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In the encoding and decoding process of transformer neural networks, a weight

matrix-vector multiplication occurs in each multihead attention and feed forward

sublayer. Assigning the appropriate weight matrix and algorithm can improve

transformer performance, especially for machine translation tasks. In this study,

we investigate the use of the real block-circulant matrices and an alternative to the

commonly used fast Fourier transform (FFT) algorithm, namely, the discrete cosine

transform–discrete sine transform (DCT-DST) algorithm, to be implemented in a

transformer. We explore three transformer models that combine the use of real

block-circulant matrices with di�erent algorithms. We start from generating two

orthogonal matrices, U and Q. The matrix U is spanned by the combination of

the reals and imaginary parts of eigenvectors of the real block-circulant matrix,

whereas Q is defined such that the matrix multiplication QU can be represented

in the shape of a DCT-DST matrix. The final step is defining the Schur form of the

real block-circulant matrix. We find that the matrix-vector multiplication using the

DCT-DST algorithm can be defined by assigning the Kronecker product between

the DCT-DST matrix and an orthogonal matrix in the same order as the dimension

of the circulant matrix that spanned the real block circulant. According to the

experiment’s findings, the dense-real block circulant DCT-DST model with largest

matrix dimension was able to reduce the number of model parameters up to 41%.

The same model of 128 matrix dimension gained 26.47 of BLEU score, higher

compared to the other two models on the same matrix dimensions.

KEYWORDS

block-circulant matrices, DCT-DST algorithm, fast Fourier transform, Kronecker product,

transformer

1 Introduction

A matrix is deemed structured if it can be exploited to create effective algorithms [1]

and has a small displacement rank [2]. Kissel and Diepold [3] have explored four main

matrix structure classes, namely, semiseparable matrices, matrices of low displacement rank,

hierarchical matrices and products of sparse matrices, and their applications in neural

network. Toeplitz, Hankel, Vandermonde, Cauchy, and Circulant matrices are among the

possibly most well-knownmatrix structures that are all included in the class of matrices with

Low Displacement Rank (LDR) in [4].

Circulant matrices are structured matrices that have several features, including identical

rows, but are shifted one step to the right [5]. It can be decomposed unitarily into a

diagonal matrix whose diagonal entries come from its eigenvalues [6]. The eigenvalues of
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such matrices are derived in terms of the eigenvalues of matrices

of decreased dimension, and linear equation systems involving

these matrices are easily solved using fast Fourier transforms

[7]. A block circulant matrix is formed by a circulant matrix

containing circulant matrix entries. The block-circulant matrices,

as circulant matrices, have some unique properties. They have

Schur decomposition [8] that can be related to some algorithm of

its multiplication [9].

The use of structured matrices as a neural network weight

matrices has been demonstrated in a number of earlier research

as one method of reducing memory, particularly for memory

models and optimizers. The most well-known example is the

sparse Toeplitz matrix-based convolutional neural network (CNN)

architecture [10]. Convolutional neural networks are currently the

top choice for machine learning tasks involving images due to their

effectiveness and prediction accuracy [11–13]. The connections

between the neurons in CNNs often encode the structure in

an implicit manner. There are other intriguing strategies for

enhancing conventional CNNs. When performing operations

on images represented in the quaternion domain, for instance,

Quaternion CNNs [14–16] outperform conventional real-valued

CNNs on a number of benchmark tasks. In addition, Cheng et al.

[17] substituted circulant projections for the linear ones in fully

connected neural networks, while Liao and Yuan [18] proposed

using matrices with a circulant structure in convolutional neural

networks. Block Toeplitz matrices used in discrete convolutions

were merged with the effective weight representation used in

neuromorphic hardware by Appuswamy et al. [19], resulting in a

family of naturally hardware efficient convolution kernels. The use

of generic matrices with low displacement rank in place of weight

matrices in neural networks has also been suggested. Toeplitz-like

weight matrices, such as circulant matrices and Toeplitz matrices

and their inverses, are used, as in the study by Sindhwani et al.

[20]. Additionally, Thomas et al. [21] presented a class of low

displacement rank matrices for which they trained the operators

and low-rank components of the neural network. The theoretical

characteristics of neural networks with low displacement rank

weight matrices are the subject of several studies. The universal

approximation theorem holds for these networks, as demonstrated,

for instance, by Zhao et al. [22]. Using Toeplitz or Hankel

weight matrices, Liu et al. [23] provide yet another demonstration

that the universal approximation theorem remains true for

neural networks.

The transformer is one of the well-known neural network

models for machine translation that was first presented by

Vaswani et al. [24]. This model has been developed up to

this point for a variety of uses, such as text summarization

[25], video text and images [26], chat bots [27], and speech

recognition [28]. One of the improvements is the swapping out

of the transformer weight matrices with a structured matrices. Li

et al. [29] proposed an efficient acceleration framework, Ftrans,

for transformer-based large-scale language representations. Their

framework includes an improved block-circulant matrix (BCM)-

based weight representation, which allows for model compression

on large-scale language representations at the algorithm level with

little accuracy. The results of their experiments show that their

model significantly reduces the size of NLP models by up to

16 times. Their FPGA design improves performance and energy

efficiency by 27.07 and 81 times, respectively, when compared to

the CPU and 8.80 times when compared to GPU degradation,

with an acceleration design at the architecture level. Moreover,

Liao et al. [30] also applied block-circulant matrices for DNNs

(deep neural networks), which enabled the network to achieve up

to 3.5 TOPS computation performance and 3.69 TOPS/W energy

efficiency while saving 108× and 116× memory with negligible

accuracy degradation.

Structured weight matrix multiplication often entails the use of

an algorithm. It is typical to utilize the FFT algorithm when dealing

with a structured matrix that is a circulant matrix. In Multi30k

Task 1 German to English with 100x compression, Reid [31]

demonstrated that the use of a block-circulant matrix in the feed

forward transformer layer in conjunction with the FFT algorithm

is able to enhance the performance of transformers. The DCT-DST

algorithm, which may be used in place of the FFT approach in

circulant matrix multiplication with a vector, has been introduced

by Liu et al. [9]. In previous studies, the DCT-DST was generally

used for image processing and video/image coding [32–34].

In neural networks, particularly transformer models, the DCT-

DST algorithm has not been used for weight matrix-vector

multiplication. This study investigates the application of the real

block-circulant matrix-DCT-DST method in layers of transformer.

In summary, the main contribution of this study is 2-fold. First,

we explored the eigenstructures of the real block-circulant matrices.

They are then used to verify the Schur decomposition that applied

in the DCT-DST algorithm. Second, we formulate the orthogonal

matrices which are used to decompose the real block-circulant

matrices. The multiplication of these orthogonal matrices will then

be used in the DCT-DST algorithm. In particular, when compared

to the original transformer approach, using the dense matrices on

the multihead attention transformer and the real block-circulant

matrices with DCT-DST on the feed forward layer takes less

number of model parameters.

After this introduction section, we organize the remainder of

this study as follows: We outline the fundamental theory related to

the real block-circulant matrices and DCT-DSTmatrices in Section

2. Using these theories, we explored the eigenstructures of the real

block-circulant matrices and formulas of the Kronecker product for

orthogonal matrices in Section 3. In the same section, we formulate

the Schur form for the real block-circulant matrices. In Section 4,

we explain the experiment of the real block-circulant transformer

in conjunction with the DCT-DST algorithm.

2 Theoritical foundation

Definition 2.1. A n × n circulant matrix is formed by cyclically

permuting its entries of the n-vector c0, c1, .., cn−1, and is of the form












c0 c1 · · · cn−1

cn−1 c0 · · · cn−2

...
...

. . .
...

c1 c2 · · · c0













. The set of all such matrices with real entries

of order n is denoted by Bn, whereas a nm × nm block-circulant

matrix is generated from the ordered set C1,C2, . . . ,Cn, and is of
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the form













C1 C2 · · · Cn

Cn C1 · · · Cn−1

...
...

. . .
...

C2 C3 · · · C1













with Ci an m × m circulant matrix

for each i = 1, 2, . . . , n. If C is a real block-circulant matrix, the set

of all such matrices of order nm× nm is denoted by BCnm.

Definition 2.2. The discrete Fourier transform (DFT) matrix F =
Fn is defined by

Fn = 1√
n
ω−jk, j, k = 0, 1, · · · , n− 1 (1)

with ω = e
2π
n i, i =

√
−1.

Any circulant matrix A has a Schur canonical form A = F∗3F

with F∗ is a conjugate transpose of F and 3 is a diagonal matrix,

holding the eigenvalues of A. The eigenvalues of a real circulant

matrix C can be arranged in the following order

λ =















[λ0, λ1, · · · , λh−1, λh, λh−1, · · · , λ1], if n = 2h

[λ0, λ1, · · · , λh, λh, · · · , λ1], if n = 2h+ 1

(2)

Partitioning F∗ = [f0, , · · · , fn−1] with fk = tk + j sk we have

fn−k = f k, where f k is a conjugate of fk. For any eigenvalue λk,

Cf k = λkf k means C(f k + f k) = λkf k + λkf k and C(f k − f k) =
λkf k − λkf k. Like circulant matrices over complex numbers, the

real circulant matrix C also posses a real Schur canonical form

� = UT
n CUn where Un is an orthogonal matrix

Un =







[

t0,
√
2t1, · · · ,

√
2th−1, th,

√
2sh−1, · · · ,

√
2s1

]

, if n = 2h
[

t0,
√
2t1, · · · ,

√
2th,

√
2sh, · · · ,

√
2s1

]

, if n = 2h+ 1

(3)

where tk and sk are real and imaginary parts of fk, k = 0, .., h. The

matrix � is real and has the form

� =

































α0

α1 β1

. . .
...

αh−1 βh−1

αh

−βh−1 αh−1

...
. . .

−β1 α1

































and

� =





























α0

α1 β1

. . .
...

αh βh

−βh αh

...
. . .

−β1 α1





























where αk and βk are, respectively, a real and imaginary part of

eigenvalues of C, k = 0, . . . , h.

In working with real block-circulant matrices, we will involve

a fundamental operation, namely, Kronecker product. This

operation will be applied to diagonalize and represent matrix

Ubc and the DCT-DST algorithm for a real block-circulant

matrix. The diagonalization of the real block-circulant matrices,

their eigenvalues, and vectors will be discussed in the next

three theorems.

Theorem 2.3. Olson et al. [8] Let C ∈ BCnm and generated by

C1,C2, · · · ,Cn ∈ Bm. If Fn is a Fourier matrix of dimension n × n

and Im is an identity matrix of orderm, then

(F∗n ⊗ Im)C(Fn ⊗ Im) = diag(∧1,∧2, · · · ,∧n) (4)

is a diagonal block matrix of dimension nm x nm with

∧i = ρ(ωl−1
n ,Ck) =

n
∑

k=1

Ckω
(k−1)(l−1)
n (5)

F∗n is the conjugate transpose of Fn, ωn is the nth primitive root

of unity, and ρ(t, τ ) =
∑n

k=1 t(k−1) ⊗ τ with t and τ are any

square matrices.

Theorem 2.4. Olson et al. [8] Let C ∈ BCnm has generating

elements C1,C2, · · · ,Cn ∈ Bm. If c
(1)
i , c

(2)
i , · · · , c(m)

i are generating

elements of Ci, then

(F∗n ⊗ F∗m)C(Fn ⊗ Fm) = diagi=1,··· ,n













λ
(1)
i 0 · · · 0

0 λ2i · · · 0
...

...
. . .

...

0 0 · · · λmi













is a diagonal matrix of dimension nm x nm with

λ
(p)
i =

∑n
k=1

∑m
l=1 cl

k
ωl−1
p−1ω

k−1
i−1 , with i = 1, 2, · · · , n and

p = 1, 2, · · · ,m.

Theorem 2.5. Olson et al. [8] Let C ∈ BCnm, u
(p)
i denotes the

eigenvectors of 3i and ei be the i-th column of the DFT matrix.

The eigenvectors of C are

f
(p)
i = ei

⊗

u
(p)
i

with i = 1, · · · , n and p = 1, · · · ,m.

The eigenvalues and eigenvectors from the preceding theorems

will be used later to construct a real Schur canonical form of a real

block-circulant matrix and will be used in conjunction with DCT-

DST matrices to define multiplication of a real block-circulant

TABLE 1 Tested transformer model.

Transformer model Weight matrix size

Dense-dense (A) 16, 32, 64, 128, 256, 512

Dense-real block-circulant FFT (B) 16, 32, 64, 128, 256, 512

Dense-real block-circulant DCT-DST (C) 16, 32, 64, 128, 256, 512
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matrix with any vector. The discrete trigonometric transform

family consists of eight DCT and eight DST versions. Two versions

of them are used in this study.

Definition 2.6. The DCT-I and DCT-V matrices are defined

as follows:

C
I
n+1 =

√

2

n

[

τjτk cos
jkπ

n

]n

j,k=0

(6)

C
V
n = 2√

2n− 1

[

τjτk cos
2jkπ

2n− 1

]n−1

j,k=0

(7)

TABLE 2 Experiment result of dense-dense transformer model (A).

Weight matrix
size

Accuracy (%) Model memory
size (Kilobyte)

16 32.7 1,751

32 48.5 3,546

64 56.9 7,540

128 60.7 18,394

256 61.6 50,855

512 61.4 158,783

TABLE 3 Experiment result of dense-block-circulant FFT transformer

model (B).

Weight matrix
size

Accuracy (%) Model memory
size (Kilobyte)

16 33.5 1,686

32 45.3 3,199

64 53.2 6,514

128 57.9 14,294

256 58.2 34,463

512 52.6 93,231

TABLE 4 Experiment result of dense-block-circulant DCT-DST

transformer model (C).

Weight matrix
size

Accuracy (%) Model memory
size (Kilobyte)

16 31.9 1,714

32 42.01 3,227

64 52.44 6,542

128 57.9 14,322

256 58.6 34,491

512 56.7 93,259

with τl(l=j,k) =







1√
2
, if l = 0 or l = n

1, if l otherwise

ιk =







1√
2
, if k = n− 1

1, if k otherwise

Definition 2.7. The DST-I and DST-V matrices are defined as

follows:

S
I
n−1 =

√

2

n

[

sin
jkπ

n

]n−1

j,k=1

(8)

S
V
n−1 =

2√
2n− 1

[

sin
2jkπ

2n− 1

]n−1

j,k=1

(9)

Note that all those transformation matrices are orthogonal. In

the following theorem, we will see that the matrix Un as defined in

Equation (3) can be partitioned into a matrix that is generated by

the DCT and DST matrices.

Theorem 2.8. Liu et al. [9] Let Un be the matrix stated in Equation

(3). Then, Un can be partitioned into the following form:

Un =















































































σ1q
T
h+1

0

C − 1
2

√
2SI

h−1
Jh−1

σ1v
T
h+1

0

Jh−1C
1
2

√
2Jh−1S

I
h−1

Jh−1













, if n= 2h









σ1p
T
h+1

0

C − 1
2

√
2SV

h
Jh

JhC
1
2

√
2JhS

V
h
Jh









, if n= 2h+ 1

(10)

Define

Qn =



































































1√
2













√
2 0 0

0 Ih−1 0 Jh−1

0 0
√
2 0

0 −Jh−1 0 Ih−1













, if n = 2h

1√
2









√
2 0 0

0 Ih Jh

0 −Jh Ih









, if n = 2h+ 1

(11)

with σ1 =
√

2
n , σ2 = 1√

2
, ph+1 = ( 1√

2
, 1, · · · , 1), qh+1 =

( 1√
2
, 1, · · · , 1, 1√

2
)T ,

vh+1 = ( 1√
2
,−1, · · · , (−1)h−1, (−1)h√

2
)T ,

and

C =















σ2P1,hC
I
h+1

∈ R
(h−1)x(h+1), if n = 2h

σ2P1,h+1C
V
h+1

∈ R
(h)x(h+1), if n = 2h+ 1
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where Pa,b(xj)
n−1
j=0 = (xj)

b−1
j=a , b ≥ a. Then, the multiplication of Qn

and Un will be

QnUn =



































[

C
I
h+1

0

0 Jh−1S
I
h−1

Jh−1

]

, if n = 2h

[

C
V
h+1

0

0 JhS
V
h
Jh

]

, if n = 2h+ 1

By using this rule, the multiplication of the circulant matrix

with any vector only involves (h+1)-vectors of 1 DCT-I and (h−1)-

vectors of 1 DST-I if n = 2h, and (h + 1)-vectors of 1 DCT-V and

h-vectors of 1 DST-V if n = 2h+ 1 [9].

3 The DCT-DST algorithm for real
block-circulant matrix-vector
multiplication

In this section, we will define the matrix-vector multiplication

algorithm for the real block-circulant matrices. For this reason, the

DCT-DST algorithm will be adapted from Liu et al. [9] by first

defining the orthogonal matrices Ubc, Qbc, multiplication QbcUbc,

and the real Schur form�bc. In defining those orthogonal matrices,

we leverage a Kronecker product operation as introduced in Olson

et al. [8]. In the following theorem, we will see what Ubc, Qbc, and

QbcUbc look like.

Theorem 3.1. Let C be a real block-circulant matrix of dimension

nm × nm, Un, Um, and Qn are orthogonal matrices as denoted in

Equations (10) and (11). The matrices Ubc and Qbc that assosiated

with C can be defined as

Ubc = Un ⊗ Um (12)

and

Qbc = Qn ⊗ Um (13)

The multipication between Qbc and Ubc will have the form

QbcUbc = QnUn ⊗ U2
m

=



































[

C
I
h+1

0

0 Jh−1S
I
h−1

Jh−1

]

⊗ U2
m, if n = 2h

[

C
V
h+1

0

0 JhS
V
h
Jh

]

⊗ U2
m, if n = 2h+ 1

(14)

The last theorem shows that the multiplication of QbcUbc can

be calculated by applying the multiplication of QnUn with an

orthogonal matrix U at dimension m. This multiplication gives a

fast way to solve the multiplication between a real block-circulant

matrix with any vector by using 1 DCT-I for (h + 1)-vector and 1

DST-I for (h− 1)-vector, if n = 2h and 1 DCT-V for (h+ 1)-vector

and 1 DST-V for h-vector if n = 2h+ 1.

Furthermore, the two theorems below give the structure of the

eigenvalues and the real Schur form of block circulant matrices.

The eigenvalue structure of the real block-circulant matrices is

fundamental like those of a circulant matrices. The knowledge of

it is needed to recognize the real Schur form of the real block

circulant matrices. The following theorems describe how their

structures are.

Theorem 3.2. Let C ∈ BCnm and λ
(p)
i denotes the pth eigenvalue

on the ith block of matrix C, i = 1, ..., n and p = 1, ...,m. If n = 2h,

the eigen structure of C is

λ
(p)
i = [λ

(p)
1 , λ

(p)
2 , · · · , λ(p)

h
, λ

(p)

h+1
, λ

(p)

h
, · · · , λ(p)2 ] (15)

with λ
(p)
1 6= λ

(p)

h+1
and λ

(m+2−r)
n+2−s = λ

(r)
s , and for n = 2h+ 1 we have

λ
(p)
i = [λ

(p)
1 , λ

(p)
2 , · · · , λ(p)

h
, λ

(p)

h+1
, λ

(p)

h+1
, λ

(p)

h
, · · · , λ(p)2 ] (16)

FIGURE 1

Model memory size of the three transformer models.
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with λ
(p)
1 6= λ

(p)
j for j 6= 1 and λ

(m+2−r)
n+2−s = λ

(r)
s .

Proof. The eigenvalue of C can be written as

λ
(p)
i =

n
∑

k=1

m
∑

l=1

clkω
l−1
p−1ω

k−1
i−1

=
n

∑

k=1

m
∑

l=1

clk

(

cos 2π

[

(l− 1)(p− 1)

m
+ (k− 1)(i− 1)

n

]

+

(17)

j sin 2π

[

(l− 1)(p− 1)

m
+ (k− 1)(i− 1)

n

])

It is clear by tedious straightforward calculation that λ
(p)
1 6=

λ
(p)

h+1
. We will show that λ

(m+2−r)
n+2−s = λ

(r)
s , p = 1, · · · ,m.

λ
(r)
s =

n
∑

k=1

m
∑

l=1

clk

(

cos 2π

[

(l− 1)(r − 1)

m
+ (k− 1)(s− 1)

n

]

− j sin 2π

[

(l− 1)(r − 1)

m
+ (k− 1)(s− 1)

n

])

λ
(m+2−r)
n+2−s =

n
∑

k=1

m
∑

l=1

clk

(

cos 2π

[

(l− 1)(m+ 2− r − 1)

m

+ (k− 1)(n+ 2− s− 1)

n

]

FIGURE 2

Comparation of BLEU score of models A and C.

FIGURE 3

Accuracy of A model.
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+ j sin 2π

[

(l− 1)(m+ 2− r − 1)

m
+ (k− 1)(n+ 2− s− 1)

n

])

=
n

∑

k=1

m
∑

l=1

clk

(

cos 2π

[

(l− 1)(m− r + 1)

m
+ (k− 1)(n− s+ 1)

n

]

+ j sin 2π

[

(l− 1)(m− r + 1)

m
+ (k− 1)(n− s+ 1)

n

])

=
n

∑

k=1

m
∑

l=1

clk

(

cos 2π

[

(l− 1)(−r + 1)

m
+ (k− 1)(−s+ 1)

n

+(l+ k− 2)
]

+ j sin 2π

[

(l− 1)(−r + 1)

m
+ (k− 1)(−s+ 1)

n
+ (l+ k− 2)

])

FIGURE 4

Accuracy of B model.

FIGURE 5

Accuracy of C model.
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=
n

∑

k=1

m
∑

l=1

clk

(

cos 2π

[

(l− 1)(−r + 1)

m
+ (k− 1)(−s+ 1)

n

]

+ j sin 2π

[

(l− 1)(−r + 1)

m
+ (k− 1)(−s+ 1)

n

])

=
n

∑

k=1

m
∑

l=1

clk

(

cos 2π

[

(l− 1)(r − 1)

m
+ (k− 1)(s− 1)

n

]

− j sin 2π

[

(l− 1)(r − 1)

m
+ (k− 1)(s− 1)

n

])

Theorem 3.3. Let C = circ(C1,C2, · · · ,Cn) be a

real block-circulant matrix of dimension nm × nm

with Ck ∈ R
m×m and Ubc as defined in Equation

(12). Define

C =
n

∑

k=1

σ k
n ⊗ Ck (18)

FIGURE 6

Loss of A model.

FIGURE 7

Loss of B model.
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with

σ 1
n = circ(1, 0, 0, ..., 0, 0), σ 2

n = circ(0, 1, 0, ..., 0, 0), ..., σ n
n =

circ(0, 0, 0, ..., 0, 1) and σ n+1
n = σ 1

n = circ(1, 0, 0, ..., 0, 0). Let tk =
ak + j bk and λk = αk + j βk are the eigenvalues of σ k

n and Ck,

respectively. Then, UT
bc
CUbc = �bc is real and for n = 2h it has the

form

�bc =

































q1

q2 s2
. . .

...

qh sh
qh+1

−sh qh
...

. . .

−s2 q2

































and for n = 2h+ 1 it will be

�bc =





























q1

q2 s2
. . .

...

qh+1 sh+1

−sh+1 qh+1

...
. . .

−s2 q2





























with

qi =

















































































































































∑n
k=1 a

(i)
k α

(1)
k

∑n
k=1 a

(i)
k α

(2)
k

∑n
k=1 a

(i)
k β

(2)
k

.
.
.

.
.
.

∑n
k=1 a

(i)
k α

(r)
k

∑n
k=1 a

(i)
k β

(r)
k

∑n
k=1 a

(i)
k α

(r+1)
k

−
∑n

k=1 a
(i)
k β

(r)
k

∑n
k=1 a

(i)
k α

(r)
k

.
.
.

.
.
.

−
∑n

k=1 a
(i)
k β

(2)
k −

∑n
k=1 a

(i)
k β

(2)
k







































, ifm =2r



































∑n
k=1 a

(i)
k α

(1)
k

∑n
k=1 a

(i)
k α

(2)
k

∑n
k=1 a

(i)
k β

(2)
k

.
.
.

.
.
.

∑n
k=1 a

(i)
k α

(r+1)
k

∑n
k=1 a

(i)
k β

(r+1)
k

−
∑n

k=1 a
(i)
k β

(r+1)
k

∑n
k=1 a

(i)
k α

(r+1)
k

.
.
.

.
.
.

−
∑n

k=1 a
(i)
k β

(2)
k

∑n
k=1 a

(i)
k α

(2)
k



































, ifm =2r+1

and
si =

















































































































































∑n
k=1 b

(i)
k α

(1)
k

∑n
k=1 b

(i)
k α

(2)
k

∑n
k=1 b

(i)
k β

(2)
k

.
.
.

.
.
.

∑n
k=1 b

(i)
k α

(r)
k

∑n
k=1 b

(i)
k β

(r)
k

∑n
k=1 b

(i)
k α

(r+1)
k

−
∑n

k=1 b
(i)
k β

(r)
k

∑n
k=1 b

(i)
k α

(r)
k

.
.
.

.
.
.

−
∑n

k=1 b
(i)
k β

(2)
k −

∑n
k=1 b

(i)
k β

(2)
k







































, ifm =2r



































∑n
k=1 b

(i)
k α

(1)
k

∑n
k=1 b

(i)
k α

(2)
k

∑n
k=1 b

(i)
k β

(2)
k

.
.
.

.
.
.

∑n
k=1 b

(i)
k α

(r+1)
k

∑n
k=1 b

(i)
k β

(r+1)
k

−
∑n

k=1 b
(i)
k β

(r+1)
k

∑n
k=1 b

(i)
k α

(r+1)
k

.
.
.

.
.
.

−
∑n

k=1 b
(i)
k β

(2)
k

∑n
k=1 b

(i)
k α

(2)
k



































, ifm =2r+1

We will use the above theorems to define a real block-circulant

matrix multiplication algorithm with any vector below.

Algorithm 3.4 The Multiplication of Cx

1. Compute v = Qbcc1 directly, c1 = Ce1, e1 = (1, 0, 0, · · · , 0)T
2. Compute v̂ = (QbcUbc)

Tv by DCT and DST

3. Form �bc

4. Compute y1 = Qbcx directly

5. Compute y2 = (QbcUbc)
Ty1 by DCT and DST

6. Compute y3 = �bcy2 directly

7. Compute y4 = (QbcUbc)y3 by DCT and DST

8. Compute QT
bc
y4, i.e., Cx

The following is an example of implementing the above

algorithm. Let C be a real block-circulant matrix with n = 4 and

m = 3,

C =











































2 -1 1 1 0 0 -1 0 0 0 0 0

1 2 -1 0 1 0 0 -1 0 0 0 0

-1 1 2 0 0 1 0 0 -1 0 0 0

0 0 0 2 -1 1 1 0 0 -1 0 0

0 0 0 1 2 -1 0 1 0 0 -1 0

0 0 0 -1 1 2 0 0 1 0 0 -1

-1 0 0 0 0 0 2 -1 1 1 0 0

0 -1 0 0 0 0 1 2 -1 0 1 0

0 0 -1 0 0 0 -1 1 2 0 0 1

1 0 0 -1 0 0 0 0 0 2 -1 1

0 1 0 0 -1 0 0 0 0 1 2 -1

0 0 1 0 0 -1 0 0 0 -1 1 2










































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The eigenvalues of C are as follows:

λ
(1)
1 = 2 λ

(1)
2 = 3− i

λ
(1)
3 = 0 λ

(1)
4 = 3+ i

λ
(2)
1 = 2+ 1

2

√
3i λ

(2)
2 = 3+ 0.732i

λ
(2)
3 = 1

2

√
3i λ

(2)
4 = 3+ 2.732i

λ
(3)
1 = 2+ 1

2

√
3i λ

(3)
2 = 3− 2.732i

λ
(3)
3 = − 1

2

√
3i λ

(3)
4 = 3− 0.732i

and the eigenvectors are

f
(p)
i =

[

f
(1)
1 f

(2)
1 f

(3)
1 f

(1)
2 f

(2)
2 f

(3)
2 f

(1)
3 f

(2)
3 f

(3)
3 f

(1)
4 f

(3)
4 f

(3)
4

]

=











































1
6

√
3 1

6

√
3 1

6

√
3 1

6

√
3 1

6

√
3 1

6

√
3 1

6

√
3 1

6

√
3 1

6

√
3 1

6

√
3 1

6

√
3 1

6

√
3

1
6

√
3 − 1

12

√
3 − 1

12

√
3 1

6

√
3 − 1

12

√
3 − 1

12

√
3 1

6

√
3 − 1

12

√
3 − 1

12

√
3 1

6

√
3 − 1

12

√
3 − 1

12

√
3

1
6

√
3 − 1

12

√
3 − 1

12

√
3 1

6

√
3 − 1

12

√
3 − 1

12

√
3 1

6

√
3 − 1

12

√
3 − 1

12

√
3 1

6

√
3 − 1

12

√
3 − 1

12

√
3

1
6

√
3 1

6

√
3 1

6

√
3 − 1

6

√
3i − 1

6

√
3i − 1

6

√
3i − 1

6

√
3 − 1

6

√
3 − 1

6

√
3 1

6

√
3i 1

6

√
3i 1

6

√
3i

1
6

√
3 − 1

12

√
3 − 1

12

√
3 − 1

6

√
3i 1

12

√
3i 1

12

√
3i − 1

6

√
3 1

12

√
3 1

12

√
3 1

6

√
3i − 1

12

√
3i − 1

12

√
3i

1
6

√
3 − 1

12

√
3 − 1
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√
3 − 1

6
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12

√
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12

√
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√
3 1

12
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6
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√
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√
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√
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√
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√
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6

√
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6
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√
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√
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√
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√
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√
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√
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√
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√
3 − 1

12

√
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√
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√
3 − 1

12

√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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By following the above DCT-DST algorithm, if x =
[1 2 3 4 5 6 7 8 9 10 11 12]T , then Cx = QT

bs
y4 = [0 −

1 4 6 5 10 24 23 28 18 17 22]T .

4 Experiment of real block-circulant
transformer

4.1 Data

In this experiment, data from D Talks Open Translation

Project’s Portuguese-English was used as the dataset, and

Tensorflow Datasets was then used to load the data.

This dataset contains ∼52,000 training examples, 1,200

validation examples, and 1,800 test examples. The dataset

was then tokenized using tokenization as used by Vaswani

et al. [24].
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4.2 Evaluation

On a held-out set of 500 samples, we evaluated performance

using the corpus Bilingual Evaluation Understudy (BLEU) score.

The corpus BLEU score employed the English sentence as its single

reference and the top English sentence output of beam search as

the hypothesis for each pair of Portuguese and English sentences in

the evaluation set. The corpus BLEU was obtained by aggregating

references and hypotheses across all pairings.

4.3 Experiment detail

We used the code from the tensorflow.org tutorial neural

machine translation with a Transformer and Keras. We utilized

various set ups that were slightly different by dense-dense

transformer model [24]. Each model applied four layers, eight

attention heads, and a dropout rate of 0.1. We set a batch size of

64, while the number of epoch is 20. The model has various matrix

dimensions, depending on the size of the weight matrices being

tested. The size of the tested matrices is the combinations of n and

m values such that a block-circulant matrix of nm × nm size was

obtained, namely, 16× 16, 32× 32, 64× 64, 128× 128, 256× 256,

and 512 × 512. Our feed forward dimensions are four times of the

model dimension. Like Vaswani et al., we used an Adam optimizer

with β1 = 0.9; β2 = 0.98, and ǫ = 10−9. Actually we used

two types of matrices (dense and real block-circulant matrices) and

two algorithms (FFT and DCT-DST algorithm). The model’s name

depicts to the type of matrices and algorithms that are applied in

themultihead attention and feed forward, respectively, for instance,

the dense - real block circulant DCT-DST transformer model. It

means that we applied the dense matrix in the multihead attention

and the feed forward sublayer used the real block-circulant matrix

with DCT-DST algorithm. In this experiment, we trained 3 (three)

transformer models with various matrices dimension. The three

models were chosen based on the findings by Reid [31], which

demonstrated that the block-circulant weight matrix was only

appropriate for the feed forward sublayer. The following are the

models tested (Table 1).

4.4 Result and discussion

The performance measured from model experiments consists

of accuracy, model memory size, and BLEU score. Accuracy is

the percentage of correctly predicted tokens. The model memory

is simply the memory used to store the model parameters, i.e.,

the weights and biases of each layer in the network [35]. BLEU

(BiLingual Evaluation Understudy) is a metric for automatically

evaluating machine-translated text.

The experimental results on Tables 2–4 show that, for the three

transformer models trained, the size of the weight matrix tends to

be directly proportional to the accuracy values. Especially on B and

C models, up to the weight matrix size of 256, the accuracy reaches

a value that keeps rising; at 512, it starts to decline. Additionally,

model C tends to have smaller memory sizes than model A, despite

being marginally less efficient than model B in this regard. The

disparity in model memory size reaches almost 41% when utilizing

a 512-dimensional weight matrix (Figure 1). The use of the C

model will provide significant advantages when used to perform

translation tasks in at least two language pairs. For example, if we

are going to translate four language pairs, thenmodel A will require

643,778 KB of storage, while model C will require 510,597 KB. This

means that there is a storage savings of around 20%. Furthermore,

FIGURE 8

Loss of C model.
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we can see that model C outperforms themodel A in terms of BLEU

score. With a 128 × 128 weight matrix, model C achieves 26.47 on

the BLEU score (Figure 2).

In general, model C with a weight matrix dimension of 128

provides relatively better performance compared to other models.

Even though the accuracy value is slightly smaller than a larger

matrix size, this matrix can still save storage usage and achieve a

higher BLEU score. The accuracy and loss values from the training

and validation process of the threemodels using a 128×x128matrix

can be seen in Figures 3–8.

The results of this research are in line with the results obtained

by Reid [31] that in general the use of the real block-circulant

model in the feed forward transformer sublayer is able to compress

the number of parameters at significant rate. At the same time, it

ignores the accuracy value as found in Li et al. [29], Liao et al. [30],

Ding et al. [36], and Qin et al. [37]. The fewer parameters in the

C model allegedly are caused by the use of the real block-circulant

matrices. Based on Kissel and Diepold [3], circulant matrix is one of

the matrices in the class of low displacement rank matrices. These

belong to the class of structured matrices which are identical to the

data sparse matrices. Data sparsing means that the representation

of n × n matrix requires <O(n2) parameters because there is a

relationship between the matrix entries. In the use of data sparse

matrices, we can find an efficient algorithm, in this case DCT-DST

algorithm, so that in computing matrix-vector multiplication we

have computation complexity with <O(n2), even we only need

O(n log(n)) operations. Furthermore, in the process of generating

the DCT-DST algorithm, not all generated matrices are computed.

For example, the Schur form matrix, �bc. This matrix was not

computed directly but is created by arranging the entries that have

been saved before, as shown in Liu et al. [9]. This is supposed

to cut down on the amount of parameters and thus reducing the

computation complexity of the model.

5 Conclusion

The use of the real block-circulant matrices as a transformer

weight matrix combined with the DCT-DST algorithm for

multiplication with any vector provides advantages in saving model

memory and increasing the BLEU score. In general, based on

this study, it was found that the real block-circulant matrix of

dimension 128 provides relatively better performance compared to

others. However, it needs to be studied further, whether a larger

weight matrix size can provide better performance or not.
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