framework for multi-linear complex
MMSE estimation. IEEE Open J Signal Process. (2021) 2:336–58.
doi: 10.1109/OJSP.2021.3084541

15. Venugopal A, Leib H, A. Tensor based framework for multi-domain
communication systems. IEEE Open J Commun Soc. (2020) 1:606–33.
doi: 10.1109/OJCOMS.2020.2987543

16. Pandey D, Venugopal A, Leib H. Multi-domain communication systems
and networks: a tensor-based approach. MDPI Network. (2021) 1:50–74.
doi: 10.3390/network1020005

17. Chen C, Surana A, Bloch A, Rajapakse I. Multilinear time invariant system
theory. In: 2019 Proceedings of the Conference on Control and its Applications. Society
for Industrial and Applied Mathematics (SIAM) (2019). p. 118–125.

18. Chen C, Surana A, Bloch AM, Rajapakse I. Multilinear control systems theory.
SIAM J Control Optim. (2021) 59:749–76. doi: 10.1137/19M1262589

19. Chen H, Ahmad F, Vorobyov S, Porikli F. Tensor decompositions in wireless
communications and MIMO radar. IEEE J Sel Top Signal Process. (2021) 15:438–53.
doi: 10.1109/JSTSP.2021.3061937

20. Kisil I, Calvi GG, Dees BS, Mandic DP. Tensor Decompositions and Practical
Applications: A Hands-on Tutorial. In: Recent Trends in Learning From Data. Cham:
Springer (2020). p. 69–97.

21. Lim LH. Singular values and Eigenvalues of tensors: A variational approach. In:
1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing. Puerto Vallarta: IEEE (2005). p. 129–132.

22. Weiland S, Van Belzen F. Singular Value Decompositions and low
rank approximations of tensors. IEEE Trans Signal Process. (2010) 58:1171.
doi: 10.1109/TSP.2009.2034308

23. Lathauwer LD, Moor BD, Vandewalle J. A multilinear singular
value decomposition. SIAM J Matrix Anal Appl. (2000) 21:1253–78.
doi: 10.1137/S0895479896305696

Frontiers in AppliedMathematics and Statistics 18 frontiersin.org

https://doi.org/10.3389/fams.2023.1259836
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/MSP.2014.2298533
https://doi.org/10.1021/ac00236a025
https://doi.org/10.1080/10408340600969965
https://doi.org/10.1109/TKDE.2013.48
https://doi.org/10.1145/2915921
https://doi.org/10.1109/TRO.2008.918043
https://doi.org/10.1016/j.jneumeth.2012.03.005
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1109/78.852018
https://doi.org/10.1109/OJSP.2021.3084541
https://doi.org/10.1109/OJCOMS.2020.2987543
https://doi.org/10.3390/network1020005
https://doi.org/10.1137/19M1262589
https://doi.org/10.1109/JSTSP.2021.3061937
https://doi.org/10.1109/TSP.2009.2034308
https://doi.org/10.1137/S0895479896305696
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Pandey et al. 10.3389/fams.2023.1259836

24. Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comp. (2005)
40:1302–24. doi: 10.1016/j.jsc.2005.05.007

25. Brazell M, Li N, Navasca C, Tamon C. Solving multilinear systems via tensor
inversion. SIAM J Matrix Analy Appl. (2013) 34:542–70. doi: 10.1137/100804577

26. Cui LB, Chen C, Li W, Ng MK. An Eigenvalue problem for even
order tensors with its applications. Linear Multili Algebra. (2016) 64:602–21.
doi: 10.1080/03081087.2015.1071311

27. Sun L, Zheng B, Bu C, Wei Y. Moore-Penrose inverse of
tensors via Einstein product. Linear Multili Algebra. (2016) 64:686–98.
doi: 10.1080/03081087.2015.1083933

28. lin Liang M, Zheng B, juan Zhao R. Tensor inversion and its application to
the tensor equations with Einstein product. Linear Multili Algebra. (2019) 67:843–70.
doi: 10.1080/03081087.2018.1500993

29. Huang B, Li W. Numerical subspace algorithms for solving the tensor
equations involving Einstein product. Num Linear Algebra Appl. (2021) 28:e2351.
doi: 10.1002/nla.2351

30. Huang B. Numerical study on Moore-Penrose inverse of tensors via Einstein
product. Num Algor. (2021) 87:1767–97. doi: 10.1007/s11075-021-01074-0

31. Huang B, Ma C. An iterative algorithm to solve the generalized
Sylvester tensor equations. Linear Multili Algebra. (2018) 2023:1–26.
doi: 10.1080/03081087.2023.2176416

32. Wang QW, Xu X. Iterative algorithms for solving some tensor equations. Linear
Multilinear Algebra. (2019) 67:1325–49. doi: 10.1080/03081087.2018.1452889

33. Bader BW, Kolda TG. Algorithm 862: MATLAB tensor classes for
fast algorithm prototyping. ACM Trans Mathemat Softw. (2006) 32:635–53.
doi: 10.1145/1186785.1186794

34. De Lathauwer L, Castaing J, Cardoso JF. Fourth-order cumulant-based blind
identification of underdetermined mixtures. IEEE Trans Signal Process. (2007)
55:2965–73. doi: 10.1109/TSP.2007.893943

35. Pandey D, Leib H. The tensor multi-linear channel and its Shannon capacity.
IEEE Access. (2022) 10:34907–44. doi: 10.1109/ACCESS.2022.3160187

36. Pan R. Tensor transpose and its properties. arXiv [Preprint]. arXiv:1411.1503.
(2014). Available online at: https://arxiv.org/abs/1411.1503

37. Pandey D, Leib H. Tensor multi-linear MMSE estimation using the Einstein
product. In: Advances in Information and Communication (FICC 2021). Cham:
Springer International Publishing (2021). p. 47–64.

38. Panigrahy K, Mishra D. Extension of Moore Penrose inverse of
tensor via Einstein product. Linear Multilinear Algebra. (2020) 0:1–24.
doi: 10.1080/03081087.2020.1748848

39. Cichocki A. Era of big data processing: A new approach via tensor networks and
tensor decompositions. arXiv [Preprint]. arXiv:1403.2048. (2014). Available online at:
https://arxiv.org/abs/1403.2048

40. Zhang A, Xia D. Tensor SVD: Statistical and computational limits. IEEE Trans
Inform Theory. (2018) 11: 7311–38. doi: 10.1109/TIT.2018.2841377

41. Qi L, Chen H, Chen Y. Tensor Eigenvalues and their applications. Cham:
Springer (2018).

42. Luo Z, Qi L, Toint PL. Bernstein concentration inequalities for tensors via
Einstein products. arXiv [Preprint]. arXiv:1902.03056. (2019). Available online at:
https://arxiv.org/abs/1902.03056

43. Hu S, Huang ZH, Ling C, Qi L. On Determinants and Eigenvalue
theory of tensors. J Symbolic Comp. (2013) 50:508–31. doi: 10.1016/j.jsc.2012.1
0.001

44. Petersen KB, Pedersen MS. The Matrix Cookbook. (2012). Available online at:
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html

45. Mitra SK, Kuo Y. Digital signal processing: a computer-based approach. New
York: McGraw-Hill New York. (2006).

46. Dahleh M, Dahleh MA, Verghese G. Chapter 27: Poles and Zeros of MIMO
Systems. In: Lecture Notes on Dynamic Systems and Control. Cambridge MA: MIT
OpenCourseWare (2011). Available online at: https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-
2011/readings/MIT6_241JS11_chap27.pdf

47. Proakis JG, Salehi M. Fundamentals of Communication Systems. Bangalore:
Pearson Education India. (2007).

48. Nordio A, Taricco G. Linear receivers for the multiple-input multiple-
output multiple-access channel. IEEE Trans Commun. (2006) 54:1446–56.
doi: 10.1109/TCOMM.2006.878831

49. Takeuchi K, Tanaka T, Yano T. Asymptotic analysis of general multiuser detectors
in MIMO DS-CDMA channels. IEEE J Selected Areas Commun. (2008) 26:486–96.
doi: 10.1109/JSAC.2008.080407

50. Pandey D, Leib H. A tensor based Precoder and Receiver for MIMO GFDM
systems. In: ICC 2021 - IEEE International Conference on Communications (held
virtually between 14-23 June 2021). Montreal, QC: IEEE (2021). p. 1-6.

Frontiers in AppliedMathematics and Statistics 19 frontiersin.org

https://doi.org/10.3389/fams.2023.1259836
https://doi.org/10.1016/j.jsc.2005.05.007
https://doi.org/10.1137/100804577
https://doi.org/10.1080/03081087.2015.1071311
https://doi.org/10.1080/03081087.2015.1083933
https://doi.org/10.1080/03081087.2018.1500993
https://doi.org/10.1002/nla.2351
https://doi.org/10.1007/s11075-021-01074-0
https://doi.org/10.1080/03081087.2023.2176416
https://doi.org/10.1080/03081087.2018.1452889
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1109/TSP.2007.893943
https://doi.org/10.1109/ACCESS.2022.3160187
https://arxiv.org/abs/1411.1503
https://doi.org/10.1080/03081087.2020.1748848
https://arxiv.org/abs/1403.2048
https://doi.org/10.1109/TIT.2018.2841377
https://arxiv.org/abs/1902.03056
https://doi.org/10.1016/j.jsc.2012.10.001
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/MIT6_241JS11_chap27.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/MIT6_241JS11_chap27.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/MIT6_241JS11_chap27.pdf
https://doi.org/10.1109/TCOMM.2006.878831
https://doi.org/10.1109/JSAC.2008.080407
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Linear to multi-linear algebra and systems using tensors
	1 Introduction
	2 Fundamentals of tensors and notation
	2.1 Notations
	2.2 Definitions and tensor operations
	2.2.1 Tensor products
	2.2.2 Transpose, Hermitian, and inverse of a tensor
	2.2.3 Function tensors

	2.3 Discrete time signal tensors
	2.4 Continuous time signal tensors

	3 Tensor networks
	3.1 Illustration of contracted products
	3.2 Illustration of contracted convolutions

	4 Tensor decompositions
	4.1 Tensor singular value decomposition (SVD)
	4.2 Tensor eigenvalue decomposition (EVD)
	4.2.1 Some properties of trace and determinant

	4.3 Tensor LU decomposition

	5 Multi-linear tensor systems
	5.1 Discrete time multi-linear tensor systems
	5.2 Continuous time multi-linear tensor systems
	5.3 Applications of multi-linear tensor systems
	5.3.1 System model for multi-domain communication systems
	5.3.2 TN representation of TML systems
	5.3.3 Example of Tensor Contraction for MIMO CDMA systems
	5.3.4 Other examples
	5.3.5 Discussion


	6 Summary and concluding remarks
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


