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In this study, we present a nonlinear deterministic mathematical model for co-

infection of pneumonia and COVID-19 transmission dynamics. To understand

the dynamics of the co-infection of COVID-19 and pneumonia sickness, we

developed and examined a compartmental based ordinary di�erential equation

type mathematical model. Firstly, we showed the limited region and non-

negativity of the solution, which demonstrate that the model is biologically

relevant and mathematically well-posed. Secondly, the Jacobian matrix and the

Lyapunov function are used to illustrate the local and global stability of the

equilibrium locations. If the related reproduction numbers Rc
0
, R

p
0
, and R0 are

smaller than unity, then pneumonia, COVID-19, and their co-infection have

disease-free equilibrium points that are both locally and globally asymptotically

stable otherwise the endemic equilibrium points are stable. Sensitivity analysis

is used to determine how each parameter a�ects the spread or control of

the illnesses. Moreover, we applied the optimal control theory to describe the

optimal control model that incorporates four controls, namely, prevention of

pneumonia, prevention of COVID-19, treatment of infected pneumonia and

treatment of infected COVID-19. Then the Pontryagin’s maximum principle is

introduced to obtain the necessary condition for the optimal control problem.

Finally, the numerical simulation of optimality system reveals that the combination

of treatment and prevention is the most optimal to minimize the diseases.

KEYWORDS

pneumonia, COVID-19, coinfection, basic reproduction number, sensitivity analysis,

optimal control, numerical simulations

1 Introduction

An acute respiratory infection of the lung is pneumonia. Its symptoms can vary

depending on age, but the most typical ones include exhaustion, chills, chest pain, a fever,

and severe shortness of breath. It spreads via direct or indirect contact with an infected

person [1]. Every day, at least one child dies every 45 seconds from pneumonia. Due to

pneumonia, ∼740,000 deaths have occurred since 2019, especially in the developing world,

with an estimate of 5,000 deaths per day [2, 3].

COVID-19 is an infectious respiratory disease caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) virus and spreads via (direct or indirect) contact

with saliva droplets released from infected people [4, 5]. From the start of the pandemic up

until March 2023, more than 6 million deaths and 761 million infections have been reported

to the WHO due to COVID-19. In Ethiopia, the first case was reported on March 13, 2020,

and up toMarch 23, 2023, there have been 500,212 confirmed cases of COVID-19 with 7,572

deaths, and total recoveries are 27,638 reported to WHO [6].
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Mathematical modeling has a great role in describing the

dynamics of infectious diseases [7]. Several mathematical models

have been proposed to study the transmission dynamics of COVID-

19; see, for example, [8–14] and the references cited therein.

Mathematical models for pneumonia are also extensively studied

in Smith et al. [15], Lipsitch [16], Temime et al.[17], Melegaro et al.

[18], Lawi et al. [19], Farr et al. [20], Pessoa [21], and Singh and

Aneja [22] and references cited therein. Recently, a few scholars

studied the coinfection of various diseases in the mathematical

literature; for instance, COVID-19 and malaria coinfection [23,

24], SARS-CoV-2 and HBV co-dynamics [25], COVID-19 and

TB coinfection [26–28], Pneumonia and HIV coinfection [29],

pneumonia and malaria coinfection [30] and pneumonia and

typhoid coinfection [31] and references cited therein.

But to the best of our knowledge, in all these studies, no

work has been done to investigate the co-infection mathematical

modeling of COVID-19 and pneumonia dynamics with the

application of the optimal control method. So that we used the

SIiR (where the subscript i = p, pc, c refers to pneumonia, co-

infection, and COVID-19 infection, respectively) model to describe

the transmission dynamics of disease with optimal control.

The remaining part of this paper is organized as follows:

In Section 2, we formulate a model of co-infection involving

ordinary differential equations, which is well analyzed in Section

3. Extension of the model to optimal control strategies in Section 4.

Numerical simulations are carried out in Section 5, and finally, the

conclusion and future work are in Section 6.

2 Model description and formulation

In this section, we formulate the mathematical model for the

co-infection of pneumonia and COVID-19 by subdividing the total

population into five compartments: susceptible (S), pneumonia

infected (Ip), COVID-19 infected (Ic), pneumonia-COVID-19

coinfected (Ipc), and recovered population from both diseases

(R) based on disease status. The disease is transmitted when the

susceptible comes into contact with infected individuals, be they

COVID-19-infected, pneumonia-infected, or both. We assumed

that the susceptible compartment was increased by the recruitment

rate of π . However, susceptible populations have the potential to

contract pneumonia with a contact rate of β1 from an individual

who is infected with pneumonia alone, or they may become co-

infected and join the compartment Ip with a force of infection of

fp = β1(Ip + Ipc). In a similar way, a susceptible population can

get COVID-19 by a contact rate of β2 from a COVID-19 infected

only or co-infected with a force of infection of fc = β2(Ic + Ipc)

and join the compartment Ic. Moreover, the pneumonia-infected

population recovers from the disease at a rate of σ1, while the

remaining population either acquires COVID-19 infection with a

force of infection of fc and moves to a co-infectious compartment

or dies due to the disease, causing a death rate of α1. Similarly,

COVID-19-infected individuals recover from the disease at a rate

of σ2, while the remaining portion is either affected by pneumonia

infection with the force of infection fp and moves to a co-infectious

compartment or dies due to the disease-causing death rate of α2. A

co-infected population can recover from one infection at a rate of σ

andmove to an infected compartment belonging to another disease

FIGURE 1

The Model’s schematic diagram.

with a probability of ρ or ν or recovering from both disease with a

probability of (1− (ρ+ν)). Recovered individuals from diseases do

not guarantee lifelong immunity; hence, the immunity wanes, and

the recovered individuals move to the susceptible compartment at

a rate of η. In all compartments, the natural death rate is µ. The

population dynamics of the compartments shown in the flowchart

of Figure 1 can be described by a system



































dS
dt

= π + ηR− (fp + fc + µ)S,
dIp
dt

= fpS+ σρIpc − (fc + α1 + σ1 + µ)Ip,
dIc
dt

= fcS++σνIpc − (fp + α2 + σ2 + µ)Ic,
dIpc
dt

= fpIc + fcIp − (α3 + σ + µ)Ipc,
dR
dt

= σ1Ip + σ2Ic + σ (1− (ρ + ν)Ipc − (η + µ)R,

(1)

with initial conditions S(0) = S0, Ip(0) = I0p, Ic(0) = I0c, Ipc(0) =

I0pc, and R(0) = R0 are non negative.

2.1 Boundedness of solution

The invariant region is used to determine where the model’s

solution is constrained.

Theorem 2.1. The region � = {(S, Ip, Ic, Ipc,R) ∈ R
5
+ :N(t) ≤ π

µ
}

is positively invariant set for the system 1.

Proof. Differentiate the total populationN(t) with respect to time t

and substituting all state equations from system 1, we obtain

dN

dt
= π − µN − α1Ip − α2Ic − α3Ipc.

If there is no death due to the COVID-19 and pneumonia disease,

we get

dN

dt
≤ π − µN.
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On integration yields N(t) ≤ N(0)e−µt + π
µ

[

1− e−µt
]

. Evaluating

as t → ∞, we get N(t) ≤ π
µ
. Hence, population size is

asymptotically constant. Therefore, the model positively invariant

region is given by

� = {(S, Ip, Ic, Ipc,R) ∈ R
5
+ : N(t) ≤

π

µ
}.

2.2 Nonnegativity of the solutions

Theorem 2.2. If S0 > 0, Ip0 ≥ 0, Ic0 ≥ 0, Ipc0 ≥ 0 and R0 ≥ 0

then all the solution set S(t), Ip(t), Ic(t), Ipc(t), and R(t) are positive

for future time.

Proof. To prove this theorem, let as take the first equation from

system 1, we have

dS

dt
= π + ηR− (fp + fc + µ)S.

This equation can be expressed without loss of generality, after

eliminating the positive term (π + ηR), as an inequality

dS

dt
> −(fp + fc + µ)S,

then using separable method of variables and applying integration,

the solution of the differentially inequality can be obtained as

S(t) ≥ S(0)e−
∫

(fp+fc+µ)dt > 0,

where S(0) is obtain from initial condition. Since exponential

function is always non-negative, the function e−
∫

(fp+fc+µ)dt is a

non-negative quantity. Hence, we can concluded that S(t) > 0. In

similar manner, we obtain

Ip(t) ≥ Ip(0)e
−
∫

(fc+α1+σ1+µ)dt ≥ 0,

Ic(t) ≥ Ic(0)e
−
∫

(fp+α2+σ2+µ)dt ≥ 0,

Ipc(t) ≥ Ipc(0)e
−
∫

(α3+σ+µ)dt ≥ 0,

R(t) ≥ Rpc(0)e
−
∫

(η+µ)dt ≥ 0.

This proves that the solution of system 1 are positive for all t ≥ 0.

Therefore, all the solution sets are positive for future time.

3 Model analysis

For better understanding the dynamics of co-infection using

the proposedmodel, we first compute themodel equilibrium points

and then examine the model dynamics around those stationary

points. The detailed analysis will be studied by examining the

behavior of the sub-models solutions near the equilibrium points

for pneumonia, COVID-19, and their coinfection.

3.1 COVID-19 sub-model

The COVID-19 only sub-model is obtained by excluding the

pneumonia infection from the co-infection model,















dS
dt

= π + ηR− (β2Ic + µ)S,
dIc
dt

= β2IcS− (α2 + σ2 + µ)Ic,
dR
dt

= σ2Ic − (η + µ)R.

(2)

3.1.1 Disease-free and reproduction number
The disease-free equilibrium (DFE) of the COVID-19 sub-

model is obtained by equating all the RHS of Eq. 2 to zero and

putting the disease state variable Ic = 0. Therefore, the disease-free

equilibrium of Eq. 2 is denoted by4c
0 and defined as

4c
0 =

(

π

µ
, 0, 0

)

.

The basic reproduction number of the COVID-19 sub-model is

defined as the average number of secondary infections caused by

a single COVID-19-infected individual in a susceptible population.

It can be obtained using the approach of the next-generationmatrix

as given in Van den Driessche and Watmough [32]. The basic

reproduction number of the COVID-19 sub-model is the spectral

radius of the next-generation matrix FV−1, where F is the matrix of

new infection terms andV is the matrix of transition terms. That is,

F(4c
0) =

(

πβ2
µ

)

, V(4c
0) =

(

α2 + σ2 + µ

)

,

and the inverse of V is given by

V−1(4c
0) =

1

α2 + σ2 + µ
.

Therefore,

R
c
0 =

πβ2

µ(α2 + σ2 + µ)
.

3.1.2 Stability of disease-free equilibrium
Theorem 3.1. The DFE is locally asymptotically stable if Rc

0 < 1

and unstable ifRc
0 > 1.

Proof. We use the Jacobean matrix to examine the local stability of

the equilibrium points. The Jacobian matrix of system 2 at the4c
0 is

J4c
0
=







−µ −
πβ2
µ

η

0 πβ2
µ

− (α2 + σ2 + µ) 0

0 σ2 −(η + µ)






,

and the characteristic equation of matrix J4c
0
is

(−µ− λ)(−(η + µ)− λ)

(

πβ2

µ
− (α2 + σ2 + µ)− λ

)

= 0.

Then, the eigenvalues for J4c
0
are

λ1 = −π < 0,

λ2 = −(η + µ) < 0,

λ3 = (α2 + σ2 + µ)(R
c
0 − 1).
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Thus, λ3 < 0 ifRc
0 < 1. Hence, the DFE is locally asymptomatically

stable ifRc
0 < 1 and otherwise unstable.

Theorem 3.2. The disease-free equilibrium of the system 2 is

globally asymptotically stable ifRc
0 < 1 and unstable ifRc

0 > 1.

Proof. To prove the global stability of the equilibrium point, we

construct the Lyapunov function as

L = KIc,

and differentiating with respect to t gives

dL

dt
= K

dIc

dt
.

Substituting dIc
dt

from the system 2, we obtain

dL

dt
= K

(

β1IcS− (α2 + σ2 + µ)
)

Ic,

≤ K

(

β1π

µ
− (α2 + σ2 + µ)

)

Ic,

= K(α2 + σ2 + µ)

(

β2π

µ(α2 + σ2 + µ)
− 1

)

Ic.

Take K = 1
α2+σ2+µ

, then we get

dL

dt
=

(

β2π

µ(α2 + σ2 + µ)
− 1

)

Ic,

=
(

R
c
0 − 1

)

Ic,

for S ≤ S0 ≤
β2π
µ

and dL
dt

≤ 0 for Rc
0 ≤ 1 and trajectory of the

system 2 on which dL
dt

= 0 if and only if Ic = 0. This implies that

the only dL
dt

≤ 0 is4c
0. Therefore4

c
0 is globally asymptotically stable

in� by Lasalle’s invariance principle.

3.1.3 Stability of endemic equilibrium
The endemic equilibrium point of COVID-19 sub-model is

denoted by Ece = (S∗, I∗c ,R
∗) and it occur when the disease persist

in the community. To obtain Ece, we equate all the right hand side

of Eq. 2 to zero. Then we obtain

S∗ =
α2 + σ2 + µ

β2
=
π

µ

1

Rc
0

,

I∗c =
πµ(η + µ)(Rc

0 − 1)

β2π(η + µ)− ησ2R
c
0

=
(η + µ)(Rc

0 − 1)

κ
,

R∗ =
πµσ2(R

c
0 − 1)

β2π(η + µ)− ησ2R
c
0

=
σ2(R

c
0 − 1)

κ
,

where,

κ =
β2π(η + µ)− ησ2R

c
0

πµ
.

Theorem 3.3. The endemic equilibruim point Ece of system 2 is

locally asymptotically stable in� ifRc
0 > 1.

Proof. Recall the Jacobian matrix of the system 2

J =







−β2I
∗
c − µ −β2S

∗ η

β2I
∗
c β2S

∗ − (α2 + σ2 + µ) 0

0 σ2 −(η + µ)






.

Evaluating the Jacobian matrix J at the endemic equilibrium point

Ece, we get following a characteristic polynomial

λ3 + aλ2 + bλ+ c = 0,

where

a =
µ(α2 + σ2 + µ)− β2π(η + µ)

ησ2 − (α2 + σ2 + µ)(η + µ)
− (η + µ),

b =
µ(α2 + σ2 + µ)− β2π(η + µ)

ησ2 − (α2 + σ2 + µ)(η + µ)
(η + µ)+ µ(η + µ),

c = (α2 + σ2 + µ)(η + µ)µ

−
µ(α2 + σ2 + µ)− β2π(η + µ)

ησ2 − (α2 + σ2 + µ)(η + µ)
[(η + µ)(α2 + σ2 + µ)− ησ2].

The characteristic equation of J(Ece) is more complicated than that

of J(4c
0). Using Routh-Hurwitz criterion all roots of characteristic

polynomial have negative real parts if and only if a > 0, b > 0, c >

0 and ab > c for Rc
0 > 1. Hence, the endemic equilibrium Ece is

locally asymptotically stable.

3.1.4 Sensitivity analysis
Sensitivity analysis is used to identify parameters of the system

that would have great influence on Rc
0. To compute, we used the

normalized sensitivity index definition as defined in Chitnis et al.

[33].

Definition 1. The normalized sensitivity index of a variable, Rc
0,

that depends differentiably on a parameter, u, is defined as

3R0
u =

∂R0

∂u
×

u

R0
,

for u represents all the basic parameters.

The sensitivity analysis for the basic reproduction number of the

sub-model parameters given in Eq. 2 using normalized forward

sensitivity index of itsRc
0 is given by:

3
Rc

0
β2

=
∂Rc

0

∂β2
×
β2

Rc
0

= 1,

3
Rc

0
π =

∂Rc
0

∂π
×

π

Rc
0

= 1,

3
Rc

0
α2 =

∂Rc
0

∂α2
×
α2

Rc
0

= −
α2

α2 + σ2 + µ
,

3
Rc

0
σ2 =

∂Rc
0

∂σ2
×
σ2

Rc
0

= −
α2

α2 + σ2 + µ
,

3
Rc

0
µ =

∂Rc
0

∂µ
×

µ

Rc
0

= −
(α2 + σ2 + 2µ)

α2 + σ2 + µ
.

The sensitivity indices of the basic reproductive number with

respect to main parameters are found in Table 1.
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TABLE 1 Sensitivity indices table.

Parameter symbol Sensitivity indices

β2 Positive

π Positive

α2 Negative

σ2 Negative

µ Negative

The results demonstrated that, while the other parameters

stayed constant, the parameters with a positive sensitivity index

enhanced the value of the reproduction number as their values

grew. Furthermore, the value of the reproduction number falls if

the values of the parameters having negative indices are raised while

the values of the other parameters stay the same. Those parameters

that have positive indices (β2) have a high impact on expanding the

disease in the community if their values are increasing. The basic

parameters with negative sensitivity indices (α2, σ2) increase the

disease if their values decrease while the other parameters remain

constant. However, increasing human mortality rates to combat

disease epidemics is unethical, so they are not taken into account

in the study of sensitivity analysis.

3.2 Pneumonia sub-model

The Pneumonia only sub-model is obtained by excluding the

COVID-19 infection from the coinfection model,














dS
dt

= π + ηR− (β1Ip + µ)S,
dIp
dt

= β1IpS− (α1 + σ1 + µ)Ip,
dR
dt

= σ1Ip − (η + µ)R.

(3)

3.2.1 Disease-free and reproduction number
The disease-free equilibrium (DFE) of the pneumonia sub-

model is denoted by4
p
0 and obtained by setting the right-hand side

of system 3 to zero and putting Ip = 0, which is given by

4
p
0 =

(

π

µ
, 0, 0

)

.

Using the next-generation matrix approach, the basic reproduction

number of pneumonia sub-model is denoted byR
p
0 is

R
p
0 =

πβ1

µ(α1 + σ1 + µ)
.

3.2.2 Stability of disease-free equilibrium
Theorem 3.4. The DFE is locally asymptotically stable if R

p
0 < 1

and unstable ifR
p
0 > 1.

Proof. The Jacobian matrix of system 3 at the4
p
0 is

J
4
p
0
=







−µ −
πβ1
µ

η

0 πβ1
µ

− (α1 + σ1 + µ) 0

0 σ1 −(η + µ)






.

Here, the eigenvalues for J
4
p
0
are

λ1 = −π < 0,

λ2 = −(η + µ) < 0,

λ3 = (α1 + σ1 + µ)(R
p
0 − 1).

Therefore, the DFE is locally asymptomatically stable ifR
p
0 < 1 and

otherwise unstable.

Theorem 3.5. The disease-free equilibrium of the system 3 is

globally asymptotically stable ifR
p
0 < 1 and unstable ifR

p
0 > 1.

Proof. To prove the global stability of the equilibrium point we

construct the Lyapunov function as

L = MIp,

and differentiating with respect to t gives

dL

dt
= M

dIp

dt
.

Substituting
dIp
dt

from the system 3, we obtain

dL

dt
= M

(

β2IpS− (α1 + σ1 + µ)
)

Ip,

≤ M

(

β1π

µ
− (α1 + σ1 + µ)

)

Ip,

= M(α1 + σ1 + µ)

(

β1π

µ(α1 + σ1 + µ)
− 1

)

Ip.

TakeM = 1
α1+σ1+µ

, then we get

dL

dt
=

(

β1π

µ(α1 + σ1 + µ)
− 1

)

Ip,

=
(

R
p
0 − 1

)

Ip.

for S ≤ S0 ≤
β1π
µ

and dL
dt

≤ 0 for R
p
0 ≤ 1 and trajectory of the

system 3 on which dL
dt

= 0 if and only if Ip = 0. This implies that

the only dL
dt

≤ 0 is4
p
0. Therefore4

p
0 is globally asymptotically stable

in� by Lasalle’s invariance principle.

3.2.3 Stability of endemic equilibrium
The endemic equilibrium point of sub-model 3 is denoted by

E
p
e = (S∗, I∗p ,R

∗) and it occurs when the disease persist in the

community. To obtain it we equate all the model equations 3 to

zero. Then we obtain

S∗ =
α1 + σ1 + µ

β1
=
π

µ

1

R
p
0

,

I∗p =
µ(α1 + σ1 + µ)− β1π(η + µ)

β1(ησ1 − (η + µ)(α1 + σ1 + µ))
=

(η + µ)(R
p
0 − 1)

κ
,

R∗ =
σ1[µ(α1 + σ1 + µ)+ β1π]

β2[ησ1 − (η + µ)(α1 + σ1 + µ)]
=
σ1(R

p
0 − 1)

κ
,

where,

κ =
β1π(η + µ)− σ1ηR

p
0

πµ
.
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Theorem 3.6. The endemic equilibrium point E
p
e of system 3 is

locally asymptotically stable in� ifR
p
0 > 1.

Proof. The Jacobian of the system 3, is

J =







−β1I
∗
p − µ −β1S

∗ η

β1I
∗
p β1S

∗ − (α1 + σ1 + µ) 0

0 σ1 −(η + µ)






.

At the endemic equilibrium point E
p
e , evaluating the Jacobian

matrix J and then solving |J − λI| = 0, the characteristic equation

is λ3 + ψ1λ
2 + ψ2λ+ ψ3 = 0, where

ψ1 =
µ(α1 + σ1 + µ)− β2π(η + µ)

ησ1 − (α1 + σ1 + µ)(η + µ)
− (η + µ),

ψ2 =
µ(α1 + σ1 + µ)− β2π(η + µ)

ησ1 − (α1 + σ1 + µ)(η + µ)
(η + µ)+ µ(η + µ),

ψ3 = (α1 + σ1 + µ)(η + µ)µ−

µ(α1 + σ1 + µ)− β2π(η + µ)

ησ1 − (α1 + σ1 + µ)(η + µ)

[(η + µ)(α1 + σ1 + µ)− ησ1].

Using Routh-Hurwitz criterion all roots of characteristic

polynomial have negative real parts if and only if

ψ1 > 0,ψ2 > 0,ψ3 > 0 and ψ2ψ2 > ψ3 for R
p
0 > 1.

Hence, the endemic equilibrium E
p
e is locally asymptotically

stable.

3.2.4 Sensitivity analysis
The sensitivity analysis for the basic reproduction number of

the sub-model parameters given in Eq. 3 using normalized forward

sensitivity index of itsR
p
0 is given by:

3
R

p
0

β1
=
∂R

p
0

∂β1
×
β1

R
p
0

= 1,

3
R

p
0

π =
∂R

p
0

∂π
×

π

R
p
0

= 1,

3
R

p
0

α1 =
∂R

p
0

∂α1
×
α1

R
p
0

= −
α1

α1 + σ1 + µ
< 0

3
R

p
0

σ1 =
∂R

p
0

∂σ1
×
σ1

R
p
0

= −
α1

α1 + σ2 + µ
< 0,

3
R

p
0

µ =
∂R

p
0

∂µ
×

µ

R
p
0

= −
(α2 + σ2 + 2µ)

α2 + σ2 + µ
.

The sensitivity indices of the basic reproductive number with

respect to main parameters are found in Table 2.

The sensitivity indices of the basic reproductive number with

respect to main parameters are β1, σ1, and α1. When the values

of factors with positive sensitivity indices, especially β1, are raised

while the values of the other parameters remain constant, the

impact on the spread of the disease is significant. Also those

parameters in which their sensitivity indices are negative α2, σ2,

and µ have an effect of minimizing the burden of the disease in

the community as their values increase.

TABLE 2 Sensitivity indices table.

Parameter symbol Sensitivity indices

β1 Positive

π Positive

α1 Negative

σ1 Negative

µ Negative

3.3 Co-infection model

In this subsection, will examine the system 1 without controls

from a qualitative perspective.

3.3.1 Disease-free equilibrium and reproduction
number

The disease-free equilibrium of the co-infected model is

obtained by equating all the right-hand sides of Eq. 1 to zero

and then setting zero for all state variables involving infected

individuals. Then, solving for the non-infected state variables, we

obtain

40 =

(

π

µ
, 0, 0, 0, 0, 0, 0

)

.

To obtain theR0, we used the next-generation matrix method [32].

By the principle of this method, system 1 can be written as

dIp

dt
= fpS+ σρIpc − (ξ1fc + α1 + σ1 + µ)Ip,

dIc

dt
= fcS++σνIpc − (ξ2fp + α2 + σ2 + µ)Ic,

dIpc

dt
= ξ2fpIc + ξ1fcIp − (α3 + σ + µ)Ipc.

The transfer matrix are given by

FV
−1 =







πβ1
µ(α1+σ1+µ)

0 πβ1
µ(σ+α1+α2+µ)

0 πβ2
µ(α2+σ2+µ)

πβ2
µ(σ+α1+α2+µ)

0 0 0






.

Then the eigenvalues of FV−1 are

λ1 =
πβ1

µ(α1 + σ1 + µ)
= R

p
0,

λ2 =
πβ2

µ(α2 + σ2 + µ)
= R

c
0,

λ3 = 0.

Therefore, the basic reproduction number of the co-infection

model is

R0 = max{R
p
0,R

c
0}.
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3.3.2 Local stability of disease-free equilibrium
Theorem 3.7. The DFE is locally asymptotically stable if R0 < 1

and unstable ifR0 > 1.

The Jacobian matrix of system 1 at the40 is

J =























π −
πβ1
µ

−
πβ2
µ

−
π(β1+β2)

µ
0 0 η

0 πβ1
µ

− A 0 πβ1
µ

0 0 0

0 0 πβ2
µ

− B πβ2
µ

0 0 0

0 0 0 −C 0 0 0

0 σ1 0 σp −γ − µ 0 0

0 0 σ2 σ (1− ρ)ν 0 −δ − µ 0

0 0 0 σ (1− ρ)(1− ν) γ δ −η − µ























,

where A = α1 + σ1 +µ, B = α2 + σ2 +µ, C = α1 + α2 + σ +µ,

and then solve |J − λI| = 0, we get

λ1 = −π < 0,

λ2 = (α1 + σ1 + µ)(R
p
0 − 1),

λ3 = (α2 + σ2 + µ)(R
c
0 − 1),

λ4 = −(α1 + α2 + σ + µ) < 0,

λ5 = −(γ + µ) < 0,

λ6 = −(δ + µ) < 0,

λ7 = −(η + µ) < 0.

Therefore, the DFE is locally asymptomatically stable ifR
p
0 < 1 and

Rc
0 < 1, otherwise unstable.

3.3.3 Sensitivity analysis
The normalized sensitivity index definition found in subsection

3.1 was applied in this subsection. SinceR0 = max{R
p
0,R

c
0}, which

means that the sensitivity indexes of R
p
0 and Rc

0 are conducted

under each sub-model. Therefore, the most important parameter

is the one that is stated in each sub-model.

3.4 Impact of Pneumonia on COVID-19
infection

To describe the impact of pneumonia on COVID-19 and vice

versa, we expressR
p
0 in terms ofRc

0. Since,

R
c
0 =

πβ2

µ(α2 + σ2 + µ)
,

⇒ µ =
πβ2

Rc
0(α2 + σ2 + µ)

.

Then, substituting the expression for µ intoR
p
0 gives

R
p
0 =

R0cβ1(α2 + σ2 + µ)

β2(α1 + σ1 + µ)
.

To investigate the impact of the two diseases on each other, we did

∂Rc
0

∂R
p
0

=
β2(α1 + σ1 + µ)

β1(α2 + σ2 + µ)
> 0. (4)

Equation 4 shows that an increase in pneumonia infection in

the community will have a positive influence on the spread of

COVID-19 pandemic.

4 Extension into optimal control

In this section, to achieve the best intervention strategies, we

reconsider the system 1 and formulate an optimal control problem

with four control variables u1(t), u2(t), u3(t), and u4(t) where,

1. u1(t) prevention effort of Pneumonia disease,

2. u2(t) prevention effort of COVID-19 disease,

3. u3(t) treatment effort of pneumonia infected individuals, and

4. u4(t) treatment effort of COVID-19 infected individuals.

After incorporating the controls into the coinfection model, we
obtain the following optimal control model











































dS
dt

= π + ηR−
[

(1− u1)fp + (1− u2)fc + µ
]

S,
dIp
dt

= (1− u1)fpS+ σρIpc − ((1− u2)fc + α1 + σ1 + u3 + µ)Ip,
dIc
dt

= (1− u2)fcS+ σνIpc − ((1− u1)fp + α2 + σ2 + u4 + µ)Ic,
dIpc
dt

= (1− u2)fcIp + (1− u1)fpIc − (α3 + σ + u3 + u4 + µ)Ipc,
dR
dt

= ((1− (ν + ρ))σ + u3 + u4)Ipc + (σ2 + u4)Ic + (σ1 + u3)Ip−

(η + µ)R.

(5)

To study the optimal levels of the controls, the control set U is

Lebesgue measurable and is defined as

U = {ui(t) : 0 ≤ ui < 1, i = 1, . . . , 4, 0 ≤ t ≤ T}. (6)

The aim of introducing the control variables is to seek the optimal

solution required to minimize the numbers of infected individuals

responsible for spreading the novel Corona virus and pneumonia

in the population at minimum cost. Hence, the objective functional

for this control problem is given by

J = min
u

∫ T

0

(

c1Ip + c2Ic + c3Ipc +
1

2

4
∑

i=1

wiu
2
i

)

dt (7)

subject to the terms of the model system 5. The parameters

wi for i = 1, 2, 3, 4 measure relative cost of the interventions

associated with the controls ui for i = 1, 2, 3, 4 and the

coefficients c1, c2, c3 represents the weight constants corresponding

to infected individuals that can be chosen to balance cost factors

and is quadratic in the other pieces of literature [34, 35]. Our aim is

to minimize the number of infections and costs. Thus, we want to

obtain an optimal controls (u∗1 , u
∗
2 , u

∗
3 , u

∗
4) in which:

J (u∗1 , u
∗
2 , u

∗
3 , u

∗
4) = min{J (u1, u2, u3, u4) : ui ∈ U}. (8)

4.1 Existence of optimal controls

In this subsection, we prove the existence of such optimal

control functions which minimize the cost function in the finite

intervention period.

Theorem 4.1. There exists an optimal control pair
(

u∗1 , u
∗
2 , u

∗
3 , u

∗
4

)

and corresponding solution vector (S∗, I∗p , I
∗
c , I

∗
pc,R

∗) to the control

induced state initial value problem 5 that minimizes the cost

functional J(u1, u2, u3, u4) over the set of admissible control U 6.

Proof. All the state variable involved in the model are continuously

differentiable. Therefore, we need to verify the following four

conditions given in Fleming and Rishel [36].
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i. The set of all solutions to Eq. 5 with corresponding control

functions in U is nonempty.

ii. The control set is convex and closed.

iii. The integrand of the objective functional of Eq. 7 is convex.

iv. The integrand F(t, S, Ip, Ic, Ipc,R, u) in Eq. 7 is convex with

respect to control variables and additionally fulfills that

F(t, S, Ip, Ic, Ipc,R, u) ≥ g(u), where g is continuous and

||u||−1g(u) → +∞ as ||u|| → ∞.

In order to established condition (i), we refer to Picard-Lindelöf

existence theorem [37]. If the solutions of the state equations are

a prior bounded and if the state equations are continuous and

Lipschitz continuous in the state variables, then there is a unique

solution corresponding to every admissible control in the given

domain. With the result that, if g(t, x, u) is bounded, continuous,

and Lipschitz in the state variable, then there exists a unique

solution corresponding to every admissible control U. Hence, for

any u ∈ U and the state variables, we have

0 ≤ N(t) ≤
π

µ
, (9)

and nonempty by model assumption. Furthermore, with the

bounded established in 5, clearly, the state system is continuous

and bounded. It is possible to show the boundedness of the partial

derivative with respect to the state variable, i.e.,
∂g
∂x , exists and is

finite, which establishes that the system is Lipschitz with respect to

the state variables [37]. This shows that the proof of condition (i) is

complete.

To prove (ii), consider

U = {u ∈ R
4
: ||u|| ≤ 1, || · || is an Euclidean norm}.

Moreover, for any two points y, z ∈ U such that y = (y1, y2, y3, y4)

and z = (z1, z2, z3, z4). Then for any λ ∈ [0, 1], it follows λyi +

(1 − λ)zi ∈ Ui, i = 1, 2, 3, 4. This implies that the control set U is

convex and closed.

Next we verify condition (iii), the integral of the cost function

is given by

F(t, x, u) = c1Ip + c2Ic + c3Ipc +
1

2

4
∑

i=1

wiu
2
i

where x denotes the state variable and u represents the control

variable. To prove condition (iii), we want to prove for any θ ∈ (01)

such that,

(1− θ)F(t, x, u)+ θF(t, x, v) ≥ F(t, x, (1− θ)u+ θv),

where,

(1− θ)F(t, x, u)+ θF(t, x, v) = c1Ip + c2Ic + c3Ipc +

1−θ
2

∑4
i=1 wiu

2
i +

θ
2

∑4
i=1 wiv

2
i ,

and

F(t, x, (1−θ)u+θv) = c1Ip+c2Ic+c3Ipc+
1

2

4
∑

i=1

wi((1−θ)ui+θvi)
2.

Therefore,

F(t, x, v)− F(t, x, (1− θ)u+ θv) =

1− θ

2

4
∑

i=1

wiu
2
i +

θ

2

4
∑

i=1

wiv
2
i −

1

2

4
∑

i=1

wi((1− θ)ui + θvi)
2,

=
1

2

4
∑

i=1

wi

[

(1− θ)u2i + θv
2
i − ((1− θ)ui + θvi)

2
]

,

=
1

2

4
∑

i=1

wi

(

√

((1− θ)θ)ui −
√

((1− θ)θ)vi

)2
,

=
θ(1− θ)

2

4
∑

i=1

wi(ui − vi)
2 ≥ 0.

Hence, (1−θ)F(t, x, u)+θF(t, x, v)≥ F(t, x, (1−θ)u+θv). Therefore,

F(t, x, u) is convex. This completes the proof.

4.2 The Hamiltonian and optimality system

By using the principle Pontryagin’s Manimum Principle [38],

we got the necessary conditions which is satisfied by optimal

pairs. Therefore, by this principle, we obtained a Hamiltonian (H)

defined as

H = L+ N,

where

N = λ1
dS

dt
+ λ2

dIp

dt
+ λ3

dIc

dt
+ λ4

dIpc

dt
+ λ5

dR

dt
,

and

L = c1Ip + c2Ic + c3Ipc +
1

2

4
∑

i=1

wiu
2
i .

It follows that the system of Eqs 6 and 5 are substituted into a
minimize Hamiltonian function with respect to u∗1 , u

∗
2 , u

∗
3 , u

∗
4 , we

obtain

H = c1Ip + c2Ic + c3Ipc +
1

2

4
∑

i=1

wiu
2
i

+ λ1
[

π + ηR− ((1− u1)fp + (1− u2)fc + µ)S
]

+ λ2
[

(1− u1)fpS+ σρIpc − ((1− u2)ξ1fc + α1 + σ1 + u3 + µ)Ip
]

+ λ3
[

(1− u2)fcS+ σνIpc − ((1− u1)ξ2fp + α2 + σ2 + u4 + µ)Ic
]

+ λ4
[

(1− u2)ξ1fcIp + (1− u1)ξ2fpIc − (α3 + σ + u3 + u4 + µ)Ipc
]

+ λ5
[

((1− (ν + ρ))σ + u3 + u4)Ipc + (σ2 + u4)Ic + (σ1 + u3)Ip−

(η + µ)R
]

, (10)

where λi, for i = 1, . . . , 5 are adjoint variables. Next to obtain the

adjoint variables by applying Pontryagin’s minimum principle, the

following theorem is stated.

Theorem 4.2. For an optimal control set u∗1 , u
∗
2 , u

∗
3 , u

∗
4 that

minimizes J over U, there is an adjoint variables, λi, for i = 1, . . . , 5
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such that:

dλ1

dt
= (λ1 − λ2)(1− u1)β1(Ip + Ipc)+ (λ1 − λ3)β2(1− u2)(Ic + Ipc),

dλ2

dt
= (λ1 − λ2)β1(1− u1)S+ (λ2 − λ4)ξ1β2(1− u2)(Ic + Ipc)+ (λ3−

λ4)(1− u1)β1ξ2Ic + (λ2 − λ5)(σ1 + u3)+ λ2(α1 + µ)− c1 ,

dλ3

dt
= (λ1 − λ3)(1− u2)β2S+ (λ2 − λ4)(1− u2)ξ1β2Ip + (λ3 − λ4)

(1− u1)(Ip + Ipc)ξ2β1 + (λ3 − λ5)(σ2 + u4)+ λ3(α2 + µ)− c2 ,

dλ4

dt
= (λ1 − λ2)(1− u1)β1S+ (λ1 − λ3)(1− u2)β2S+ (λ2 − λ4)(1− u2)ξ1β2Ip

+ (λ3 − λ4)(1− u1)ξ2β1Ic + (λ4 − λ5)(σ + u3 + u4)+ (λ5 − λ2)σρ+

(λ5 − λ3)σν − c3 ,

dλ5

dt
= (λ5 − λ1)η + λ5µ,

,

(11)

with the terminal (transversality) conditions

λi(T) = 0, for i = 1, 2, . . . , 5. (12)

Furthermore, the optimal controls u∗1 , u
∗
2 , u

∗
3 , u

∗
4 are represented by

u∗1 = min {max {0,ϕ1} , 1} ,

u∗2 = min {max {0,ϕ2} , 1} ,

u∗3 = min {max {0,ϕ3} , 1} ,

u∗4 = min {max {0,ϕ4} , 1} ,

where

ϕ1 =
(λ2 − λ1)(Ip + Ipc)β1S+ (λ4 − λ3)(Ip + Ipc)Icξ2β1

w1
,

ϕ2 =
(λ3 − λ1)(Ic + Ipc)β2S+ (λ4 − λ2)(Ic + Ipc)ξ1β2Ip

w2
,

ϕ3 =
(λ2 − λ5)Ip + (λ4 − λ5)Ipc

w3
,

ϕ4 =
(λ3 − λ5)Ic + (λ4 − λ5)Ipc

w4
.

Proof. To obtain the form of the adjoint equations we compute
the derivative of the Hamiltonian function (H) Eq. 10 with respect
to S, Ip, Ic, Ipc, and R respectively. Then, the adjoint or co-state
equation obtained are given by

dλ1

dt
= −

∂H

∂S
= (λ1 − λ2)(1− u1)β1(Ip + Ipc)+ (λ1 − λ3)β2(1− u2)(Ic + Ipc),

dλ2

dt
= −

∂H

∂Ip
= (λ1 − λ2)β1(1− u1)S+ (λ2 − λ4)ξ1β2(1− u2)(Ic + Ipc)+ (λ3−

λ4)(1− u1)β1ξ2Ic + (λ2 − λ5)(σ1 + u3)+ λ2(α1 + µ)− c1 ,

dλ3

dt
= −

∂H

∂Ic
= (λ1 − λ3)(1− u2)β2S+ (λ2 − λ4)(1− u2)ξ1β2Ip + (λ3 − λ4)

(1− u1)(Ip + Ipc)ξ2β1 + (λ3 − λ5)(σ2 + u4)+ λ3(α2 + µ)− c2 ,

dλ4

dt
= −

∂H

∂Ipc
= (λ1 − λ2)(1− u1)β1S+ (λ1 − λ3)(1− u2)β2S+ (λ2 − λ4)

(1− u2)ξ1β2Ip + (λ3 − λ4)(1− u1)ξ2β1Ic + (λ4 − λ5)(σ + u3 + u4)+

(λ5 − λ2)σρ + (λ5 − λ3)σν − c3 ,

dλ5

dt
= −

∂H

∂R
= (λ5 − λ1)η + λ5µ,

with transversality conditions.

To obtain the controls value, we compute the partial derivative

of Hamiltonian given by

∂H

∂ui
= 0, for i = 1, 2, . . . , 4.

TABLE 3 The values of parameters used in the simulations.

Parameter Value Reference

π 143,608 Calculated

µ 1
66.71×12

per month Calculated

β1 0.5946 [31]

β2 0.980 [12]

σ 0.9692 Assumed

σ1 0.920 [31]

σ2 0.692 [26]

ν 0.1249 Assumed

η 0.0024 Assumed

α1 0.5001 [31]

α2 0.5001 [26]

α3 0.5001 Assumed

ρ 0.2970 Assumed

Obviously, after derivation of Hamiltonian (H) with respect to the
controls the result becomes























∂H
∂u1

= 0 = w1u1 + (λ1 − λ2)(Ip + Ipc)β1S+ (λ3 − λ4)(Ip + Ipc)Icβ1ξ2 ,
∂H
∂u2

= 0 = w2u2 + (λ1 − λ3)β2(Ic + Ipc)S+ (λ2 − λ4)ξ1β2(Ic + Ipc),
∂H
∂u3

= 0 = w3u3 + (λ5 − λ2)Ip + (λ5 − λ4)Ipc ,
∂H
∂u4

= 0 = w4u4 + (λ5 − λ3)Ic + (λ5 − λ4)Ipc .

(13)

Then, solve for (u1, u2, u3, u4), we obtain























u∗1 =
(λ2−λ1)(Ip+Ipc)β1S+(λ4−λ3)(Ip+Ipc)Icξ2β1

w1
,

u∗2 =
(λ3−λ1)(Ic+Ipc)β2S+(λ4−λ2)(Ic+Ipc)ξ1β2Ip

w2
,

u∗3 =
(λ2−λ5)Ip+(λ4−λ5)Ipc

w3
,

u∗4 =
(λ3−λ5)Ic+(λ4−λ5)Ipc

w4
.

From boundedness on u∗i (t) andminimality condition, we have:

u∗1 = min {max {0,ϕ1} , 1} ,

u∗2 = min {max {0,ϕ2} , 1} ,

u∗3 = min {max {0,ϕ3} , 1} ,

u∗4 = min {max {0,ϕ4} , 1} ,

where

ϕ1 =
(λ2 − λ1)(Ip + Ipc)β1S+ (λ4 − λ3)(Ip + Ipc)Icξ2β1

w1
,

ϕ2 =
(λ3 − λ1)(Ic + Ipc)β2S+ (λ4 − λ2)(Ic + Ipc)ξ1β2Ip

w2
,

ϕ3 =
(λ2 − λ5)Ip + (λ4 − λ5)Ipc

w3
,

ϕ4 =
(λ3 − λ5)Ic + (λ4 − λ5)Ipc

w4
.

This completes the proof of the theorem.
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5 Numerical simulations

In this section, we illustrate numerically the solution of the

optimal control problem proposed in system 1 and Table 3. For this

purpose, we use the forward-backward sweep method presented in

the book of Lenhart and Workman [39].

To briefly summarize the numerical simulation procedure, first

we perform forward fourth order Runge-Kutta scheme to solve

system 1 over the interval [0,T] with its initial condition and the

transversality conditions λi(T) = 0; i = 1, 2, 3, 4, 5, whereT = 35 is

simulation time. Incontrary, we use backward fourth order Runge-

Kutta scheme to solve system 10 using the current iteration solution

of 1. The control is updated by using a convex combination of the

previous control and the values computed in the characterizations

process. The iteration continuous until the values of the unknowns

at the previous iteration are very close to the values of present

iteration.

To perform the numerical simulation, we assumed the initial

population of

(S(0), Ip(0), Ic(0), Ipc(0),R(0)) = (5, 000, 000, 550, 26, 10, 400)

The natural death rate is computed as µ =
1

66.71× 12
per month,

where 66.71 years is the average life expectancy in Ethiopia [40].

The recruitment rate, is then calculated asπ = µ×N(0) = 143, 608

per month, where N(0)= 114,961,850.

The cost coefficients corresponding to control variables are

estimated to be c1 = 25, c2 = 75, and c3 = 55 the relative

importance of reducing the associated classes on the spread of the

disease arew1 = 3,w2 = 8,w3 = 7 andw4 = 5. Using all necessary

FIGURE 2

(A–C) Simulations of pneumonia infected, COVID-19 infected and pneumonia with COVID-19 coinfection with applying the strategies under

Scenario A.
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information above, we analysis and compare the numerical

results of the effect of controls on the spread of COVID-19

in populations.

1. Scenario A (using combinations of two controls):

-Strategy 1: Applying both the COVID-19 and pneumonia

prevention method (u1 6= 0, u2 6= 0, u3 = 0, u4 = 0).

-Strategy 2: Applying Pneumonia prevention method and

treatment for pneumonia (u1 6= 0, u2 = 0, u3 6= 0, u4 = 0).

-Strategy 3: Applying Pneumonia prevention method and

treatment for COVID-19 (u1 6= 0, u2 = 0, u3 = 0, u4 6= 0).

-Strategy 4: Applying COVID-19 prevention method and

treatment for pneumonia (u1 = 0, u2 6= 0, u3 6= 0, u4 = 0).

-Strategy 5: Applying COVID-19 prevention method and

treatment for COVID-19 (u1 = 0, u2 6= 0, u3 = 0, u4 6= 0).

-Strategy 6: Applying both the Pneumonia and COVID-19

treatment method (u1 = 0, u2 = 0, u3 6= 0, u4 6= 0).

2. Scenario B (using triple controls)

-Strategy 7: Applying both the Pneumonia and COVID-19

prevention method and treatment for Pneumonia (u1 6= 0, u2 6=

0, u3 6= 0, u4 = 0).

-Strategy 8: Applying both the Pneumonia and COVID-19

prevention and treatment for COVID-19 (u1 6= 0, u2 6= 0, u3 =

0, u4 6= 0).

-Strategy 9: Applying Pneumonia prevention method and,

treatment for Pneumonia and COVID-19 (u1 6= 0, u2 = 0, u3 6=

0, u4 6= 0).

-Strategy 10: Applying COVID-19 prevention method, and

treatment for both Pneumonia and COVID-19 (u1 = 0, u2 6=

0, u3 6= 0, u4 6= 0).

FIGURE 3

(A–C) Simulations of pneumonia infected, COVID-19 infected and coinfection with applying Scenario B.
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3. Scenario C (using all controls)

Using all controls means u1 6= 0, u2 6= 0, u3 6= 0, u4 6= 0.

5.1 Scenario A

Under Scenario A, we consider combinations of two controls.

Numerical simulations are showed in Figures 2A–C. Figure 2A

shows that controls with prevention and treatment of Pneumonia

disease (Strategy 2) have a potential of decreasing the number

of pneumonia infected populations. However, a control with

treatment effort only for both disease (Strategy 3) takes more time

to decrease the number of pneumonia infected populations. From

the Figure 2B shows that controls with treatment effort only for

both disease (Strategy 6) decreases the number of co-infectious,

Pneumonia infectious and COVID-19 infectious population goes

down in the specified time. Figure 2C shows that the Strategy 2 and

Strategy 6 have more potential to decreasing number of infected

individuals under the scenario A. Ingeneral, we conclude that

applying an optimized controls can eradicate both diseases from

the community in a specified period of time.

5.2 Scenario B

Under this scenario, we considered the combinations of three

controls. The simulation results from Figure 3A shows that a

control with prevention of Pneumonia disease and treatment

of both COVID-19 and Pneumonia disease have a potential of

decreasing the co-infectious, Pneumonia infectious and COVID-

19 infectious populations. From these four strategies, Strategy 9

rapidly reduces the number of co-infectious, Pneumonia infectious

FIGURE 4

(A–C) Simulations of Pneumonia infected, COVID-19 infected and the coinfection of Pneumonia and COVID-19 using all four controls.
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and COVID-19 infectious populations. Figure 3B displays as

strategy 10 has a great role in decreasing the burden of COVID-19

disease. Also from Figure 3Cwe can see that as strategy 7 and 9 have

a good approach in reducing the number of coinfected populations.

5.3 Scenario C

Under this scenario, we determined the difference between the

compartment with control and without control. We considered

four controls at the same time. Figure 4A shows that pneumonia

infected compartment is rapidly decreased when we apply all

controls. Also Figure 4B displays COVID-19 can be eradicated

in a short time if we apply all controls. From the Figure 4C,

we can see that as coinfected populations with controls are

drammatically decreased.

6 Conclusions

In this paper, we proposed and analyzed a deterministic

mathematical model for the co-infection of COVID-19 with

pneumonia. The co-infection model is divided into two submodels,

namely, the pneumonia-only submodel and the COVID-19-only

submodel. The well-posedness of the model was established both

in the mathematical and epidemiological sense by showing that

all solutions to the model are positive and bound with initial

conditions in a certain meaningful set. The equilibrium and basic

reproduction numbers are computed for the co-infection model

and each submodel independently. The basic reproduction number

of the co-infection model is shown to be the greatest of the

reproduction numbers of the two sub-models. It is observed that

both submodels and the full co-infection models have locally

asymptotically stable disease-free equilibriumwhen their respective

basic reproduction numbers are less than unity and otherwise

unstable. Furthermore, there exists a stable endemic equilibrium

point for the basic reproduction numbers greater than one. A

sensitivity analysis of the model was performed and identified the

positive and negative index parameters. From the basic model,

an optimal control problem is formulated by incorporating two

control variables: prevention, treatment, and their combination.

The Hamiltonian, adjoint variables, the characterization of the

controls and the optimality system are derived from the optimal

control problem and also numerically simulated by considering

a single control at a time, a combination of two controls at a

time, and lastly, by applying all three control variables. Several

combinations of the control variables are compared to determine

which combination is most effective in the fight against pneumonia

and COVID-19.
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