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Extreme Mass Ratio Inspirals (EMRIs) are one of the key sources for future space-

based gravitational wave interferometers. Measurements of EMRI gravitational

waves are expected to determine the characteristics of their sources with sub-

percent precision. However, their waveform generation is challenging due to the

long duration of the signal and the high harmonic content. Here, we present the

first ready-to-use Schwarzschild eccentric EMRI waveform implementation in the

frequency domain for use with either graphics processing units (GPUs) or central

processing units (CPUs). We present the overall waveform implementation and

test the accuracy and performance of the frequency domain waveforms against

the time domain implementation. On GPUs, the frequency domain waveform

takes in median 0.044 s to generate and is twice as fast to compute as its time

domain counterpart when considering massive black hole masses ≥ 2 × 106M⊙
and initial eccentricities e0 > 0.2. On CPUs, the median waveform evaluation

time is 5 s, and it is five times faster in the frequency domain than in the time

domain. Using a sparser frequency array can further speed up the waveform

generation, reaching up to 0.3 s. This enables us to perform, for the first time,

EMRI parameter inference with fully relativistic waveforms on CPUs. Future EMRI

models, which encompass wider source characteristics (particularly black hole

spin and generic orbit geometries), will require significantly more harmonics.

Frequency domain models will be essential analysis tools for these astrophysically

realistic and important signals.
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1 Introduction

The future space-based Laser Interferometer Space Antenna (LISA) will observe

gravitational waves in the millihertz regime [1, 2]. This region of the gravitational wave

spectrum is rich in sources, including Galactic double white dwarf (WD) binaries [3],

massive black hole (MBH) binaries [4], and stellar origin black hole (SOBH) binaries early in

their evolution [4, 5]. Another key source class is extreme mass-ratio inspirals (EMRIs) [6].

These are compact binaries with a mass ratio µ/M ≃ 10−4 − 10−6, where µ ∼ 1− 100M⊙
is the mass of the orbiting secondary andM ∼ 105−107M⊙ is the mass of the MBH. EMRIs
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are expected to form in dense stellar clusters of galactic nuclei [7, 8],

where their detection rate ranges from ∼ 1 to 104 per year with

observable signal-to-noise ratios (SNR) expected to be∼ 20−1000

over the duration of the signal [9–11]. The details depend on the

precise formation mechanism [12–15], but it is anticipated that the

majority of EMRIs are expected to have eccentricities at plunge in

the range 0 < ep . 0.2, with a long tail extending to larger ep
[9]. This is why high-eccentricity EMRIs have some of the richest

and most complicated gravitational waveforms of any compact

binary system. The small mass ratio of EMRIs also means that they

evolve slowly, typically completing ∼ 104–105 orbits over years

while in the LISA band. The long-lasting, complex waveforms of

EMRIs present a substantial challenge for both the modeling of

these binaries and the LISA data analysis task [14–21].

Modeling and extracting EMRI signals from the LISA data

stream will provide binary system measurements with sub-

percent level precision [9]. This precision will enable precise

tests of general relativity [22–26]. Additionally, studying EMRIs

will enhance our understanding of the mass function of MBHs

[27], the dense stellar environments in galactic cores [10],

and the gas disks surrounding MBHs [28–34]. Furthermore,

gravitational wave signals from EMRIs could be used to constrain

cosmological parameters [35, 36] or measure phase calibration

errors [37].

Extracting this wealth of information from EMRIs in the LISA

data stream poses two significant challenges: accuracy and speed.

The former is limited by the waveformmodeling accuracy, whereas

the latter is limited by the combined computational cost of the

waveform generation, the discrete Fourier transform (DFT), and

the inner product necessary to compute the likelihood function or

any detection statistic. The first attempt to address these problems

was presented in the release of the FASTEMRIWAVEFORMS

(FEW) computational framework [38, 39], which can compute

fully relativistic waveforms rapidly. This package combines a

set of standalone modules to create EMRI waveforms on both

graphics processing unit (GPU) and central processing unit (CPU)

hardware. It was shown that the GPU version is≈ 2500 times faster

than its CPU counterpart for Schwarzschild spacetimes. GPUs are

designed with a large number of cores and specialized hardware

that allows them to perform multiple tasks simultaneously,

making them highly efficient in handling parallel processing tasks.

Compared with CPUs, which typically have fewer cores, GPUs can

process a much larger number of tasks concurrently, resulting in

significantly improved performance for certain applications. GPUs

are particularly well suited to efficient EMRI waveform generation

because these signals consist of a large number of harmonic modes

that are summed in parallel.

The waveform generation in FEW is currently performed in the

time domain (TD), with typical speeds using GPUs and CPUs on

the order of tens of milliseconds and tens of seconds, respectively.

For GPUs, the computational costs of the likelihood are

negligible (less than a millisecond), therefore making the waveform

generation the bottleneck of the computations. However, for CPUs,

all of the aforementioned operations contribute significantly to

the overall data analysis cost. We expect that a frequency domain

implementation of EMRI waveforms would reduce the likelihood

evaluation cost. However, it is not immediately clear how the

frequency domain implementation of the EMRI waveforms would

comparatively perform on GPUs and CPUs.

In this study, we expand upon the FEW package by

implementing a frequency domain (FD) EMRI waveform based

on Hughes et al. [40]. We provide a module that can compute

EMRI waveforms for eccentric inspirals into a non-rotating

black hole at adiabatic order [40, 41]. The implementation

supports use with both CPUs and GPUs, and its accuracy

and performance are explored. This study is fully reproducible

using the software provided at https://github.com/lorenzsp/EMRI_

FrequencyDomainWaveforms.

The study is organized as follows. We review the general

construction of EMRI waveforms in Section 2.1, and we discuss the

frequency domain implementation in Section 2.2. In Section 2.3,

we present the data analysis tools that are used to test the accuracy

of the waveform generation. Finally, in Section 3, we present the

results for the performance and accuracy tests of the frequency

domain implementation.

2 Methods

2.1 Extreme mass ratio inspiral waveforms

The gravitational waves emitted by an EMRI are among

the most complicated compact binary signals due to their long

duration and rich harmonic content. This complexity stems from

the dynamics of the secondary object inspiralling into the central

MBH. Such orbits are characterized by three degrees of freedom

associated with the dimensionless fundamental frequencies of Kerr

geodesic orbits �r,θ ,φ [42, 43]. These quantities are determined by

the dimensionless spin magnitude of the MBH a and the quasi-

Keplerian orbital parameters of p (semi-latus rectum or separation

in units of M), e (eccentricity), and xI ≡ cos I (cosine of the angle

I which describes the inclination of the orbit from the equatorial

plane). At adiabatic order, for a given system with primary massM,

secondary mass µ, initial orbital parameters (p0, e0, xI0), and initial

phases 8ϕ0, 8θ0, 8r0, the orbital evolution can be determined by

solving the following system of ordinary differential equations:

d

dt
p =

µ

M
fp(a, p, e, xI)

d

dt
e =

µ

M
fe(a, p, e, xI)

d

dt
xI =

µ

M
fxI (a, p, e, xI)

d

dt
8ϕ,θ ,r = �ϕ,θ ,r(a, p, e, xI)/M .

The orbital-element fluxes fp,e,xI account for the gravitational

wave emission and are interpolated from pre-computed grids. In

the FEW package, the system of ordinary differential equations is

solved using an explicit embedded Runge-Kutta Prince-Dormand

(8, 9) method with adaptive step size [see gsl_odeiv2_step_rk8pd in

Galassi [44]], resulting in sparse orbital trajectories of ∼ 100 data

points in length.

Once the trajectory is fully specified by

{p(t), e(t), xI(t),8ϕ(t),8θ (t),8r(t)}, we compute the complex
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gravitational-wave amplitudes Almkn(p(t), e(t), xI(t)). Each

amplitude mode is associated with the multipole l of the radiation

and the harmonic {m, n, k} of the fundamental orbital frequencies,

where m, k, and n label the azimuthal, polar, and radial modes,

respectively. In the FEW package, the amplitudes and phases are

interpolated using a “not-a-knot” cubic spline to handle the large

number of modes using a sparse number of points. Cubic splines

are the simplest polynomial basis spline suitable for our purposes

because they provide an approximation of the second derivative

of frequency with respect to time. Higher order spline functions

are more expensive and might overfit data as sparsely evaluated

as our trajectory information. Additionally, the root-finding

procedure that will be used in constructing the time-frequency

correspondence in Eq. 6 is significantly more expensive for higher

order polynomials due to the need to perform this task numerically.

In the interest of computational efficiency, we control the number

of harmonic modes with a further mode-selection step. The

mode-selection step is defined by the threshold ǫ of the total power

emitted by all modes. Within each time step of the sparse array, we

take |Almkn(t)|2 and sort the individual modes in descending order

and compute a cumulative summation. From this sorted array, we

check whether the additional power contributed to an individual

mode falls below the threshold ǫ related to the total power emitted.

This gives a set of contributing modes within each time step. The

selected modes are given by the union of all contributing modes

across all time steps. This ensures to maintain continuity across

time. Only the modes that pass this threshold are included in the

waveform computation [see Katz et al. [39] for further details].

The gravitational wave signal at a large distance from the

source can be represented in terms of the complex time-domain

dimensionless strain [40]:

h = h+ − ih× = µ

dL

∑

lmkn

Almkn(t)Slmkn(t, θ)e
imφ

exp
{

−i[m8ϕ(t)+ k8θ (t)+ n8r(t)]
}

, (1)

where t is the time of arrival of the gravitational wave at the Solar

System barycenter, θ is the source-frame polar viewing angle, φ is

the source-frame azimuthal viewing angle, and dL is the luminosity

distance of the source. The functions Slmkn(t, θ) are spin-weighted

spheroidal harmonics. For inspiral into a Schwarzschild black hole

(the focus of this analysis), these functions are identical to the spin-

weighted spherical harmonics. For the general Kerr case, they differ

from the spherical harmonics (though they can be very usefully

expanded into spherical harmonics [45]), and in particular, they

depend on the orbital frequencies. Because the orbital frequencies

evolve with time, the spheroidal harmonics evolve as well [40],

complicating the description of the waveform. Future studies

will describe how we handle this complication. In any case,

the usual transverse-traceless gravitational wave polarizations can

be obtained from the real and imaginary parts of the complex

conjugate of h.

A key element to be noted in Eq. 1 is that the EMRI waveform

can be viewed as a sum of simple “voices”, where each voice

corresponds to a mode (l,m, k, n). The time-domain waveform can

thus be rewritten in terms of a sum over voices V :

h =
∑

V

HV (t)e
−i8V (t), (2)

where each voice is characterized by a complex amplitude

HV (t) and a phase 8V (t). The voice-by-voice decomposition was

suggested to one of the present authors by L. S. Finn and first

presented in Hughes [46].1 In this study, we provide the first

ready-to-use implementation of this decomposition for frequency-

domain EMRI waveforms.

2.2 The frequency domain

EMRI waveforms can be represented in the frequency domain

by using the stationary phase approximation. Because amplitude,

phase, and frequency in an EMRI evolve slowly (as long as

the two-timescale approximation is valid [48]), we expect the

stationary phase approximation (SPA) to provide a high-quality

approximation to the Fourier transform of the signal [49]. Here,

we review the computation of the Fourier transform of an EMRI

waveform in the frequency domain presented in the study by

Hughes et al. [40]. We begin by taking the Fourier transform of

each voice of Eq. 2 as follows:

h̃(f ) ≡
∫ ∞

−∞
h(t)e2π ift dt =

∫ ∞

−∞
H(t)ei[2π ft−8(t)] dt (3)

where we have not written the subscript for ease of notation. To

compute the stationary phase approximation to the signal, it is

necessary to expand the phase evolution, written as

8(t) = 8(tS)+2πF(t− tS)+π Ḟ(t− tS)
2+

π

3
F̈(t− tS)

3+ . . . (4)

where

F ≡
1

2π

d8

dt

∣

∣

∣

∣

tS

, Ḟ =
dF

dt
≡

1

2π

d28

dt2

∣

∣

∣

∣

tS

, F̈ ≡
1

2π

d38

dt3

∣

∣

∣

∣

tS

.

(5)

We have introduced the instantaneous frequency of the signal

and the instantaneous first and second derivatives of the frequency

at the stationary time t = tS for which F = f . We expanded up

to third order in the phase evolution because for some voices, the

frequency evolution is not monotonic. If the frequency derivative

vanishes (Ḟ = 0), the standard SPA Fourier transform is singular

and cannot be used [50]. This is highly relevant to EMRI signals

because the frequency associated with many voices rises to a

maximum and then decreases. In particular, this occurs for EMRI

voices which involve harmonics of the radial frequency. This is

because �r becomes very small (approaching |�φ |) in the weak-

field limit and goes to zero as systems approach the last stable orbit;

a maximum of �r exists between these two “small” limits.

We now use Eq. 4 to obtain the time-frequency correspondence

for each voice, i.e., we find the time t such that F(t) = f . The

frequency evolution of each voice F(t) = (m�ϕ(t) + k�θ (t) +
n�r(t))/(2πM) is directly obtained from the trajectory evolution

of each of the fundamental frequencies. During the waveform

production process, the fundamental frequency evolution is

1 Notably, a frequency domain waveform implementation was also

presented in the study by Piovano et al. [47] with the limitation to circular

Kerr orbits.
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interpolated with a cubic spline, allowing for a good approximation

using a third-order polynomial. Doing so, the condition f = F(t)

between two knots can be rewritten as:

f = A+ B (t − ti)+ C (t − ti)
2 + D (t − ti)

3, (6)

whereA,B,C, and D are real numbers given by the sum of the spline

coefficients of three frequencies multiplied by their mode number,

and ti is the time at the beginning of the spline segment.

The fundamental frequency, fundamental phase, and amplitude

spline coefficients are determined along the sparse trajectory prior

to the final waveform summation phase [see Katz et al. [39] for

more information]. Additionally, using all values of f and each set

of frequencies found along the sparse trajectory for each voice, the

spline segment, in which each value of f falls, is predetermined

before the summation. Once in the summation, the goal is to

determine t(f ) as efficiently as possible. This is difficult in cases

where the voice is not monotonic because t(f ) is not a bijective

mapping for this case: two values of t can be represented by the

same value of f . To address this issue, we solve for the cubic roots of

Eq. 6 within each segment, where f is found (one or two segments

per voice depending on f ). We take the real-valued roots and

determine which one or two actually exist between the bounds of

the segment, and we are currently examining (it can be two only

for the segment in which the turnover occurs). Since the frequency

evolution is slowly varying within each segment, the condition

Ḟ = 0 cannot occur more than one time per segment. These time

values occurring within our segment are then used to determine all

necessary quantities for waveform building because all informative

splines are fit as a function of t.

We define tj(f ) to be the jth time (first or second) at which

F(t) = f , and write Ḟj ≡ Ḟ[tj(f )], F̈j ≡ F̈[tj(f )]. These higher order

derivatives are also computed using the fundamental frequency

spline information. With that, for each value of f for each voice,

the Fourier transform can be represented as:

h̃(f ) ≃
N

∑

j=1

H[tj(f )]e
i[2π ftj(f )−8(tj(f ))] ×

∫ ∞

−∞
e−iπ[Ḟj(t

′)2+F̈j(t
′)3/3]dt′ ,

(7)

where N ∈ {1, 2} is the number of time values associated with each

value of f . To perform this integral, we set α = γ + 2π iḞ, with γ

real and positive, define β = 2π F̈, and use

∫ ∞

−∞
e−αt2/2−iβt3/6 dt =

2
√
3

α

|β|
eα

3/3β2
K1/3(α

3/3β2) , (8)

where Kn(z) is the modified Bessel function of the second type.

Taking the limit γ → 0, we find

h̃(f ) ≃ 2√
3

∑N
j=1 H[tj(f )]e

i[2π ftj(f )−8(tj(f ))] iḞj

|F̈j|
e
−2π iḞ3j /3F̈

2
j

K1/3(−2π iḞ3j /3F̈
2
j ) . (9)

This result defines our frequency domain waveform. Expanding

about “small” F̈J , it can be shown that this yields the standard SPA

when F̈j → 0 andN = 1 [seeHughes et al. [40]]. For computational

efficiency, we approximate the term i
√
xe−iXK1/3(−iX) with two

polynomial expansions in X = 2π iḞ3j /3F̈
2
j , valid for |X| < 7 and

|X| > 7. The largest relative error occurs around the transition

region |X| ≈ 7 and is ≈ 10−3. We did not explore the potential

of applying this method for calculating other oscillatory integrals

[51].

As previously mentioned, this waveform is built into the

framework of FEW. All parts of the waveform generation prior to

the “waveform summation module” are identical to the original

time-domain implementation [39]. The waveform summation

described above is implemented for both CPUs and GPUs. For

the purposes of GPU parallelization, the summation is grouped

by harmonic voice and segment of the splines defined in time.

This creates a rectangular computation grid because all spline

information occurs on the same sparse time evolution returned

from the trajectory integrator yielding a constant number of

segments across all spline constituents. On the GPU, we place

each segment within each voice on a separate GPU block (larger

parallelization unit). Within each block, we use the parallel threads

(smaller parallelization unit) to evaluate all values of interest in

frequency for that specific voice and segment. The waveform

is then constructed by “atomically” adding from each of these

blocks and threads to an overall waveform vector stored in GPU

global memory.

2.3 Data analysis setup

An EMRI waveform for non-rotating black holes is uniquely

determined in the reference frame of the Solar System barycenter

by setting the following parameters:

{M,µ, p0, e0, dL, θS,φS, θK ,φK ,8ϕ0,8r0} , (10)

where θS and φS are the polar and azimuthal sky location angles

given in the Solar System barycenter reference frame, and θK and

φK are the azimuthal and polar angles describing the orientation

of the orbital angular momentum. The relation to the source frame

angles θ ,φ can be found in the study by Katz et al. [39]. We do not

include the effect of the detector response function, but we leave

this to future studies [52].

We check the performance and accuracy of the FD waveform

over the EMRI parameter space confined to log(M/M⊙) ∈
[log 105, log 107), log(µ/M) ∈ [log 10−6, log 10−4), e0 ∈
[0.001, 0.7), and 8ϕ0,8r0 ∈ [0, 2π) by uniformly drawing 5,000

parameter realizations. The initial semi-latus rectum is fixed to

obtain an inspiral with a time duration of 0.99T, where T is

the duration of the observation. We consider h+ and h× in the

Solar System barycenter as our two channels, and we fix {dL =
1Gpc, θS = π/3,φS = π/3, θK = π/3,φK = π/3} throughout
this study. To check our implementation, we quantify how similar

two waveforms are using the mismatch2

M(a, b) = 1−
∑

α

〈a|b〉α
√

〈a|a〉α〈b|b〉α
(11)

2 In the literature this is also denoted unfaithfulness.
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where we have introduced the inner product ·· of each channel α,

〈a(t)|b(t)〉 = 4Re

∫ ∞

0

ã∗(f )b̃(f )

Sn(f )
ḟ ≈ 4Re

∑

i

ã∗(fi)b̃(fi)

Sn(fi)

1

T
, (12)

where fi = i/T, with i from 1 up to the total number of frequency

bins Nf = N/2 with N number of time points. Notably, we will

also consider frequency arrays with spacing different from the one

previously mentioned. The tilde indicates the Fourier transform,

and Sn(f ) is the one-sided noise spectral density for the LISA data

streams, which we take from the study by Babak et al. [53]. We

use the mismatch M(hFD, hTD) to compare the frequency domain

implementation with the DFT of the time-domain implementation

sampled with a time interval 1t = T/N. The conversion from

continuous to discrete samples changes the underlying Fourier

transform into the discrete Fourier transform. This leads to a

type of distortion called aliasing. The choice of an appropriate

time sampling 1t is the key to minimizing such distortion. The

Nyquist rate is the maximum resolvable frequency for the DFT

of a discrete-time signal, and its value equals 1/(21t). When the

signal is digitized, we need to make sure that the Nyquist frequency

is larger than the largest harmonic frequency FV (t) of the signal,

i.e. maxVF(t) < 1/(21t), where V = (l,m, n, k). By ensuring this

condition, the resulting discrete-time sequence is free of aliasing.

Similarly, the conversion from a very long (or infinite) sequence to

a manageable size entails a type of distortion called leakage, which

is manifested as a loss of resolution in the DFT. We mitigate this

effect by applying the Hann window to the time domain waveform

[54]. To account for the effect of windowing in the FD waveform,

we perform a convolution of the FD signal with the DFT of the

window function. We do not maximize over the phase since the

initial conditions of the frequency and phase evolution of the TD

and FD waveforms are the same by construction. Global relative

time and phase shifts are not observable parameters, so by not

optimizing over them, we are being conservative with the model

and folding data processing into the model comparison.

We show the impact of windowing and spectral leakage in

Figure 1 for a system withµ = 10M⊙,M = 106M⊙, e0 = 0.6, p0 =
9.56 for an observation of T = 1 year, a mode content threshold

ǫ = 10−2, and a sampling interval of 1t = 10 s. We show the

amplitude squared, |h̃+(f )|2, of the frequency domain waveform

(dashed orange line) and DFT of the time domain waveform (solid

blue line) for the plus polarization in the upper panel of Figure 1.

For reference, we also show the LISA sensitivity curve used to

calculate the inner products. In the upper panel of Figure 1, we

do not apply any windowing, and therefore, the FD waveform is

zero only where there is no mode content. Conversely, the DFT

of the TD waveform is affected by spectral leakage, especially for

frequencies larger than 10−2 Hz. If we apply the Hann window

consistently to both the FD and TD signals as previously described,

we obtain the spectrum shown in the lower panel of Figure 1.

The effect of windowing reduces the total power but improves

the agreement between the waveforms such that the mismatch

decreases from 8× 10−4 to 4× 10−6.

It is often quoted that the average mismatch for a waveform

needs to be 1−0.91/3 ≈ 1−0.965 to recover 90% of the signals in an

experiment [55, 56]. However, the requirements on the mismatch

for parameter estimation (PE) studies are not as straightforward

FIGURE 1

Spectrum of the frequency domain (FD) waveform compared with

the spectrum of the discrete Fourier transform (DFT) of the time

domain (TD) waveform. In the upper plot, we show the amplitude

squared |h̃+(f)|2 when we do not include any windowing when

computing the spectrum of the waveforms. In the lower panel, we

apply the Hann window to both the TD and FD waveforms. Note

how the windowing helps to resolve the harmonics in the

low-frequency region f < 10−4 Hz and reduce the power of the

leakage at frequencies f > 10−2 Hz. We consider an EMRI system

composed of a secondary object with mass µ = 10M⊙ orbiting

around a non-rotating black hole of mass M = 106M⊙ with initial

eccentricity e0 = 0.6 and semi-latus rectum p0 = 9.56 fixed such

that the inspiral plunges after 1 year of observation.

to characterize, primarily as there is no one-to-one relationship

between the level of mismatch and the level of bias that is incurred

during inference. A sensible requirement for a PE study is to

ask that the systematic (or mismodeling) error coming from an

approximate waveform is lower than the statistical error coming

from the noise in the data. While the former is independent of

the signal-to-noise ratio (SNR =
√

〈h+h+〉 + 〈h×h×〉), the latter
depends on the SNR, and therefore the mismatch requirement

on a waveform for a PE study is SNR-dependent. The mismatch

times the SNR2 is approximately half the model waveform error:

M(h1, h2) × SNR2 ≈ 〈h1 − h2h1 − h2〉/2 [57]. Therefore, we

perform PE on the system that yields the largest value ofM×SNR2.

In particular, we check that the posterior distribution obtained

with an FD waveform is equivalent to the one obtained with a TD

waveform. To do this, we use the likelihood given by [58]:

p(s|h) ∝
[

−
1

2

∑

α=+,×
〈s− h|s− h〉α

]

, (13)
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where we ignored the normalization factor that needs to be

included when fitting for the shape of the noise spectral density

Sn. We do not inject any noise in the datastream since we want to

check whether any waveform systematic arises due to the difference

between the FD and TD implementations. Notably, if we apply a

window to our data, we should take into account its effects in the

likelihood. In fact, the expectation value of the inner product of the

noise n(t) = s(t)− h(t) is different if a window is applied

E[〈w(t) n(t)|w(t) n(t)〉] 6= E[〈n(t)|n(t)〉] = N (14)

We do not take into account the effect of windowing in

the likelihood because this would lead to a non-diagonal noise

covariance matrix and an increase in the computational cost of the

inner product. This is not a problem for the purpose of our study

because we are consistently neglecting the effect of windowing in

the likelihood when analyzing the data with different waveform

models (FD or TD) [59]. We remind the reader that we apply the

windowing solely because the two waveforms (FD and TD) are in

two different domains and we perform the parameter estimation

only to check the presence of waveform systematics. However, we

remark that the effect of windowing (and gaps) in LISA data is an

important issue that remains to be addressed, but it is beyond the

scope of this study. To deal with the data gaps expected in LISA, it

would be worth investigating the usage of non-uniform DFT.

3 Results

The frequency and time domain waveforms are built using

the same trajectory and amplitude modules. However, the final

signal output is obtained using different mode summations

and prescriptions. Therefore, any waveform difference might be

attributed to the stationary phase approximation and/or spectral

leakage. However, any difference in the speed of the waveform

generation is due to the mode summation algorithm of the

two domains. In the following, we investigate the waveform

mismatch and speed by comparing the time and frequency domain

implementations over the parameter space for different observation

time-spans T, sampling intervals 1t, and mode content thresholds

ǫ. We consider as our fiducial values an observation time-span of

T = 4 years (yrs), a sampling interval of 1t = 5 s, and a threshold

ǫ = 10−5, and we vary each of these one at a time.

3.1 Accuracy analysis

We calculate the mismatch between the frequency and time

domain waveforms as described in Section 2.3. The mismatches

obtained over the parameter space are shown in the upper part of

Figure 2. Themedian of themismatch distributions are between 4×
10−6 and 10−5, whereas the largest 95% quantile of the mismatch is

9.7× 10−5.

The distributions obtained with a different mode content

ǫ = 10−5 (solid blue histogram) and ǫ = 10−2 (dashed

green histogram) are almost identical. This is expected since

these systems are affected in the same way by spectral leakage.

FIGURE 2

Upper panel: Mismatch between the frequency domain (FD) and

time domain (TD) waveforms over the parameter space of EMRI

systems and for di�erent observation time-spans, T, sampling

intervals, 1t, and mode content thresholds, ǫ. The di�erent

parameter realizations are drawn uniformly from the following

ranges: log(M/M⊙) ∈ [log 105, log 107), log(µ/M) ∈ [log 10−6,

log 10−4) , e0 ∈ [0.001, 0.7), and 8ϕ0,8r0 ∈ [0, 2π ). Lower panel:

Dependence of the mismatch on the central black hole mass M. The

points that abruptly rise to larger mismatches for the orange dots

are caused by the fact that, for some low-mass systems, the

sampling interval 1t = 10 s is not small enough to resolve the

largest frequency.

When comparing the mismatches obtained with different sampling

intervals 1t = 5 s (solid blue histogram) and 1t = 10 s

(dotted orange histogram), we obtain lower mismatches for larger

sampling intervals. We attribute this difference to the fact that

the total number of points T/1t contributing to the mismatch is

different. For the systems with lower T/1t, the spectral leakage

is weaker since the total power is lower. To confirm this, we take

the ratio of the mismatches M1t=10s/M1t=5s, and we find it

to be approximately constant as a function of the mass. For the

same reason, the mismatches obtained for T = 2 years (dashed-

dotted red histogram) are slightly lower than the ones obtain for

the fiducial value T = 4 years (solid blue histogram). However,

the mismatches obtained for (T,1t) = (2 yrs, 5 s) (dashed-dotted

red histogram) are slightly larger than the ones obtained for

(T,1t) = (4 yrs, 10 s)(dotted orange histogram). This is probably

due to the fact that we fix p0 for a given inspiral duration,

and the maximum p0 allowed by the current implementation

is p0 ≈ 16.
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TABLE 1 EMRI parameters of the source with largestM × SNR2, where

M is the mismatch between the frequency and time domain waveforms.

M [M⊙] µ [M⊙] p0 [M] e0 T[yrs] SNR

3.67004174

×106
292.058317 13.7091019 0.579413083 4 78

The posterior distributions obtained with different waveform implementations are shown in

Figure 3 for a mode content of ǫ = 10−5 .

In the lower panel of Figure 2, we show the behavior of the

mismatch as a function of the central black hole mass M. The

correlation coefficients between the mass M and the mismatch

M are approximately ∼ 0.6. This is caused by the shape of the

LISA sensitivity curve and the fact that for larger M systems,

the spectrum shifts to lower frequencies, and the spectral leakage

present at the high frequencies becomes more dominant. For

large M, the fiducial distribution of mismatches (blue crosses)

is wider than the one obtained with 1t = 10 s, but both

distributions reach approximately the same mismatches of ∼ 10−5

for M ∼ 107. This is no longer the case when M becomes

smaller. For M ∼ 105, the mismatches of 1t = 10 s are

generally smaller than the ones obtained from 1t = 5 s.3 This

confirms that for larger masses, the spectral leakage dominates,

whereas for smaller masses, the mismatch is more affected by

the total power in the signal. This behavior is also confirmed

for systems with T = 2 years (red crosses). In fact, if we

compare the systems with (T,1t) = (4 yrs, 10 s) and (T,1t) =
(2 yrs, 5 s) that have the same power, the distribution for the

latter system reaches larger values than the distribution for the

former system at all masses because the maximum resolvable

frequency, 1/(21t), is higher. We note that for lower masses, the

distribution for (T,1t) = (2 yrs, 5 s) has lower mismatches than

the distribution for (T,1t) = (4 yrs, 5 s) because the total power

T/1t is smaller.

We use Bayesian parameter estimation to assess whether the

FD waveforms are affected by systematic errors. We use the

Eryn package [60] to perform a Markov chain Monte Carlo

analysis to estimate the posterior distribution of the EMRI intrinsic

parameters. Since this analysis is computationally expensive and

cannot be performed over the 5000 realizations considered in the

mismatch analysis, we decided to focus on the EMRI parameters

that yield the largest M × SNR2. For the values of T = 4

yrs, 1t = 5 s or 1t = 10 s, ǫ = 10−5 (blue solid and

dotted orange histograms), we find that the largest value of M ×
SNR2 is reached by the system with parameters shown in Table 1.

The posterior distribution of this system is shown in Figure 3

for the three scenarios in which the FD and TD are used as

injections or templates. The Kullback–Leibler divergences [61]

between each pair of posteriors are of order 10−4 for all the

considered parameters. Therefore, we conclude that we do not find

any significant loss of accuracy or precision for the worst point in

parameter space.

3 The points that abruptly rise to larger mismatches for the orange

distribution are caused by the fact that, for some low mass systems, the

sampling interval 1t = 10 s is not small enough to resolve the largest

frequency.

3.2 Computational cost of the waveform
generation

The computational cost of the time and frequency domain

implementations differ only in the final waveform summation and

output domain. Here, we compare the waveform speeds without

including the DFT cost. We make this choice to highlight the

difference in the waveform generation cost, and we provide the

speed of the DFT for a reference system. The speed of the waveform

is evaluated using the NVIDIAA100GPU and the computer cluster

Hypatia.4 for GPU and CPU timings reported below. We warn

the reader that the computational cost of the waveform can vary

depending on the computing resources used.

By drawing 5,000 realizations from the parameter space as

discussed in the previous section, we show the speed-up factor

given by the ratio of the TD and FD waveform evaluation speeds

per realization. The results for the GPU speed-up factor are shown

in Figure 4. The upper panel shows the speed-up as a function of

sampling interval, observation time, and mode content, while the

lower panel shows the dependence on eccentricity and central mass

for the fiducial system. Notably the median speeds of all considered

configurations are 0.044 and 0.055 s for the FD and TD waveforms,

respectively. The distributions shown in the upper panel of Figure 4

depend on the priors chosen for the parameter space.

Since the mode threshold ǫ controls the mode content, we

can deduce that the FD waveform generation is faster than the

TD one when the harmonic content is larger, i.e., ǫ is smaller

(see solid blue and dashed green histograms). This is a key result

because future expansion of the FEW package will implement

EMRI systems with a central rotating black hole, where the

number of harmonics is expected to increase by an order of

magnitude.

As shown by the solid blue and red dashed-dotted histograms

in the upper panel of Figure 4, the FD waveform creation is faster

than the TD one for longer signals. This is expected since the TD

generation increases with the number of time points. Instead, the

FD generation slows down with an increasing frequency resolution.

This is confirmed by comparing the orange and blue histograms,

which differ only by the time sampling interval 1t. The FD

generation for our fiducial case is two times faster for systems with

M > 2 × 106 and e0 > 0.2. The performance of the FD waveform

compared with the TD one improves with increasing eccentricity

and central mass M. However, the speed-up trend shown in the

lower panel of Figure 4 moves to higher eccentricities and higher

masses when T = 2 years, resulting in a smaller speed-up region.

In the limit of short signal durations, we expect the TD generation

to be faster than the FD one, and contrary in the long duration

regime.

The CPU waveform generation can take up to hundreds of

seconds depending on (T, ǫ,1t). Due to the significantly higher

computational cost, we do not present the full scan of the parameter

space, but from 10 parameter realizations, we conclude that for

(T, ǫ,1t) = (4 yrs, 10−2, 10 s), the FD waveform generation is

4 Hypatia consists of 262 GIGABYTE compute nodes (dual-socket, sixteen-

core, SMT-enabled AMD EPYC (Naples) 7351 (2.40 GHz), of which 14 provide

8 GB RAM per core (4 GB per core otherwise).
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FIGURE 3

Posterior distributions obtained with di�erent waveform implementations for an EMRI system with parameters given in Table 1. In red, we show the

posterior distribution obtained using a frequency domain (FD) template to recover an injected waveform generated in the time domain (TD). The red

distribution matches the posteriors obtained when the injected and template waveforms are in the same domain (blue and green posteriors). The

observation time, the sampling interval, and mode content are (T,1t, ǫ) = (4 yrs, 10 s, 10−5). The Kullback–Leibler divergences between each pair of

marginal posteriors are of order 10−4 for all the considered parameters.

on average five times faster than the TD one on CPUs and takes

5 s in median. For reference, we also report that in Table 2, the

main findings after timing the FD and TD speeds for the system

of Table 1 with (T, ǫ,1t) = (4 yrs, 10−5, 10 s). The FD waveform

is seven times faster than the TD waveform on CPUs but only 1.3

times faster on GPUs. The DFT operation is particularly expensive

on CPUs taking 7 s compared with the 0.4 milliseconds on a

GPU.

3.3 Frequency downsampling

One of the main advantages of the FD generation is that we

can evaluate the waveform on a sparser frequency array than

the one imposed by the frequency resolution 1/T. We use an

evenly-spaced frequency array that spans only the region where

the injected waveform is non-zero f ∈ [0, fmax]. We change the

frequency spacing to downsample the array, and we define the
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FIGURE 4

Upper panel: Speed-up factor of the GPU waveform generation in

the time domain (TD) vs. frequency domain (FD) over the parameter

space of EMRI systems and for di�erent observation time-spans T,

sampling interval 1t, and mode content ǫ. The speed-up factor is

given by the ratio of the TD generation speed divided by the FD

generation speed per parameter realization. The di�erent parameter

realizations are drawn uniformly from the following ranges:

log(M/M⊙) ∈ [log 105, log 107), log(µ/M) ∈ [log 10−6, log 10−4) ,

e0 ∈ [0.001, 0.7), 8ϕ0,8r0 ∈ [0, 2π ). Lower panel: Speed-up factor as

a function of central black hole mass M and initial eccentricities e0
for T = 4 years, 1t = 5 s, and mode content ǫ = 10−5.

total number of frequency bins to be Nf = fmax/1f . We show

that in Table 2, the computational cost of the waveform generation

in frequency and time domain on GPU and CPU obtained for

an EMRI system with the parameters specified in Table 1 and

(T, ǫ,1t) = (4 yrs, 10−5, 10 s). As shown in Table 2, the frequency

downsampling strongly affects the CPU speed-up factors, reducing

the cost by a factor of 34. For GPUs, instead, the frequency

downsampling mildly affects the speed-up factor between FD and

TD generation since the GPU timing is already of the order of tens

of milliseconds.

One of the downsides of reducing the frequency resolution

is the loss of accuracy in the inner product calculation, with a

possible impact on parameter inference. Here, we study the loss

of accuracy as a function of the number of frequency bins. As

a proof of concept, we consider the source with the parameters

reported in Table 1 and obtain the posterior distributions using the

FDwaveformwith different input frequencies andwith (T, ǫ,1t) =
(4 yrs, 10−2, 10 s). In this analysis, we did not include windowing

since the injected and template waveforms are in the same domain.

The absence of windowing also affects the total SNR, so we rescaled

the distance to keep the SNR reported in Table 1 for the finest

frequency resolution. The input array is given by evenly spaced

frequencies between zero and a maximum frequency fmax. The

spacing is set by selecting the total number of frequency bins Nf .

In Figure 5, we show the posteriors obtained with different

levels of downsampling and report the CPU and GPU likelihood

speeds. The solid blue posterior is obtained using a frequency

array defined by the DFT resolution fmax = 1/(21t) and Nf =
6311631, whereas the maximum frequency of the dashed orange

and dash-dotted green posteriors is set by the maximum harmonic

frequency present in the signal fmax = 2.8 mHz. The only difference

between the three cases is due to the approximation of the innner

product in calculating the likelihood. Even using only 0.05% of

the frequencies, the downsampled analysis with Nf = 3554

(dashed orange histograms) provides a posterior indistinguishable

from the one of the full frequency array (solid blue). When

further decreasing Nf to 35, the downsampling starts to affect

the obtained posteriors. The frequency downsampling leads to a

faster likelihood evaluation which drops from 4.26 s for the full

array to 0.34 for CPUs. Further reducing the number of frequency

bins does not significantly improve the speed, highlighting that the

bottleneck of the likelihood computation might be due to other

waveform computation steps, such as mode selection [39]. The

GPU likelihood timing is reduced by a factor of two when using

downsampling.

The reason for the deviation in the posteriors can be explained

by looking at the absolute square of the characteristic strain |f h̃(f )|2,
as shown in Figure 6. The FD waveform spectrum obtained with

Nf = 3554 (dashed orange line) well represents the spectrum

obtained with the full array Nf = 6311631 (solid blue line) in

the frequency range, where the signal is above the LISA sensitivity.

Instead, the spectrum obtained with Nf = 35 (dotted green line)

has a very sparse frequency array that cannot describe all the

features present in the EMRI signal. We conclude that the usage of

frequency downsampling can be an important tool for exploratory

studies of EMRI parameter inference on CPUs. This motivates

the FD implementation as an alternative to the TD one for CPU

facilities. However, we stress that it is essential to check the validity

of the downsampling before using it.

4 Discussion and conclusion

In this study, we presented a ready-to-use implementation

of an EMRI frequency domain waveform, and we compared its

accuracy and performance against its time domain counterpart.

We found the largest mismatch to be at 3 × 10−3, and

95% of the generated waveforms over the EMRI parameter

space have a mismatch below 10−4. We further investigated

the accuracy with a Bayesian analysis of the worst point

in the parameter space and found no visible bias in the

recovered parameters.

The computational cost of the frequency domain on GPUs

is lower than the time domain cost for central MBH masses of

> 106 and for initial eccentricities > 0.2 and high numbers

of harmonic modes. This suggests that the frequency domain

model might be more suitable when including a large number

of harmonics and we expect the FD implementation to be an
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TABLE 2 Computational cost of the waveform generation in frequency and time domain on GPU and CPU obtained from an EMRI system with

parameters given in Table 1 and (T, ǫ,1t) = (4 yrs, 10−5, 10 s).

Operation = FD waveform (Downsampled) TD waveform DFT

Speed CPU [s] = 13.7 (0.4) 90.6 7.1

Speed GPU [s] = 0.048 (0.035) 0.064 0.0004

Number of frequency bins Nf = 6311631 (7864) 6311631 6311631

The speed of the DFT and the downsampled frequency domain generation is also reported. The last row indicates the size of the frequency array.

FIGURE 5

Posterior distributions for an EMRI system with parameters given in Table 1. The posteriors are obtained using the frequency domain waveform with a

specified frequency array f ∈ [0, fmax] with Nf number of frequency bins. The solid blue posterior considers a maximum frequency set by

fmax = 1/(21t), whereas the maximum frequency of the dashed orange and dash-dotted green posteriors is set by the maximum frequency present

in the signal. The computational cost of the likelihood evaluation is reported in seconds for GPU and CPU. The mode content is fixed to ǫ = 10−2,

and the injected waveforms are shown in Figure 6.
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FIGURE 6

Characteristic strain spectrum |fh̃(f)|2 obtained with the frequency

domain waveform evaluated on di�erent frequency arrays with Nf

frequencies. The solid blue spectrum considers a maximum

frequency set by fmax = 1/(21t) = 50 mHz, whereas the maximum

frequency of the dashed orange and dash-dotted green spectrum is

set by the maximum frequency present in the signal fmax = 2.8 mHz.

The parameters of the EMRI system are shown in Table 1, and the

posteriors for these di�erent levels of frequency downsampling are

shown in Figure 5.

important alternative to the TD one when extending the waveform

model to Kerr spacetimes, where the number of modes is expected

to increase by an order of magnitude. Due to the modularity of the

FD implementation, the current model can be extended to Kerr

spacetimes once amplitude and trajectories are available. These

results also have implications for the data analysis applications of

the FD waveform model. If we expect the search phase of EMRIs

to be conducted using the fastest model, for instance, with a lower

mode content, the TD generation may be preferable. However,

including all the modes might be important when performing tests

of general relativity, and therefore, the FD waveform could be used

in this scenario.

The speed-up factor of the waveform model on CPUs is ≈
7 times faster than the time domain version for the considered

system and, in median, 5 times faster for different configurations.

However, the waveform evaluation still takes order of 10 s, making

the FD waveform not fast enough to perform EMRI parameter

inference on CPUs. The frequency domain formulation allows

us to choose the input frequency array giving the possibility

of downsampling. This was explored for an EMRI system in

which we found that the CPU likelihood evaluation can be

reduced to 0.3 s when reducing the number of frequency bins

to be evaluated. This allows users without GPU resources to

run EMRI parameter inference with a fully relativistic waveform

for the first time. Frequency downsampling can be used for

exploratory studies aimed at assessing the uncertainties that might

be realized in parameter estimation. However, this must be done

carefully, especially when injecting noise. The noise must be

scaled appropriately to avoid obtaining misleading results, and

the possible downsampling will depend on the EMRI parameters.

Downsampling will in general not be possible when analyzing

real data, but it can be used as a tool for understanding EMRI

parameter estimation.

In the current setup, the CPU evaluation time converges to

values determined by the mode selection. In future studies, we

plan to improve this module, therefore enhancing the performance

of the CPU FD implementation. Other approaches that use

the sparsity of the frequency array to speed up have already

been presented in the study by Cornish [62] and Zackay et al.

[63]. However, the non-monotonic modes and the large number

of harmonics pose challenges in applying such techniques to

EMRI waveforms. It is not clear yet whether relative binning or

heterodyning will significantly speed up the parameter estimation

of EMRI sources.

In this study, we did not include the effect of the LISA response

function. This is crucial in using the FD waveforms for realistic

data analysis studies. A frequency domain response was already

presented in Marsat and Baker [52]. However, it still needs to be

assessed whether the approximations used in the study by Marsat

and Baker [52] apply to EMRIs. This should be investigated in

future studies.

Looking to future, we note that post-adiabatic corrections to the

waveform phase are important for precision science with EMRIs.

These corrections are known for quasi-circular inspirals [64], and

the path to eccentric orbit calculations was laid out in the study

by [65]. Although the necessary offline second-order self-force

calculations are computationally demanding, the online generation

of the inspiral is structurally the same and as fast as the adiabatic

model [48].With themodular FD implementation presented in this

study, the FD post-adiabatic waveform will be available as soon as

the post-adiabatic corrections to the inspiral phases are known.

Finally, a full realistic data analysis pipeline has not been

developed for EMRIs yet [see, however, Babak et al. [14] and

Cornish [15]]. We stress the importance of developing waveform

models in the time, frequency, and time-frequency domains in

order to explore the advantages and disadvantages of each domain

[66].
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