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under the Cox proportional
hazards model: assessing the
performance of the
non-parametric Flexible Hazards
Method
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Numerous methods and approaches have been developed for generating

time-to-event data from the Cox Proportional Hazards (CPH) model; however,

they often require specification of a parametric distribution for the baseline hazard

even though the CPH model itself makes no assumptions on the distribution

of the baseline hazards. In line with the semi-parametric nature of the CPH

model, a recently proposedmethod called the Flexible Hazards Method generates

time-to-event data from a CPH model using a non-parametric baseline hazard

function. While the initial results of this method are promising, it has not

yet been comprehensively assessed with increasing covariates or against data

generated under parametric baseline hazards. To fill this gap, we conducted a

comprehensive study to benchmark the performance of the Flexible Hazards

Method for generating data from a CPH model against parametric methods. Our

results showed that with a single covariate and large enough assumed maximum

time, the bias in the Flexible Hazards Method is 0.02 (with respect to the log hazard

ratio) with a 95% confidence interval having coverage of 84.4%. This bias increases

to 0.054 when there are 10 covariates under the same settings and the coverage

of the 95% confidence interval decreases to 46.7%. In this paper, we explain the

plausible reasons for this observed increase in bias and decrease in coverage as

the number of covariates are increased, both empirically and theoretically, and

provide readers and potential users of this method with some suggestions on how

to best address these issues. In summary, the Flexible Hazards Method performs

well when there are few covariates and the user wishes to simulate data from a

non-parametric baseline hazard.

KEYWORDS

Cox proportional hazards model, survival data, simulation, time-to-event, methodology,

hazard function

1. Introduction

Survival analysis refers to a class of statistical procedures for analyzing data where the

variable of interest is the time until the occurrence of an event of interest. Time-to-event data

is common across a broad range of disciplines, particularly biomedical research [1, 2]. As an

example, consider a lung cancer clinical trial where 164 patients with non-small cell lung

cancer randomly received one of two different treatments. The time until the first relapse for
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each individual was recorded and these data were analyzed to see if

one treatment was more effective at preventing or delaying relapse

than the other [3]. One of the most frequently used models to

analyze such data is the Cox Proportional Hazards (CPH) model,

which takes on the following general form in Equation 1.

hi (t) = h0 (t) exp (Xiβ) (1)

In this equation, the expected individual hazard function,

hi (t) , is the probability that an individual experiences the event

at time t; h0 (t) is the baseline hazard which represents the hazard

when all Xi are equal to 0; Xi is a p-dimensional vector of

covariates for the ith individual, i =1,. . . , n; and β is a vector of

model parameters of length p. The expected individual hazard is

the product of the baseline hazard and the exponential function

of the linear predictors, which means that the predictors have a

multiplicative or proportional effect on the expected hazard from

one instance in time to the next. Further, when comparing the

expected hazards of two individuals (i and j), the ratio of their

respective hazards can be taken as in Equation 2.

h0(t) exp(Xiβ)

h0(t) exp(Xjβ)
= exp

(

Xiβ−Xjβ
)

(2)

Since this hazard ratio does not depend on time, t, the hazard is

proportional over time.Moreover, since the hazard does not need to

be specified in order to estimate the model parameters, β , a partial

likelihood method is used. Suppose we have paired survival time

and censoring indicators (ti, δi) for an individual as well as fixed

covariates Xi. An individual is censored δi ∈ {0, 1} when the true

survival time, ti, for that individual is unknown. Some examples of

censoring include losing an individual in a study due to follow-up

or an individual survives past the end of the study. Assuming there

are no tied event times, a set D = {i | δi = 1} is defined where D

is a set of those individuals that experience the event of interest.

Further, the risk set, or the set of individuals at risk at time t is

defined as R(t) = {i | ti ≥ t}. The partial likelihood for the CPH

model is displayed in Equation 3:

L (β) =
∏

i
P(Ti|Ti≥ti)

∑

k : tk≥ti
P(Tk=Tk|Tk≥Ti)

=
∏

i
hi(ti)

∑

k : tk≥ti
hk(tk)

=
∏

i
exp(Xiβ)

∑

k : tk≥ti
exp(Xkβ)

(3)

In the above methodology, it is assumed there are no tied

event times. In order to account for tied event times, the partial

likelihood can be redefined to account for ties. One common

method to account for ties was introduced by Breslow [4]. Contrary

to estimating the Cox model using the method of partial likelihood

with an existing dataset, when simulating time-to-event data from

the semi-parametric CPH model, the baseline hazard must either

be specified or a suitable non-parametric method must be used to

generate baseline hazard. Cox and Therneau and Grambsch are

resources for the reader to take a deeper look into the derivation

of the CPH model [5, 6].

Simulating data from a statistical model is an important

exercise as it allows one to understand robustness of a given

model under misspecification and/or violations of its underlying

assumptions, can facilitate comparisons of different analytical

approaches or models under controlled conditions, and is useful

for simulation-based assessments of statistical power. In the current

literature, the baseline hazard is nearly always specified using a

parametric distribution where the parameters in the distribution

are chosen arbitrarily or set based on estimated parameter values

from pilot studies. Common baseline hazard distributions used in

the literature include the Weibull, exponential, log-normal, and

gompertz distribution all of which satisfy the proportional hazards

assumption [7–9]. There are many well-defined packages available

in the R statistical programming language for generating time-

to-event data from the CPH model when the baseline hazards

is assumed to have a specific parametric form. This includes the

survsim package and flexsurv, the latter of which is capable of

fitting even more flexible parametric distributions [10, 11]. The

use of these distributions has been extended to include methods

for generating survival times with time-invariant covariates as

well as cyclic and piecewise time-varying covariate [12]. Current

research is being conducted for the generation of right-censored

survival times as a function of time-varying covariates [13–

15]. Some of these recent works consider Zhou’s method for

generating right-censored data for a functional form covariate

using a piecewise exponential framework [16]. Hendry furthers

Zhou’s method by developing an algorithm to generate right-

censored survival data with both time-invariant and time-varying

covariates that vary at integer-valued steps on a time scale under

the Cox model [13]. Other recent work demonstrates that the

Lambert W Function can be used to generate survival times with

time-varying covariates and derives closed-form solutions when the

survival times follow an Exponential or aWeibull distribution [15].

Nevertheless, these methods still assume the survival times to have

a specific parametric distribution even though in practice these

distributions and subsequent parameter values are often unknown

making simulations and the evaluation of analytical methods quite

difficult and sometimes unrealistic. To date, there are relatively

few studies that have focused on simulating data from a non-

parametric baseline hazard, taking advantage of the flexible nature

of the semi-parametric framework of the Cox model.

Previously developed methods for estimating a non-parametric

baseline hazard include using a kernel-based approach with global

and local bandwidth selection algorithms [17], a nearest-neighbor

bandwidth approach [18], or spline-based estimators [19]. A

simulation study was conducted by Hess et al. to compare the

statistical properties of some of these earlier kernel-based methods

[20]; in 2010, Hess et al. developed the corresponding R package,

muhaz, which implements the boundary kernel formulations from

Müller and the nearest neighbor bandwidth formulation from

Gefeller and Dette [21]. This methodology and the resulting R

package cannot handle covariates within its model framework,

but it does have an advantage over some other methods that

require the specification of complex nuisance model parameters,

parameters which directly affect the estimates of the parameters of

interest. A more recent method for estimating the non-parametric

baseline hazard uses b-splines, implemented in the R-package,

bshazard [22]. This method assumes that survival data already

exist and does not allow simulation of data directly from the

estimated baseline hazard. It also allows for the use of covariates,

although the authors caution using covariates when estimating

the baseline hazard due to the assumption that the covariates

have a constant effect on the proportional hazards. The Flexible

Hazards Method proposed by Harden and Kropko is capable of
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simulating time-to-event data without providing any of the survival

data for the individuals using a non-parametric baseline hazard

[23]. The Flexible Hazards Method can be implemented using

sim.survdata function contained within the coxed R package [24].

The sim.survdata function is user-friendly and can accept user-

specified coefficients, covariates, and can facilitate the generation

of time-to-event data with time-varying covariates or using time-

varying coefficients. To the best of our knowledge, the method

proposed by Harden and Kropko is one of only few readily available

methods with an existing easy-to-implement R package that allows

for the simulation of time-to-event data under the Coxmodel while

using a non-parametric method that allows for multiple covariates

and does not rely on a pre-existing dataset.

While the Flexible Hazards Method is conceptually simple

and easy to implement using the sim.survdata function, and has

the distinct advantage that the user does not have to specify a

distribution for the baseline hazard function, we have noticed that

issues arise when the number of predictor variables (e.g., number

of elements in Xi) are increased [23]. Specifically, unless careful

attention is given with respect to how the elements of Xi are

generated as well as the magnitude of the effect-size, β , e.g., log-

hazard ratio parameters, as the dimension of Xi grows, so too

does the magnitude of bias in the estimates of β obtained from

Cox proportional hazards models obtained fit to the simulated

data. Following from this observation, the purpose of this study

is three-fold: (1) to illustrate this phenomenon in the increase in

the magnitude of the bias with increasing number of parameters,

(2) explain the plausible reasons for such, both empirically and

theoretically, and (3) provide readers and potential users of the

Flexible Hazards Method with suggestions on how to best address

this issue. In what follows, we begin by describing the Flexible

Hazards Method, followed by a description a series of simulation

studies that were conducted to address the previously stated goals.

2. Methods

2.1. Simulating time-to-event data from the
Flexible Hazard method

Here, we briefly describe the Flexible HazardsMethod and refer

readers to the original paper for a more complete description [23].

To simulate time-to-event data under the CPH model, a failure

cumulative distribution function (CDF) is first generated. The

failure CDF is generated by creating a time index of length T, where

T can be interpreted as the maximum follow-up time for the study

being simulated. Next, k-2 points, where k << T, are randomly

drawn from a Uniform(0, T) distribution, with the remaining two

points being set to 0 and T. The result is a vector t of length k,

whose elements, 0 ≤ tr ≤ T, r = 1, 2, . . . , k. The cumulative

probability of failure index is then generated by randomly drawing

k-2 points form a Uniform(0,1) distribution, sorted in ascending

order to ensure that the CDF is non-decreasing. The first point is

set to 0 at the minimum time and the last point is set to 1 at the

maximum time, T. The cumulative probability of failure is then

visualized as a function of time on a graph (Figure 1A). Next, a

cubic smoothing spline with third order polynomials is fit to these

random points (Figure 1B). The probability distribution function

(Figure 1C) is then retrieved by computing the first differences of

the failure CDF at each time point since the failure CDF curve is

the area under the PDF. We can also think about this in terms

of differentiating the CDF to get the PDF. The baseline survival

function and baseline hazard follow the general formulas where

the baseline survival function is simply one minus the Failure CDF

(Figure 1D) and the baseline hazard is the PDF divided by the

survival function (Figure 1E). Using the calculated baseline survival

function, S0(t), the survival function for subject i, Si(t), is given by

Equation 4.

Si (t) = S0 (t)exp{Xiβ} (4)

where β is the vector of parameters (e.g., log hazard ratios) and

Xi is a vector of covariates for the ith individual. As indicated by

Equation (1), when exp{Xiβ} = 1.0, Si (t) = S0 (t) , whereas

when exp{Xiβ} = 1.25, the risk of failure at time t conditional on

survival through time t, is 25% higher than the baseline. To get the

survival time for individual i, a single value from a Uniform(0,1)

distribution is first drawn. Using the sampled value and the plot

of survival as a function of time with a horizontal line extending

from the sampled value, one then determines where the horizontal

line intersects with Si (t). The t at which this horizontal line

intersects with Si (t) is taken to be the survival time for individual

i (Figure 1F). Once survival times for every individual i= 1,2,. . . ,N

have been determined, censoring is randomly assigned based upon

a pre-specified censoring rate.

2.2. Simulation studies and generation of
time-to-event data from parametric
distributions

We conducted a series of simulation studies to comprehensively

examine the Flexible Hazard Method. A description of the settings

for our simulation studies are summarized in Table 1. Briefly, to

simulate data using the Flexible Hazard Method, we start by setting

the total sample size (n ∈ {1,000; 10,000}) and the number of

variables to be included in the CPH model
(

p ∈ {1, 5, 10}
)

. Next,

we generate the covariate data, Xij, i = 1,2,. . . , n and j = 1,2,. . . , p

for each of the variables that will be included in the CPH model

by randomly sampling from a multivariate normal distribution

with mean-vector of 0 and variance-covariance matrix equal to the

identity matrix. We then set the T index to be either 100, 500, or

1,000. The true parameter values, βj, j = 1,. . . , p, are randomly

drawn from a Uniform(−1,1) distribution. Next, we applied the

sim.survdata function based on each combination of the simulation

parameters described in Table 1. Specifically, in the sim.survdata

function, argument “T” was specified to be the value of the T index,

“X” was specified to be the simulated covariate dataX, “beta” was set

to the randomly generated true parameter values β , “censor” was

set to the considered censoring rates (Table 1), the “fixed.hazard”

option was set to FALSE, and “num.data.frames” was set to 1. The

output of the sim.survdata function are simulated survival times

and censoring indicators, generated based on the Flexible Hazards

Method, for each of the n individuals. The simulated event times

and covariate data X were then used in fitting a multivariable CPH

model using the coxph function in the survival R package, where

tied event-times were addressed using the Efron method [25].
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FIGURE 1

The Flexible Hazards methodology. This figure depicts the Flexible Hazards Method when T = 100 and k = 10. (A) (top left): k-2 = 8 randomly

graphed points for both time and the cumulative probability of failure. (B) (top middle): A cubic spline fit through the randomly generated points from

(A). (C) (top right): The PDF transformed by taking the first di�erences of the CDF in (B) at each time point. (D) (bottom left): The generated baseline

survival function found by taking 1-CDF. (E) (bottom right): The generated hazard function (PDF divided by the survival function). (F) (right): The

baseline survival function displayed with a solid black line and an individual’s survival function where exp(Xβ) = 1.25 displayed by a dashed line. The

randomly drawn uniform (0,1) point was 0.418 and this intersected the individual’s survival function at time 33.

TABLE 1 Summary of the parameters assumed for the simulation study.

Simulation parameter Simulation parameter value

Repetitions 250

Sample size (n) {1,000; 10,000}

Censoring rate {0, 0.1, 0.2, . . . , 0.9, 0.95, 0.99}

T {100, 500, 1,000}

Xi ∼MVN(0,1)

Number of model parameters (p) {1, 5, 10}

Actual parameter values (βj) ∼Uniform(−1,1)

To benchmark the performance of the flexible hazard method,

we used the inverse CDF method to generate time-to-event

data, assuming both Weibull and exponential baseline hazard

distributions. Specifically, time-to-event data were generated as

follows in Equations 5, 6.

Exponential : t =
−log(U)

λ×exp(βX)
(5)

Weibull : t =
(

−log(U)

λ×exp(βX)

)−γ
(6)

In Equations 5, 6, t represents the survival time, U is a random

draw from a Uniform(0,1) distribution, β is the vector of true

parameter values drawn from the Uniform (-1,1) distribution, and

X is the n x p matrix of randomly drawn covariate values. To

enable fair comparisons, it is noted that the same linear predictors,

βX, that were randomly generated for use in generating time-to-

event data via the Flexible Hazard Method described above, were

also used when generating time-to-event data assuming Weibull

and exponential distribution for the baseline hazards. The nuisance

parameters, λ and γ, for generating the survival times were

arbitrarily set as they were not of direct interest in our simulation

study. For our simulations, the nuisance parameter λ was set to 0.5

and γ was set to 1.5. The censoring indicator was then assigned

by n random draws from a binomial distribution with probability

equal to the assigned censoring rate. As was the case for time-to-

event data generated using the Flexible Hazards Method via the

sim.survdata function, survival times generated assuming Weibull

and exponential distributions for the baseline hazard, were used in

fitting a multivariable CPH model using the coxph function within

the survival R package [26].

2.3. Performance assessment

For each of the three different assumptions of the baseline

hazard—exponential, Weibull, and the Flexible Hazards Method,

a CPH model was fit to the resulting data using the methodology

described above. Based on the model fit, we compared the true
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TABLE 2 The median (IQR) absolute bias in the parameter estimates for the exponential, Weibull, and Flexible Hazards Method across all simulated

maximum event times for the Flexible Hazards Method with n = 10,000.

# of Parameters Exponential Weibull Flexible Hazards

T = 100

1 0.015 (0.008, 0.026) 0.016 (0.007, 0.025) 0.037 (0.016, 0.064)

5 0.017 (0.014, 0.022) 0.016 (0.013, 0.022) 0.056 (0.038, 0.087)

10 0.017 (0.014, 0.020) 0.017 (0.014, 0.020) 0.101 (0.067, 0.148)

T = 500

1 0.015 (0.006, 0.026) 0.015 (0.008, 0.028) 0.020 (0.009, 0.039)

5 0.016 (0.013, 0.021) 0.018 (0.013, 0.021) 0.032 (0.021, 0.052)

10 0.018 (0.015, 0.020) 0.017 (0.014, 0.020) 0.068 (0.042, 0.099)

T = 1,000

1 0.015 (0.007, 0.025) 0.015 (0.007, 0.026) 0.018 (0.008, 0.031)

5 0.017 (0.014, 0.022) 0.017 (0.013, 0.021) 0.031 (0.019, 0.050)

10 0.017 (0.014, 0.021) 0.017 (0.014, 0.021) 0.054 (0.032, 0.082)

The results in bold represent the maximum value for each row.

parameter coefficients (βj) with those estimated from the CPH

model (β̂j) and computed the absolute bias for the jth parameter

as follows in Equation 7,

Biasj =
∣

∣

∣
βj − β̂j

∣

∣

∣
(7)

Along with the bias, we also calculated the coverage by

computing the fraction of simulated data sets where the 95%

confidence interval for a given model parameter contained the true

parameter value. This process was repeated for 250 Monte Carlo

(MC) simulations for each simulation setting in Table 1. When

more than one parameter existed, the average bias and average

coverage for all model parameters was calculated. This average was

then the value for that one iteration of the 250 iterations. Once

all iterations were completed, averages and confidence intervals

were then computed for both the bias and the coverage using all

250 iterations.

3. Results

A series of simulation studies were used to evaluate the

performance of the Flexible Hazards Method when the number

of covariates associated with the risk of the event is increased.

The performance of the flexible hazard method was then

compared to two commonly assumed distributions for the baseline

hazard function, the Weibull and exponential, as the number of

covariates were increased. The results section is organized in three

subsections. In the first subsection, we report the results comparing

the Flexible Hazards Method against Weibull and exponential

approaches when p = 1. Next, we report the results from the same

comparison when p is increased, p > 1. Finally, we report results

comparing the performance differences of the flexible hazard

method to the parametric distributions when p = 1 to p > 1 as a

means toward highlighting probable reasons for such differences.

TABLE 3 The average coverage (standard deviation) in the parameter

estimates for the exponential, Weibull, and Flexible Hazards Method

across all simulated maximum event times for the Flexible Hazards

Method with n = 10,000.

# of
Parameters

Exponential Weibull Flexible
Hazards

T = 100

1 0.928 (0.259) 0.956 (0.206) 0.588 (0.493)

5 0.947 (0.100) 0.938 (0.110) 0.325 (0.309)

10 0.953 (0.068) 0.950 (0.064) 0.237 (0.186)

T = 500

1 0.924 (0.266) 0.924 (0.266) 0.820 (0.385)

5 0.950 (0.100) 0.948 (0.103) 0.587 (0.313)

10 0.953 (0.075) 0.954 (0.071) 0.381 (0.241)

T = 1,000

1 0.956 (0.206) 0.956 (0.206) 0.844 (0.364)

5 0.945 (0.100) 0.947 (0.102) 0.689 (0.313)

10 0.957 (0.066) 0.951 (0.071) 0.467 (0.278)

The results in bold represent the minimum value for each row.

3.1. A single covariate

When a single covariate is assumed to associate with the risk

of the event, p = 1, the average absolute bias observed for the

Flexible Hazards Method is comparable to what was observed

when time-to-event data were generated assuming exponential

and Weibull distributions for the baseline hazard function. When

p = 1 and at maximum follow-up time of 1,000, T = 1,000,

the average absolute bias for the flexible hazard method is 0.018

with the inter-quartile range (0.008, 0.031). Similarly, the average

absolute bias and inter-quartile range for the exponential and

Weibull parametric distributions was 0.015 (0.007, 0.025) and 0.015
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FIGURE 2

Pearson correlation coe�cients. Displays the Pearson correlation coe�cient (R) between the number of individuals at the maximum event time and

the average absolute bias while increasing the number of parameters holding the censoring rate at 0.5.

(0.007, 0.026), respectively. Here, the bias is being computed by

taking the absolute difference in the log of the hazard ratio (the

coefficient value received from the coxph() model) and the true

parameter value. Once all Monte Carlo simulations have been

completed, the bias calculated at each iteration are then averaged

and the inter-quartile range is computed. Ideally, the bias should

be close to 0. Table 2 shows the results of the average absolute

bias and Table 3 shows the average coverage when the maximum

follow-up time for the Flexible Hazards Method, T, is increased

from 100 to 1,000. The maximum follow-up time for both the

exponential and Weibull distribution is infinity, based on the

support of these distributions, and the small variation in these

rows (rows 1, 4, and 7 from Tables 2, 3 where p = 1 for the

Exponential and Weibull distribution columns) is simply due to

variations in samples from the 250 MC iterations. From Tables 2,

3, we see that as T is increased, the average absolute bias observed

for the Flexible Hazards Method is very similar to its parametric

counterparts when p = 1. The coverage of the true parameter

value also behaves similarly. As T is increased, the coverage of the

Flexible Hazards Method increases from 0.588 to 0.844; whereas,

the coverage for both the Weibull and exponential distributions

are near 0.95. The coverage is being calculated by calculating

the fraction of times the 95% confidence interval contains the

true parameter value across all Monte Carlo repetitions. We

expect, then, the coverage to be at or near 0.95. It is noted

that in the following results, the sample size of n = 10,000 is

displayed. The reader is referred to Supplementary Table 1 for the

results of the average absolute bias and Supplementary Table 2

for the results of the average coverage when the sample size

is n= 1,000.
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FIGURE 3

While loop methodology. This figure depicts the while loop methodology for coercing the exponential and Weibull distributions to have the same

number of maximum event times as the Flexible Hazards Method.

TABLE 4 The median (IQR) absolute bias in the parameter estimates for the exponential, Weibull, and Flexible Hazards Method across all simulated

maximum event times for the Flexible Hazards Method when the number of event times is coerced to be the same across all baseline hazard assumptions.

# of Parameters Exponential Weibull Flexible Hazards

T = 100

1 0.024 (0.011, 0.047) 0.025 (0.012, 0.051) 0.037 (0.016, 0.064)

5 0.040 (0.022, 0.068) 0.043 (0.023, 0.068) 0.056 (0.038, 0.087)

10 0.070 (0.042, 0.098) 0.066 (0.041, 0.100) 0.101 (0.067, 0.148)

T = 500

1 0.022 (0.010, 0.035) 0.021 (0.009, 0.038) 0.020 (0.009, 0.039)

5 0.029 (0.019, 0.049) 0.027 (0.019, 0.045) 0.032 (0.021, 0.052)

10 0.050 (0.028, 0.075) 0.051 (0.028, 0.076) 0.068 (0.042, 0.099)

T = 1,000

1 0.020 (0.008, 0.042) 0.021 (0.011, 0.042) 0.018 (0.008, 0.031)

5 0.027 (0.017, 0.042) 0.028 (0.018, 0.041) 0.029 (0.020, 0.049)

10 0.046 (0.028, 0.070) 0.047 (0.030, 0.072) 0.054 (0.035, 0.078)

The results in bold represent the maximum value for each row.

3.2. More than one covariate

Table 2 shows the results when n = 10,000 for the average

absolute bias and Table 3 shoes the average coverage when p is

increased to 5 or 10 covariates associated with the risk of the

event, p ∈ {5,10} with increasing maximum follow-up time for

the Flexible Hazards Method, T ∈ {100, 500, 1,000}. From this

table we see that as T is increased, the mean absolute bias of the

flexible hazard method does decrease, however it does not perform

as well as the exponential and Weibull distributions. The average

absolute bias also increases as p is increased. For p = 5 and T

= 1,000, the Flexible Hazards Method has a mean absolute bias

of 0.031; whereas the average absolute bias for the exponential

and Weibull distributions were both 0.017. The average coverage

of the true parameter value is 0.689 compared to 0.95 for the

exponential andWeibull distributions. When p is further increased

to 10, p = 10, at T = 1,000, the Flexible Hazards Method had

a mean absolute bias of 0.054, whereas the average absolute bias

observed form the exponential andWeibull distributions was 0.017,

for both. The average coverage for p = 10 and T = 1,000 is only
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TABLE 5 The average coverage (standard deviation) in the parameter

estimates for the exponential, Weibull, and Flexible Hazards Method

across all simulated maximum event times for the Flexible Hazards

Method when the number of event times is coerced to be the same across

all baseline hazard assumptions.

# of
Parameters

Exponential Weibull Flexible
Hazards

T = 100

1 0.752 (0.433) 0.780 (0.415) 0.588 (0.493)

5 0.550 (0.348) 0.551 (0.343) 0.352 (0.309)

10 0.414 (0.282) 0.400 (0.275) 0.237 (0.186)

T = 500

1 0.788 (0.410) 0.748 (0.435) 0.820 (0.385)

5 0.692 (0.308) 0.694 (0.299) 0.587 (0.313)

10 0.484 (0.284) 0.474 (0.290) 0.381 (0.241)

T = 1,000

1 0.760 (0.428) 0.768 (0.423) 0.844 (0.364)

5 0.734 (0.297) 0.739 (0.295) 0.689 (0.313)

10 0.523 (0.310) 0.533 (0.306) 0.467 (0.278)

The results in bold represent the minimum value for each row.

0.467 for the Flexible Hazards Method compared to approximately

0.95 for the exponential and Weibull distributions. Thus, while the

performance of the exponential and Weibull distributions appears

to be invariant to increasing p, we observe a notable drop-off in the

performance of the Flexible Hazards Method in terms of the mean

absolute bias and average coverage as p is increased. The reader

is referred to Supplementary Table 1 for the results of the average

absolute bias and Supplementary Table 2 for the results of the

average coverage when the sample size was lowered to n= 1,000.

3.3. Discrepancy in performance of Flexible
Hazards Method with increasing p

With regard to the Flexible Hazards Method, we observed

that the mean absolute bias increases proportionally for increasing

p, whereas the mean absolute bias of the exponential and

Weibull distributions remains constant even with the increase

in parameters. One plausible explanation for the increase in the

mean absolute bias observed for the Flexible Hazards Method with

increasing p is that as p is increased, the number of individuals

having tied event times also increases. Specifically, the number

of individuals having the minimum or maximum event time, T,

increases. Figure 2 shows scatterplots comparing the number of

samples that have a maximum event time, T, to the mean absolute

bias for increasing p. From this figure, we see that when there

is only a single covariate, the pairwise Spearman correlation is

0.42 between the number of samples at the maximum event time

and the mean absolute bias. This correlation increases to 0.91

when there are 9 parameters associated to the event of interest.

In order to investigate how the increase in tied maximum event

times affects themean absolute bias, an additional set of simulations

were conducted. These simulations were conducted based on

the number of individuals with an event time exactly equal to

the maximum event time that were generated using the Flexible

Hazards Method. We then constrained data generated using the

exponential andWeibull baseline hazards to have the same number

of individuals with event times occurring at the maximum event

time. A conceptual overview of how this was accomplished is given

in Figure 3.

Moreover, when the exponential and Weibull distributions are

forced to have the same proportion of tied maximum event times,

at large T (T = 1,000, for example), the Flexible Hazards Method

performs almost equivalently to the exponential and Weibull

distributions regardless of the number of covariates. Table 4 shows

the results of the mean absolute bias for the exponential, Weibull,

and Flexible Hazards Method while increasing the number of

covariates and increasing the maximum survival time, T, for

the Flexible Hazards Method, when the exponential and Weibull

distributions have the same proportion of samples at the maximum

survival time as the Flexible Hazards Method. At T = 1,000,

p = 10, and n = 10,000, the average absolute bias for the Flexible

Hazards Method has an interquartile range of (0.035, 0.078) and

an average of 0.054. The exponential and Weibull distributions

have an interquartile range of approximately (0.029, 0.071) with an

average of 0.046. Table 5 shows the results of the average coverage

for the exponential, Weibull, and Flexible Hazards Method when

increasing both the number of parameters and the maximum event

time in the Flexible Hazards Method. At T = 1,000 and p = 10 the

average coverage for the Flexible Hazards Method is 0.467 where

the average coverage is 0.523 for the exponential distribution and

0.533 for theWeibull distribution. This table shows that the average

coverage increases as one increases the maximum event time, T,

and while holding the number of parameters constant. It also shows

that as we increase the number of covariates, the average coverage

decreases across all three approaches. The reader is referred to

Supplementary Table 1 for the results of the average absolute bias

and Supplementary Table 2 for the results of the average coverage

when the sample size was lowered to n = 1,000. Additionally,

Supplementary Table 3 gives the median and interquartile range

for the proportion of individuals that were drawn to have the

maximum event time in the Flexible Hazards Method and the

subsequent median and interquartile ranges after the exponential

andWeibull distributions were coerced to have similar proportions

as that of the Flexible Hazards Method.

4. Discussion

The Flexible Hazards Method allows one to simulate time-to-

event data from a non-parametric baseline hazard under the CPH

model framework. This user-friendly method can be implemented

in the coxed R package and has the capacity to handle many

different scenarios. However, when simulating time-to-event data

using the Flexible HazardsMethod, we observed that as the number

of covariates in the CPH model was increased, so too does the bias

in the estimates of the parameters obtained from fitting the CPH

model to the generated data. In the present study, we observed

comparable performance between the Flexible Hazards Method

and the parametric baseline hazards models in terms of coverage
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FIGURE 4

Probability of survival as a function of time. Displays how the absolute increase in the sum of the multiplication between an individual’s covariate

e�ects and their corresponding covariate coe�cients results in an individual survival plot that is either an “L” shape or the mirror of “L,” thus depicting

how we get numerous survival times at either the minimum or maximum value of T.

and average absolute bias with large T when there is only a single

covariate. Thus, when considering a CPH survival model where

only a single covariate is associated with the risk of the event,

the Flexible Hazards Method may be preferred as researchers do

not have to specify the baseline hazard distribution. However,

when the number of risk-associated covariates is increased, we

observed a substantial decline in the performance of the Flexible

Hazards Method when compared to the exponential and Weibull

parametric baseline hazard models. One plausible explanation

for this is that when the number of parameters is increased,

the number of individuals having event times at the maximum

value of T increases. Indeed, when we forced the exponential and

Weibull distributions to have the same number of individuals at

the maximum event time, the performance of the exponential and

Weibull baseline hazards resembled the performance of the Flexible

Hazards Method. Graphically, we show how increasing the number

of parameters is linked to an increase in the number of individuals

with event times exactly equal to the minimum or maximum event

time. As we can see from Figure 4, when we have a large negative

sum of the individual’s covariate effects by parameter coefficients,

the received individual survival plot is that of a mirrored “L”. Thus,

when generating the individual survival time and taking a random

value from a Uniform(0,1) distribution, nearly any resulting value

will give us a maximum survival time. The opposite is true when

we have a large positive value forXiβ , the resulting value will almost

always be at the minimum survival time. It is recommended when

using the Flexible Hazards Method that researchers keep in mind

the number of parameters that are to be included in the model

as well as the value of the linear predictors. These values must

be consciously kept small to prevent the occurrence of clusters of

individuals with tied event times at the minimum or maximum

times. Using a large value of T will greatly improve the accuracy

of the results as was shown that as we increase the value of T,

the Flexible Hazards Method performs better. Nevertheless, bias

still remains even with increasing T and additional computational

burden occurs.

One potential drawback of our simulation study is not further

increasing T to say, 10,000, to see how even larger values of T

affect the performance of the Flexible Hazards Method. However,

increasing T comes with considerable computational cost, as

previously mentioned. The average time for one MC was 1.21

seconds when T = 100; whereas, the average time when T =

1,000 was 7.10 seconds. This made increasing T impractical

as the computational cost was too high when conducting MC

iterations for the purposes of our simulation studies. Another

limitation is that our study only included the exponential and

Weibull distributions to benchmark the performance of the Flexible

Hazards Method. A case could be made that different distributions

should be considered such as a log-normal or a Gompertz baseline

hazard; however, as with simulation studies, a general limitation

is that not every single combination of parameter values can be

evaluated.We provide results here for many different combinations

that was able to bring forth many themes in these data. In

conclusion, we found that the Flexible Hazards Method presented

byHarden andKropko is a very easy-to-implementmethod and has

a wide array of uses. Caution from the user is needed when more

than one parameter is supplied as results can become biased and

misleading very quickly. It is recommended to keep the number of

linear predictors small and the value of T large.

Future research may include extending the Flexible Hazards

Method to facilitate data generation from other time-to-event

models, such as the cure ratemodel. Onemay also consider creating
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an easy-to-use built-in R function for simulation-based power and

sample size calculations for the Flexible Hazards Method.
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