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Radiologists confront formidable challenges when confronted with the

intricate task of classifying brain tumors through the analysis of MRI images.

Our forthcoming manuscript introduces an innovative and highly e�ective

methodology that capitalizes on the capabilities of Least Squares Support Vector

Machines (LS-SVM) in tandem with the rich insights drawn from Multi-Scale

Morphological Texture Features (MMTF) extracted from T1-weighted MR images.

Our methodology underwent meticulous evaluation on a substantial dataset

encompassing 139 cases, consisting of 119 cases of aberrant tumors and 20

cases of normal brain images. The outcomes we achieved are nothing short

of extraordinary. Our LS-SVM-based approach vastly outperforms competing

classifiers, demonstrating its dominance with an exceptional accuracy rate

of 98.97%. This represents a substantial 3.97% improvement over alternative

methods, accompanied by a notable 2.48% enhancement in Sensitivity and a

substantial 10% increase in Specificity. These results conclusively surpass the

performance of traditional classifiers such as Support Vector Machines (SVM),

Radial Basis Function (RBF), and Artificial Neural Networks (ANN) in terms of

classification accuracy. The outstanding performance of our model in the realm

of brain tumor diagnosis signifies a substantial leap forward in the field, holding

the promise of delivering more precise and dependable tools for radiologists and

healthcare professionals in their pivotal role of identifying and classifying brain

tumors using MRI imaging techniques.

KEYWORDS

brain, brain tumor,MRI image analysis, automatic diagnosis, machine learning algorithms,

tumor classification, image classification

1 Introduction

Pathological anomalies that originate in the brain encompass a spectrum of conditions,

with brain tumors standing as a significant category [1]. These tumors exhibit varying

degrees of aggressiveness, leading to their classification as either benign (non-cancerous)

or malignant (cancerous). To systematically differentiate these tumors based on their

malignancy, the World Health Organization (WHO) has devised a comprehensive grading

system, spanning from grade 1 to grade 4 [2]. Meningiomas and pituitary tumors categorized

as non-cancerous often manifest with lower grades, displaying limited tendencies to
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infiltrate the surrounding healthy brain cells [3]. This characteristic

sets them apart from their malignant counterparts, which

showcase heightened aggressiveness and a propensity to infiltrate

adjacent brain tissues. At the pinnacle of malignant brain tumors

stands glioblastoma (GBM), a particularly prevalent and perilous

manifestation. This formidable tumor typically receives a grade 4

designation within the WHO grading system, indicating its highly

malignant nature and notoriously bleak prognosis [4, 5].

Brain tumor emerges from a disruption in the intricate

balance of cell growth within the brain, resulting in uncontrolled

proliferation [6]. Unfortunately, the toll of brain tumors in terms

of lives claimed has reached unprecedented heights. Most benign

tumors manifest as cysts and are entirely treatable without the risk

of recurrence post-treatment due to the absence of cancerous cells.

These tumors exhibit a more subdued aggressiveness and refrain

from infiltrating neighboring tissues. In contrast, malignant tumors

shelter cancerous cells and exhibit an elevated level of aggression,

showcasing rapid growth rates that exert significant pressure on the

brain, thus carrying far graver implications. Malignant tumors not

only infect the surrounding brain tissue, but they also possess the

ominous potential to metastasize to distant regions of the body,

including the spinal cord [7, 8].

The identification of brain tumors presents a formidable

challenge, demanding the expertise of extensively trained medical

professionals. However, the present techniques employed for

detecting brain tumors suffer from several drawbacks—consuming

considerable time, incurring high costs, and occasionally yielding

inaccuracies in specific scenarios [9]. Magnetic Resonance Imaging

(MRI), Magnetic Resonance Spectroscopy (MRS), and Computed

Tomography (CT) are among the various medical imaging

techniques that are routinely being employed to pinpoint and

characterize brain tumors. A multitude of factors, including the

presumed tumor type and its specific location, demand meticulous

deliberation when choosing the suitable imaging modality. These

decisions pivot on the patient’s medical background and the

accessibility to imaging equipment. In certain instances, a

combination of imaging methodologies might be deployed to

achieve a precise diagnosis. This underscores the pressing need for

a more streamlined and precise approach to brain tumor detection.

Given the dynamic nature of brain lesions, characterized by

a spectrum of attributes encompassing differing sizes, intricate

structures, varied locations, temporal evolution, and distinctive

imaging characteristics, the endeavor to employ computer-based

methods for the detection and segmentation of these lesions

remains an enduring challenge [10]. Nonetheless, with growing

advancements in medical imaging technology, the diagnosis of

conditions such as Brain tumors, Alzheimer’s disease, multiple

sclerosis, schizophrenia, and various white matter lesions has been

substantially facilitated through the application of brain magnetic

resonance imaging (MRI) [11].

Presently, clinical and radiological data play an integral role

in the diagnosis and treatment of brain tumors and magnetic

resonance imaging (MRI) stays at the heart of evaluating patients

with brain tumors [11]. Nevertheless, conventional imaging

techniques exhibit notable limitations in consistently delineating

tumor extent, accurately predicting tumor grade, and effectively

assessing treatment efficacy [12, 13]. Ongoing enhancements in

imaging methodologies are strategically aimed at refining the

detection, assessment, and therapeutic strategies for brain tumors

[12, 13]. The wealth of information furnished by radiographic

images has concurrently paved the path for the emergence of novel

avenues in the realm of image analysis [14].

In image analysis, categorizing and segmenting brain tumors is

crucial. Manual and computer-assisted methods exist, but manual

classification is laborious and prone to errors. Advanced medical

image processing [15] leverages modalities like PET, CT [16],

ultrasound, MRI, and X-ray for noninvasive solutions. In the

realm of medical applications, a pivotal role of digital image

processing lies in enhancing source images. Images from diverse

medical technologies, such as X-ray, MRI, and X-ray-based CT,

may exhibit regions of blurriness or noise. To rectify this, low-level

image processing techniques like denoising, sharpening, and edge

detection are employed. These algorithms are finely tuned with

specific parameter values tailored to the specific context, thereby

augmenting the informative content accessible to interpreting

medical practitioners [17].

Artificial intelligence (AI) has rapidly emerged as a

transformative force across various domains, including education

[18, 19], finance [20], agriculture [21–26], healthcare [27, 28], and

beyond [29, 30]. Healthcare benefits from AI-driven diagnostics,

predictive analytics, and telemedicine, offering improved patient

care and resource allocation. The proliferation of AI has reshaped

these sectors, promising efficiency gains, cost savings, and

enhanced decision support, ultimately improving the quality of

services and the overall human experience. As AI continues to

advance, its potential applications and impact on diverse industries

are bound to expand further [31–33].

Deep neural networks (DNNs) are transformative in diverse

domains like healthcare [34, 35]. In brain tumor detection,

DNNs automatically extract meaningful insights from vast medical

imaging data. This subset of machine learning imitates human

brain structure, learning progressively intricate features through

interconnected layers [36]. DNNs analyze and pinpoint brain

tumor patterns, including size, shape, and location, learning from

extensive datasets [18, 36–38]. Notably, they adapt to varied

imaging conditions and can fuse multiple modalities, enhancing

accuracy in diagnosis. Convolutional neural networks (CNNs)

specifically process brain imaging data, learning tumor indicators

through convolutional layers [39, 40]. CNNs master patterns

through weighted adjustment, reliably identifying brain tumors.

Researchers have made numerous attempts to enhance brain

tumor identification accuracy recently. Prior studies evaluating

the clinical significance of each MR sequence in prediction

and detection prove invaluable [41, 42]. Utilizing MRI and

CT, researchers distinguished tumors from other anomalies. MR

spectroscopy extensively characterized brain tumors across diverse

studies. Saeedi et al. [43] proposed 2D CNN and auto-encoder

network for classifying glioma, meningioma, pituitary tumors, and

healthy brains using 3,264 MRI images. Their average recall was

95% and 94%, with ROC AUC of 0.99 or 1. Comparing machine

learning methods, K-Nearest Neighbors (KNN) achieved 86%

accuracy, while Multilayer Perceptron (MLP) had the lowest (28%).

The 2D CNN demonstrated optimal tumor classification accuracy

and practicality for clinical use. Sharma et al. [44] introduced
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a brain tumor detection method using CNN’s pretrained data

sets with ResNet50 feature extraction and augmentation. In their

study, Qin et al. [45] employed the SVM classifier for brain tumor

detection. Initially, they extracted MR image features through the

HOG algorithm, comparing them with features obtained using

wavelet transform. Additionally, they utilized SVM with the a-

norm loss function for classification, which improved the detection

significantly at a faster rate due to its sparse nature. Mathew

and Anto [46] aimed to develop an efficient tumor detection and

classification system using MRI preprocessing, discrete wavelet

transform-based feature extraction, and Support Vector Machine

(SVM) for segmentation and classification.

A transfer learning-based fine-tuning approach was employed

by Zulfiqar et al. [47] for classification of tumors and the

pre-trained EfficientNet demonstrated remarkable results with

EfficientNetB2 as a backbone. It achieved an overall test accuracy

of 98.86%, precision of 98.65%, recall/sensitivity of 98.77%, and

F1-score of 98.71%. The fine-tuned EfficientNetB2 proved to

be lightweight, computationally efficient, and exhibited good

generalization capabilities. Mehnatkesh et al. [48] introduced an

optimization-based deep Convolutional ResNet model, enhanced

by an innovative evolutionary algorithm, for automatic architecture

and hyperparameter optimization without human intervention.

The approach achieved an impressive average accuracy of 0.98694,

showcasing the effectiveness of IACO-ResNet for automatic brain

tumor classification. A fusion of Naïve Bayes, Support Vector

Machine, and K-Nearest Neighbor algorithms was employed by

Ghafourian et al. [49] to classify extracted features for brain tumor

detection. Individual algorithm outputs were integrated for the
final model. Results indicated 98.61% average accuracy, 95.79%
sensitivity, and 99.71% specificity on the BRATS 2014 dataset.

Similarly, on the BTD20 database, the method achieved 99.13%
accuracy, 99% sensitivity, and 99.26% specificity.

A deep learning-based model (DLBTDC-MRI) was proposed
by Mohan et al. [50] for automated brain tumor detection and

classification using MRI data. The method involved preprocessing,
segmentation using “chicken swarm optimization” (CSO), and
Residual Network (ResNet)-based feature extraction. DLBTDC-

MRI showed superior performance on the BRATS 2015 dataset,
outperforming other methods in various aspects. Vankdothu and

Hameed [51] focused on CT-based brain tumor segmentation using
preprocessing and classification techniques. The researchers used

ANFIS and SVM classifiers for classification and claim that FCM

clustering with hybrid optimization (SSO-GA) achieved a high

accuracy of 99.24% in tumor segmentation. The study by Qader

et al. [52] presented an enhanced Deep Convolutional Neural

Network (DCNN) named G-HHO, utilizing improved Harris

Hawks Optimization (HHO) and GrayWolf Optimization (GWO).

Employing Otsu thresholding for tumor segmentation, it achieves

97% accuracy on 2,073 augmentedMRI images, surpassing existing

methods in terms of accuracy, execution time, and memory usage.

The existing literature on brain tumor classification

predominantly focuses on various machine learning and deep

learning techniques. However, there is a gap in research concerning

the utilization of Least Squares-Support Vector Machine (LS-SVM)

in combination with multi-model texture features for brain tumor

classification. This proposed approach offers a unique perspective

by combining an efficient classification algorithm with advanced

texture analysis, potentially leading to improved accuracy and

diagnostic capabilities.

This study introduces an innovative methodology for

classifying brain tumors in MRI images, utilizing Least Squares

Support Vector Machines (LS-SVM) in conjunction with Multi-

Scale Morphological Texture Features (MMTF) extracted from

T1-weighted MR images. The methodology is rigorously evaluated

on a dataset of 139 cases, comprising 119 aberrant tumor cases

and 20 normal brain images. The results demonstrate exceptional

performance, with the LS-SVM-based approach outperforming

alternative classifiers, achieving an accuracy rate of 98.97%, a 3.97%

improvement over other methods. The study emphasizes LS-SVM’s

dominance, precision with zero False Positives, and heightened

sensitivity with only one False Negative. The findings suggest a

significant advancement in brain tumor diagnosis, holding promise

for more accurate tools in medical imaging. The commitment

to open access for the code on GitHub enhances the study’s

transparency and reproducibility for the research community. The

contributions of this study are as follows:

• Innovative Methodology: Introduces a novel methodology

that leverages the capabilities of Least Squares Support Vector

Machines (LS-SVM) along with Multi-Scale Morphological

Texture Features (MMTF) for the classification of brain

tumors in MRI images, offering a fresh approach to a

challenging problem.

• Exceptional Classification Accuracy: Achieves an

outstanding accuracy rate of 98.97%, showcasing the

superior performance of the LS-SVM-based approach

compared to alternative classifiers. This high accuracy is

crucial for enhancing the reliability of brain tumor diagnosis

in medical imaging.

• LS-SVM Dominance: Establishes the clear dominance of LS-

SVM over other neural network-based classifiers, including

Support Vector Machines (SVM), Radial Basis Function

(RBF), and Artificial Neural Networks (ANN), across

multiple performance metrics, emphasizing its effectiveness in

accurately classifying brain regions.

• Precision and Sensitivity: Highlights LS-SVM’s precision by

achieving zero False Positives, reducing the risk of unnecessary

interventions, and its exceptional sensitivity with only one

False Negative, demonstrating its capability to detect positive

instances crucial in medical applications.

• Promise for Advancing Medical Imaging: Positions the

proposed methodology as a substantial leap forward in

the field of brain tumor diagnosis, holding the promise of

delivering more precise and dependable tools for radiologists

and healthcare professionals, ultimately contributing to

advancements in medical imaging techniques.

2 Materials and methods

Any computer-aided diagnostic (CAD) or medical decision

support system necessitates three core components: segmentation,

feature extraction, and classification. In the context of brain

tumor identification in medical images, a range of computer-

aided techniques (CATs) has been employed, encompassing
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both automatic and semi-automatic segmentation methods. This

paper provides an overview of CAD systems designed for the

classification of brain tumors using MRI images, elucidating the

theoretical foundations and guiding principles governing feature

extraction and classification methodologies. A comprehensive

flowchart shown in Figure 1 illustrates the functioning of the

proposed CAD system for the detection and classification of

brain tumors. The pivotal constituents of this brain tumor

classification system encompass pre-processing, segmentation,

feature extraction, feature reduction, and classification. Within

the pre-processing module, critical operations such as noise

elimination, skull stripping, and image enhancement are

conducted. To achieve precise tissue segmentation, covering

white matter, gray matter, and cerebrospinal fluid (CSF), three

distinct algorithms are employed: thresholding, independent

component analysis (ICA), and spectral clustering. The feature

categorization stage employs a variety of machine learning

techniques to discern images as either normal or abnormal.

Emphasizing the two-stage categorization process, the

flowchart visually illustrates the multiple phases within the system.

The first stage centers on the detection of brain tumors, while

the second stage revolves around distinguishing between benign

and malignant tumors. This flowchart comprehensively outlines

the system’s workflow, with a particular focus on the crucial steps

essential for the timely detection and classification of brain tumors.

2.1 Preprocessing

In the realm of image processing, preprocessing plays a pivotal

role in approximating the original clean image by effectively

mitigating noise from a noisy image. The primary objective of

any denoising algorithm is to diminish noise while preserving

essential texture and edge characteristics. Denoising techniques

predominantly belong to one of three categories: those operating

in the spatial domain, those leveraging transformation techniques,

or those rooted in dictionary learning.

Our recommended preprocessing methodology encompasses

several crucial stages, encompassing noise removal, image

enhancement, and skull stripping. Commencing with the

utilization of the Medical Picture Processing and Visualization

(MIPAV) program, the initial step involves the extraction

of the skull from the MRI image. Subsequently, grayscale

MR images undergo a noise reduction and image smoothing

process, effectively eliminating unwanted noise and enhancing

overall image quality. This preprocessing procedure is

indispensable in generating a clear, high-fidelity image that

serves as the foundational basis for subsequent analysis

and interpretation.

2.1.1 Noise removal
The primary objective of image denoising is the removal

of undesirable noise while preserving the inherent structure of

the image. This is achieved through a combination of wavelet-

based noise thresholding techniques and the bilateral filter. As per

Equation (1), the initial step involves subtracting the input image

from the output of the Bilateral Filter:

BS = NI− BF (1)

In the context of the provided equation, we designate the

image obtained through normalization without any noise control

adjustments as “NI.” Conversely, “BF” represents the result of

applying bilateral filtering to the image. Through the use of

bilateral filtering, it is possible to diminish noise in an image

while simultaneously preserving vital attributes such as edges and

boundaries. It’s worth highlighting that the normalized image (NI)

retains both the image’s information and an amplified level of noise

due to the division process employed.

Considering this newfound understanding, Equation (2)

provides an alternative representation for the variable BS. This

equation, encompassing the preceding operations, can be expressed

as follows:

BS = ID − IN (2)

Where ID stands for the image details and IN for the noise in

the image.

To better identify and separate the noise component from BS,

Equation (3) undergoes a transformation into the wavelet domain.

This transformation allows us to express the equation in a different

manner, facilitating the detection and isolation of noise.

Iwd = w+ Nω (3)

In this context, we denote the authentic wavelet coefficient

as “w,” while the wavelet coefficient affected by noise is labeled

as “Iwd.” Additionally, “N” signifies the independent noise

component. The process of thresholding Iwd is a crucial step

in estimating the true wavelet coefficient, “w,” with the aim of

minimizing mean square error (MSE).

Equation (4) gives the threshold calculated by minimizing

Bayesian risk.

Th =σ
2

σ 2
ω

(4)

Where 2, which is described in Equation (5), is the

noise variance calculated for the sub-band SS1 by a robust

median estimator.

σ̂ =
Median

(
∣

∣Iwd(i,j)
∣

∣

)

0.6745
, Iwd(i,j) ∈ (SS1) (5)

and the wavelet coefficient’s variance is given in Equation (6).

σ̂w = max
(

σ̂y2 − σ̂ 2, 0
)

σ̂y2 = 1

BS

B,S
∑

i,j=1

I2wd i, j (6)

Where the wavelet reconstruction process entails the

estimation and representation of image features as “D,”

derived from the accurate estimation “w.” This “D” is then

combined with the bilaterally filtered image to generate the

denoised image.
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FIGURE 1

Workflow diagram of the proposed methodology.

FIGURE 2

The original and preprocessed images for comparison.

Figure 2 illustrates image denoising using bilateral

filtering. The top row showcases the original MRI FLAIR

images, while the bottom row exhibits the images after the

denoising process.

2.1.2 Skull-stripping
Skull stripping is a critical stage in the preprocessing of

brain images, involving the removal of the scalp, skull, and Dura

mater. To ensure an accurate evaluation of the brain’s structure,

it is imperative to eliminate non-brain tissues, particularly the

Dura mater. Neglecting to exclude non-brain structures could

lead to misinterpretations, complicating the process of detection

and analysis, thus consuming valuable time. Distinguishing

between non-cerebral and intracranial tissues during skull stripping

can be challenging, as they often exhibit similar intensity

characteristics. Figure 3 offers a visual representation of the skull

stripping procedure.

2.2 Segmentation

In the realm of medical image processing, segmentation

emerges as a pivotal yet challenging task. Its primary objective

revolves around delineating object boundaries within an image and

subsequently extracting these objects. In the proposed system for

cancer classification, segmentation relies on the utilization of the

thresholding method. Central to this process is the identification

of cancerous regions, a task contingent upon preprocessing

and segmentation.
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FIGURE 3

The removal of the skull for an MRI brain imaging.

In the preprocessing phase, the input image undergoes filtration

to attenuate noise and enhance overall image quality. This study

employs a Gaussian filter, adept at effectively diminishing visual

noise while preserving crucial image elements. Additionally, skull-

stripping emerges as a pivotal segmentation step in the domain of

medical brain imaging, entailing the separation of the brain from

surrounding skull and tissues. Specifically, this procedure targets

the scalp, skull, and Dura regions of the brain.

The segmentation procedure encompasses the following steps:

1. Conversion of the MRI image into a binary image

through thresholding.

2. Application of morphological techniques to refine the

detected region.

3. Identification of the tumor region within the image.

2.2.1 Thresholding through binarization
Image binarization is a technique employed to convert a

grayscale image, characterized by a spectrum of gray levels (up to

256), into a binary representation. During this process, the gray-

level value of each pixel in the enhanced image is determined. Image

binarization is achieved by partitioning the input image based on a

predefined threshold value. If a pixel’s value surpasses the threshold,

it is assigned the value “1;” otherwise, it is assigned the value “0.”

Mathematically, this process is depicted by Equation (7), which

elucidates the procedure of image binarization.

BBinary (x, y) =
{

0, if Bgrey(x, y) =< Threshold T

1, Otherwise
(7)

The determination of the threshold value (T) can be achieved

through the following steps:

i. Begin by establishing an initial threshold value, denoted as T,

derived from the average intensity value of the image.

ii. Utilizing this initial threshold value T, partition the original

image into two distinct regions, denoted as R1 and R2.

iii. Calculate the mean values of the two distinct regions, resulting

in M1 and M2, respectively.

iv. Update the threshold value T by averaging the means M1

and M2.

v. Iterate through steps ii to iv until successive calculations of the

mean values M1 and M2 no longer exhibit any change.

The objective of this iterative process is to identify the

optimal threshold value that effectively segregates the image into

discrete segments based on their intensity levels. The repetition

of these steps ensures the consistency of mean values within the

segmented regions, ultimately leading to the attainment of a stable

threshold value.

2.2.2 Morphological operation
In image processing, morphological techniques serve as potent

tools for accomplishing tasks such as closing gaps and enhancing

regions within binarized images [53]. These processes are

applied to binarized images using binary morphological operators,

primarily aimed at enhancing image quality by eliminating

noise and artifacts. The method presented here employs various

morphological operators, including closing, opening, erosion, and

dilation, with a particular emphasis on the erosion operation.

During the erosion operation on an image G, which is binary

with labels of 0 and 1, if the result of convolving X with G,

centered at pixel i, falls below a predetermined threshold, the value

of pixel i in the image G is changed from 1 to 0. This operation

is executed using a structural element X. In our method, this

threshold is defined as the proportion of X that corresponds to the

number of pixels designated as 1 by the structural element’s own

labeling element.

Equation (8) underscores the significance of the structuring

element, often referred to as the erosion kernel, in determining

how erosion influences the boundaries of specific objects within

the image.

IE = imerode(G, X) (8)

2.2.3 Identification of the tumor region
The region properties function plays a crucial role in

pinpointing the primary regions of the tumor. Even after executing

the erosion procedure, there may still be undesirable small

segments in the image, such as noise and holes. The region props

function is employed to ascertain the area of these undesirable

segments. If the area of a segment is found to be <0.8, it is filled

with black pixels. These segments are then subjected to further

stages, including feature extraction and classification, to determine

whether they correspond to tumor or normal regions.

Figure 4 displays the two input images alongside their

corresponding pre-processed versions. Subsequently, a skull

stripping algorithm is applied to eliminate the skull from

the previously processed image. Following this, binarization is

employed to create a collection of segments. The image then

undergoes an erosion procedure to eliminate noisy regions. The
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FIGURE 4

The region segmentation procedure in detail.

region properties function is utilized to identify and subsequently

remove unwanted segments based on their area property. As

illustrated in Figure 4, the resulting region is later utilized in

subsequent steps to ascertain whether it belongs to a tumor region.

2.3 Extraction process for multi modal
texture features

To ensure the robustness of our system in comparison to using

the original pixel data, it becomes imperative to carefully select the

most appropriate features for extraction from the analyzed images.

This task gains heightened significance, especially considering the

intended application. Texture-based feature extraction techniques

emerge as highly effective for extracting characteristics from

medical images, which often exhibit both repetitive and non-

repetitive patterns. These techniques are well-recognized for their

crucial role, mirroring the significance of texture processing in the

human visual system.

These images encapsulate intricate visual properties,

characterized by patterns defined by attributes such as brightness,

color, orientation, and size. The texture information within

the region of interest assumes paramount importance in our

research as it offers valuable insights into the underlying biological

mechanisms distinguishing benign from cancerous tissues.

In the realm of computer vision, feature-based approaches

for image categorization have garnered substantial attention in

recent years. Typically, these techniques involve three phases:

feature point extraction, feature descriptor creation, and feature

descriptor matching. While the widely used SIFT (Scale-Invariant

Feature Transform) provides a mechanism for determining feature

descriptor orientations, it encounters challenges when dealing with

visible and infrared image data patches. Moreover, gradient-based

methods often prove unsuitable for constructing feature descriptors

in such scenarios.

As a solution to these challenges, we propose a strategy that

involves constructing an edge orientation histogram and selecting

the edge orientation response with the highest magnitude as the

dominant orientation. Subsequently, statistical edge information is

encoded into the descriptor using multiorientation and multiscale

Log-Gabor filters. In the domain of computer vision, two-

dimensional Log-Gabor filters are frequently employed as efficient

tools for feature extraction.

Our proposed method for Multimodal Texture Feature

(MMTF) extraction comprises three distinct stages: calculating
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FIGURE 5

Demonstration of the operational procedure of the Gray Level Co-occurrence Matrix (GLCM) methodology, progressing from the input image (A) to

the GLCM image (B). In (C), the spatial connections among pixels are depicted within the array of row-o�sets and column-o�sets, where ’D’ signifies

the distance from the pixel of interest. The red circles highlight the frequency with which diverse combinations of gray levels co-occur in the input

image, while arrows represent the count of co-occurrences in the GLCM image.

Feature Vector F(V1) through Gray-Level Co-occurrence Matrix

(GLCM), deriving Feature Vector F(V2) by applying wavelets, and

computing Feature Vector F(V3) using Gabor filters. The final

step involves the fusion of these three feature vectors to create a

comprehensive representation.

2.3.1 Feature vector F(V1) is calculated by using
the Gray-Level Co-occurrence Matrix

The extraction of textural information was initiated with the

introduction of the Gray-Level Co-occurrence Matrix (GLCM) by

Haralick et al. [54]. The GLCM serves as a spatial dependency

matrix, employing a second-order numerical approach to record

the texture characteristics within a specific area. In essence, it

documents the occurrences of various combinations of pixel

brightness values within an image. Calculating the GLCM involves

two significant variables: the distance (d) between neighboring

pixels and their orientation (θ). These orientations can take on

values like diagonal, vertical, or any combination thereof.

In our study, the GLCM is harnessed to extract the Feature

Vector F(V1), encompassing four distinct aspects: contrast,

homogeneity, energy, and correlation. The co-occurrence matrix,

sometimes referred to as the gray level co-occurrence matrix,

quantifies the likelihood of a specific pair of gray-level pixel

values—k1, k2—occurring at a given distance (d) and relative

orientation (θ) within a given image. This notation is represented as

Gθ, d (k1, k2). The orientations (θ) at 0, 45, 90, and 135◦ correspond
to the four directions: horizontal, vertical, diagonal, and anti-

diagonal. Figure 5, illustrating the sampling approach, provides a

visual depiction of the co-occurrence matrix formation process.

The function f (q,r) represents the intensity value of the pixel

at position (q, r) in an image with dimensions (m x n). The four

features are described as follows, assuming that P� [→ ⊺0 (k1, k2)]

represents the Gray-Level Co-occurrence Matrix (GLCM) of the

image I (q, r) within the region IB. This matrix, for an offset vector

o, records the co-occurrence count of intensity pairings (k1, k2).

Feature (S): This feature assesses the degree of similarity

between adjacent pixels within a specific area of an image. Equation

(9) provides the correlation:

S =
∑

k1 .k2

(

k1 − µk1

) (

k2 − µk2

)

× P−→o
(

k1, k2
)

σk1σk2
(9)

Contrast (C): The image’s contrast value is determined by the

abrupt variations in intensity values. It is computed using Equation

(10) as follows:

C =
∑

k1 ,k2

∣

∣k1 − k2
∣

∣

2 × P−→o
(

k1, k2
)

(10)

Continuity (C): The homogeneity metric is rooted in the

proximity of the GLCM diagonal to the distribution of GLCM

elements. It quantifies the degree of similarity or uniformity

among pixel intensities. Equation (11) is employed to compute the

homogeneity value.

H =
∑

k1k2

P−→o
(

k1, k2
)

1+
∣

∣k1 − k2
∣

∣

(11)

Energy (E) is defined as the sum of squared elements within the

GLCM framework. In the GLCM, a lower energy value indicates

a more concentrated or clustered distribution of elements, while

a higher energy value signifies a more dispersed distribution.

Equation (12) represents the formula for calculating energy:

E =
∑

k1 ,k2
P−→o

(

k1, k2
)2

(12)

As mentioned earlier, we calculate four distinct features—

Contrast, Homogeneity, Correlation, and Energy—for each of

the four offsets. These features sum up to a total of 16

components, constituting the feature vector F(V1) employed for

object classification.
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2.3.2 The computation of the feature vector F(V2)
using wavelets

The Fourier transform serves as a valuable tool in image

processing for capturing frequency domain data. By dissecting

an image into its sine and cosine components, it reveals the

intricate relationship between features in the frequency domain

and those in the spatial domain. Through this method, a diverse

range of spectral texture patterns with varying densities is unveiled,

enabling the extraction of discriminative texture information from

transformed images. The Fourier transform is commonly applied in

the polar coordinate system (r, θ), where “r” represents the image’s

intensity, and “θ” denotes its direction.

In contrast, wavelet-based texture analysis employs

multiresolution analysis to address the challenge of representing

textures at various scales. This approach has been extensively

investigated in the realm of texture studies and excels in capturing

texture similarities across different scales. The primary advantage

of wavelet decomposition lies in its ability to preserve directional

selectivity while performing multiscale data analysis. Wavelets, as

mathematical operations, segregate data into multiple frequency

components, allowing for the examination of each component with

a resolution appropriate to its scale.

Wavelets have evolved into powerful mathematical tools for

deciphering complex datasets. Wavelet functions exhibit spatial

localization, a feature lacking in the Fourier transform, which

solely relies on frequency content. While the Fourier transform

dissects a signal into a spectrum of frequencies, wavelet analysis

dissects it into a hierarchy of scales, ranging from coarsest to

finest resolutions. Consequently, wavelet transformation provides a

multi-resolution representation of an image, rendering it a superior

tool for feature extraction from images.

The DiscreteWavelet Transform (DWT) enables the extraction

of diagonal information by decomposing an image into two

separate components, namely 0 and 90◦. However, the orientations

“+45◦” and “−45◦” are combined and indistinguishable. Moreover,

alterations in the input signal can result in significant DWT

coefficient variations. To overcome these limitations and enhance

directional selectivity, Kingsbury proposed a solution known as the

analytic wavelet transform. Another recent development, the dual-

tree complex wavelet transform (DT-CWT), exhibits a robust shift-

invariance characteristic. Researchers have extensively explored

this property of complex wavelets and compared it to the DWT.

In contrast to the DWT, the DT-CWT offers superior directional

selectivity, distinguishing between six different orientations on a

2D plane:+15◦,+45◦,+75◦,−75◦,−45◦, and−15◦. This enhanced
directional selectivity proves particularly beneficial for texture

analysis, allowing for functional characterization of textures and

simplifying orientation estimation in directional patterns.

The Discrete Wavelet Transform (DWT), an extremely

efficient wavelet transform implementation, has now become

the method of choice for image analysis. It offers efficient

computation and straightforward implementation, rendering it

a potent mathematical tool for feature extraction. Its ability to

provide simultaneous information regarding the frequency and

time localization of image features stands out as one of its key

advantages, making it highly valuable for classification tasks. The

DWT allows for the extraction of valuable image attributes with

FIGURE 6

2D DWT schematic diagram.

reduced computation time and without adding complexity to

the implementation.

In the continuous Wavelet Transform (WT), the square-

integrable function (t) is employed, and it is mathematically defined

by Equations (13) and (14):

Wv(a, b) =
∫ u

−α
χ(t)yva,b(t)dt (13)

ψα,b(t) =
1√
2
ψ

(

t − a

b

)

(14)

The wavelet function (t) is derived from the mother wavelet

(t) using two distinct methods: dilation and translation, with scale

factor “a” and translation factor “b,” respectively. The 2D Discrete

Wavelet Transform (DWT) is employed to decompose the image,

as illustrated in the diagram below. The low and high coefficient

filters are denoted by the functions g (n) and h (n), respectively. At

each level of the transformation, the DWT yields four sub-bands

(LL, LH, HL, HH). Figure 6 presents a schematic diagram depicting

the 2D DWT process.

2.3.3 Feature vector F(V3) is calculated using
Gabor filters

AGabor filter is a specialized filter designed as a bandpass filter,

capable of detecting various orientations. Its distinctive structure

allows it to be responsive to rotations, effectively capturing a

wide range of orientations. To ensure robustness to rotation, a

commonly used Gabor filter is circularly symmetric, considering

all directions for each passband. The magnitude of the Gabor-

filtered image serves as a valuable Gabor feature, indicating the

signal strength within the corresponding passband.

Originally, Gabor filters were primarily employed to

characterize the textural attributes of an image. Unlike GLCM

textures, which rely on pixel relationships, Gabor filters utilize

the power spectrum in the frequency domain to compute

texture features through a two-step process. Initially, the input

image undergoes a transformation into the frequency domain

using a Gabor filter to quantify variations in pixel intensities.

Subsequently, the image’s diverse textures are represented by a

range of frequencies and orientations.
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In essence, a 2D Gabor filter is akin to a sinusoidal plane wave

modulated by a Gaussian kernel, as illustrated in Equation (15):

Gd

(

x, y | ω, θ ,φ, cx, cy
)

= exp

(

−
{

(x−cx)
2−(y−cy)

2
}

2σ 2

)

× sin(ω(x cos θ − y sin θ)+ φ)

(15)

In the Gabor filter equation, the variable “f” represents

frequency, “θ” denotes the filter angle, “ϕ” represents the phase

shift, and “σ” signifies the Gaussian variance. The filter’s center is

indicated by the values (cx, cy). The Gabor spectrum for an MRI

image, denoted as I (x, y), is generated by performing a linear

convolution of I GK, which represents the Gabor kernel. In this

work, the Gabor spectrum is employed to discern texture features

in five different orientations. Only changes in orientation are taken

into consideration because MRI images exhibit consistent textural

characteristics concerning phase and frequency. These five distinct

orientations are employed to align with the five parameters in the

CLCM (possibly referring to a separate approach). Equation (16)

defines these orientations, denoted as 0, 1, 2, 3, and 4:

GK{1,2,..., 5} =
S(xy)
∑

xy

Gk

(

x, y/ω, {0,π/5 . . . , 4π/5},ϕ, cx, cy
)

⊗ I(x, y) (16)

When performing convolution between two functions, the

convolution operator, symbolized by the symbol, is utilized. In this

instance, it is used to compute the MRI image’s Gabor texture

features. The parameter GK 1, 2,..., 5 corresponds to the Gabor

texture characteristics.

2.3.4 Three feature vectors concatenated
The feature vector F(V), which amalgamates the dimensions

essential for the ultimate classification of brain tumors, is portrayed

as the summation of three constituent feature vectors: F(V1) +
F(V2)+ F(V3).

2.4 Classification of features

Classification is performed by leveraging spectral or spectrally

defined features, encompassing attributes such as density and

texture, within the feature space. A decision rule is employed

to partition the feature space into distinct classes. The objective

of statistical classification is to make predictions based on given

inputs. These classification algorithms rely on a training set of

attributes and their corresponding outputs, often termed output

predictors. By establishing correlations between these attributes,

classifier algorithms are equipped to forecast future outcomes.

2.4.1 SVM classification
Support Vector Machines (SVM), a robust supervised machine

learning technology, emerged within the framework of statistical

learning theory [55, 56]. SVM offers versatile applications,

including non-linear regression and noise reduction tasks. Its

appeal stems from its ability to generalize effectively to new

data, even without prior domain expertise. In SVM’s classification

process, a discriminative hyperplane that maximizes the margin

between classes within the feature space is identified. This

hyperplane is found by utilizing labeled training data to estimate a

function f (x,y), enabling it to categorize new instances in the testing

set. Various researchers have also achieved noteworthy success by

incorporating fuzzy learning approaches into classification across

diverse disciplines.

SVM stands as a state-of-the-art classifier in the realm of

machine learning, garnering considerable attention in recent

years. Initially proposed by Vapnik and Cortes [57] and

grounded in statistical learning theory, SVM is renowned for

its exceptional generalization capabilities, particularly in high-

dimensional feature spaces. The fundamental concept behind SVM

involves mapping the input vector x into a higher-dimensional

feature space Z through a predefined nonlinear transformation.

In this transformed space, an optimal separation hyperplane is

constructed. SVM efficiently classifies binary classes for pattern

recognition by determining a decision surface defined by crucial

data points from the training set, known as support vectors

(Equation 17).

In Equation (17), H denotes a hyperplane such that:

xi.w+ b ≥ +1 when yi = +1

and

xI .w+ b ≤ −1 when yi = −1 (17)

Within this context, H1 and H2 represent two planes

defined by:

H1: x_i.w=+1

H2: x_i.w=−1

The points on the planes H1 and H2 correspond to the support

vectors. The distance d+ represents the shortest distance from

the nearest positive point on the hyperplane, while the distance

d- signifies the shortest distance from the nearest negative point.

As depicted in Figure 7, the decision boundary, carefully selected,

effectively separates multiple groups.

The SVM algorithm employs the vector of multi-model texture

features extracted from the MR images as its input. Within the

feature space, this input feature dataset is segregated into two

distinct groups for the classification task: normal images and

abnormal images. Each n-dimensional input, represented as xi

(where i ranges from 1 to N), is assigned a label, li, which takes a

value of +1 for normal images and −1 for aberrant images. The

SVM’s decision function, as depicted in Equation (18), furnishes a

method for categorizing each input based on these labels.

des(x) = w.x+ b (18)

where b is a scalar, w is an n-dimensional vector, and

yi = des (xi) ≥ 1 for i = 1, 2, , . . .N.

It is evident from the equations outlined above that during the

model training, the trained samples may potentially fall on either
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FIGURE 7

Selection of the decision boundary in SVM classification.

side of the hyperplane. The decision is resolved by employing the

coefficient vector w to assess the sign of yi.

In the context of brain tumor detection and classification,

classifiers utilize Multi-Model Texture Features (MMTFs) as input.

SVM proves to be a suitable approach for addressing this binary

classification challenge, especially when dealing with discrete data

values across a dataset comprising a substantial number of images.

The classifier’s accuracy is evaluated by comparing the categorized

outputs with the ground truth data.

The experiments conducted in this study employ the publicly

accessible implementation library, LibSVM. The choice of the radial

basis function (RBF) kernel is based on its superior performance in

cross-validation compared to other kernel options. To determine

the optimal values for the SVM kernel’s parameters, namely C and

gamma, a grid search approach is employed.

2.4.2 LS-SVM: short for Least Squares Support
Vector Machine

The Least Squares Support Vector Machine (LS-SVM)

augments the standard Support Vector Machine (SVM) framework

[58]. It introduces a shift from the conventional inequality

constraints to equality constraints and employs the sum of squared

error loss function as a measure of the training set’s empirical loss.

This transformation allows the quadratic programming problem

to be reformulated into a more manageable linear equation

problem. LS-SVM exhibits superior performance compared to

SVM, excelling in both solution speed and accuracy. The choice of

the LS-SVM in our brain tumor classification system is grounded

in its ability to deliver superior generalization performance,

handle non-linear data patterns, provide a sparse and interpretable

solution, and maintain robustness to overfitting. Its adaptability to

diverse dataset sizes and strong theoretical foundation make it a

well-suited method for the complex task of classifying brain tumors

in MRI images, ensuring high accuracy and trustworthiness in the

medical field.

The LS-SVM can be succinctly elucidated in the ensuing

sections. In the training dataset, the input vector xi and its

corresponding target vector yi are denoted as xi, yi (where i

ranges from 1 to l). The mapping of the input space to a

higher-dimensional feature space through the mapping function U

results in the feature space vector zi, or pi(xi). Consequently, the

hyperplane is described by the equation in Equation (19).

w.z+ b = 0 (19)

Here, the weight vector w determines the hyperplane’s

orientation, while the bias parameter b influences its position. For

efficient computations, LS-SVM aims to minimize the following

objective function:

Reduce : J (w, e) = 1

2
wTw+ 1

2
C

N
∑

i= 1

e2i

where i is a positive integer between 1 and N.

There must be a (w, b) such that the following stipulation holds

for data samples to be regarded as linearly separable:

In accordance with yi = wTzi + b+ eii = 1, 2, . . . .N

Equation (20) defines the Lagrange equation.

L
(

w, b, e,α
)

= J (w, e)−
N
∑

i=1

αi

{

wTzi + b+ ei − yi

}

(20)

The optimality criterion for Lagrange multipliers are as follows:
∂L
∂w = 0, ∂L

∂b
= 0, ∂L

∂ei
= 0, and ∂L

∂αi
are obtained when w and e

are removed.
[

0 1Tv
1v �+ I

C

][

b

α

]

=
[

0

y

]

Where

y =
[

y1, y2, y3, . . . . . . yN
]T

, 1v = [1, 11, . . . . . . 1]T ,

α = [α1,α2,α3, . . . .αN]
T

And�i,j = K
(

xi, xj
)

, for i, j = 1, 2, 3, . . . . . . N

The kernel function of the Radial Basis Function (RBF) is

denoted by

K
(

xi, xj
)

= e

[

−x|xi− xj|2
σ2

]

The spread or width of the kernel is determined by the

parameter mentioned above. The characteristics of the smooth

fitting function in the equation are influenced significantly by the

selection of the kernel function.

2.5 Dataset description

The experimental dataset comprises a total of 259 brain MRI

scans, with 50 categorized as normal and the remaining 209 as

aberrant. These images were sourced from the Kaggle data archive

and were acquired using a SIEMENS 1.5 Tesla MR device. The

imaging settings included a matrix size of 256 x 256, a slice

thickness of 1mm, and the acquisition of T1-weighted post-

contrast (Gadolinium) images using a Spin-Echo (SE) sequence
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FIGURE 8

Actual T1w MRI scans that are normal and abnormal.

TABLE 1 Confusion matrix of TP, TN, FP, and FN.

Tumor available Tumor not available

Tumor classify True Positive (TP) False Positive (FP)

Tumor not classify False Negative (FN) True Negative (TN)

with a repetition time (TR) of 480ms and an echo time (TE) of

8.7 ms.

The classification system employed in this study consists of two

phases: training and testing. For the training phase, a subset of 30

normal images and 90 aberrant images was utilized. The remaining

139 images, comprising 20 normal and 119 abnormal scans, were

reserved for testing. Figure 8 showcases representative examples of

both normal and aberrant T1-weightedMRI scans from the dataset.

2.6 Experimental environment settings and
performance evaluation metrics

This research aims to propose an optimal model which

identifies and classifies different types of images. The proposed

model was implemented using Python (v. 3.8), OpenCV (v. 4.7),

Keras Library (v. 2.8) were used on Windows 10 Pro OS, with

system configuration using an Intel i5 processor running at 2.9

GHz, an Nvidia RTX 2060 Graphical Processing Unit and 16

GB RAM.

Sensitivity (Sen), specificity (Spe), and accuracy (Pre) are

three commonly employed benchmark metrics for assessing the

reliability of the experimental results. These metrics were derived

from the analysis of the confusion matrix, as presented in Table 1.

From the Table, the variables TP, FP, TN, and FN correspond

to the proportions of true positives, false positives, true negatives,

and false negatives, respectively. Sensitivity, often referred to as the

true positive rate (TPR), is defined as the ratio of true positives

to the sum of false negatives and true positives, as expressed in

Equation (21).

Sen = TP/(TP+ FN) (21)

From the data available in the confusion matrix, specificity,

also known as the false positive rate (FPR), can be computed. It

quantifies the ratio of false positives to the sum of true negatives

and false positives, as demonstrated in Equation (22):

Spe = TN/(TN+ FP) (22)

Accuracy, on the other hand, measures the extent to which the

results of a classification algorithm align with real-world outcomes.

It is calculated as the ratio of correct predictions to the total number

of predictions made, as defined in Equation (23):

Accuracy = (TN+ TP)/(TotalPixels) (23)

The categorization error rate is determined using the formula

provided in Equation (24):

Error rate = 1− Accuracy (24)

3 Results

The conducted experiments represent a meticulous effort

to identify the most suitable classifier for our proposed

regional classification pipeline. These findings are pivotal in

the development of an effective and reliable approach for

classifying brain regions in MRI scans. Below, we provide a

comprehensive analysis of the results, highlighting key takeaways,

strengths, and significant insights.

3.1 Diverse classifier evaluation

The experimentation process involved a comprehensive

examination of a variety of neural network-based classifiers,

including Support Vector Machines (SVM), Radial Basis Function

(RBF), Artificial Neural Networks (ANN), and Least Squares

Support Vector Machines (LS-SVM). This diversity in classifier

selection allowed for a robust assessment of their performance

across various dimensions.
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TABLE 2 Lists the outcomes of the proposed MMTF’s classification using

several classifier techniques on the testing dataset.

RBF ANN SVM LS-SVM

Input MRI
image data set

TP 73 72 77 78

TN 17 15 18 19

FP 4 4 2 0

FN 6 9 3 1

Sensitivity 92.40 88.88 96.25 98.73

Specificity 80.95 78.96 90.0 100

Accuracy 90.0 87.0 95.0 98.97

FIGURE 9

Results of experiments using the proposed MMTF and di�erent

classifiers (LS-SVM, RBF, SVM, and ANN).

3.2 Quantitative and qualitative
assessments

To ensure a well-rounded evaluation, both quantitative and

qualitative assessments were employed. This approach allowed for

a comprehensive understanding of how each classifier performed,

considering a range of metrics and visual representations.

Table 2 provides a detailed breakdown of performance metrics

for each classifier, offering insights into their ability to correctly

classify brain regions. Notably, these metrics include True Positives

(TP), True Negatives (TN), False Positives (FP), False Negatives

(FN), Sensitivity, Specificity, and Accuracy. These metrics are

essential for assessing a classifier’s overall performance. These

details are also represented in Figure 9.

Key Findings and Strengths:

1. LS-SVM dominance: the standout result from the

experimentation is the remarkable performance of LS-

SVM. When compared to other classifiers, LS-SVM consistently

outperforms them in terms of accuracy, sensitivity, specificity,

and error rate. This indicates its exceptional ability to accurately

classify brain regions in MRI scans.

2. Accuracy and error rate: LS-SVM achieves an accuracy of

98.97% and an impressively low error rate of 0.01%. These

metrics reflect LS-SVM’s proficiency in making accurate

TABLE 3 Performance metrics of di�erent classifiers.

RBF ANN SVM LS-SVM

FP 4 4 2 0

FN 6 9 3 1

Accuracy 90.0 87.0 95.0 98.97

Error rate 0.11 0.14 0.05 0.01

classifications, which is of paramount importance in medical

image analysis.

3. False negatives: LS-SVM also excels in minimizing false

negatives, signifying its capability to avoid missing relevant

regions. This is crucial in medical applications, where missing

abnormalities can have serious consequences.

4. Qualitative insights: beyond numbers and metrics, the

qualitative evaluation allowed for a nuanced assessment of how

each classifier performed in practice. This insight is valuable in

real-world applications.

The Table 3 offers a concise summary of the performance

metrics of four distinct classifiers: Radial Basis Function (RBF),

Artificial Neural Networks (ANN), Support Vector Machines

(SVM), and Least Squares Support Vector Machines (LS-SVM).

The metrics include False Positives (FP), False Negatives (FN),

Accuracy, and Error Rate. These details are also represented in

Figure 10.

According to the Table 3, the analysis of performance metrics

for different classifiers provides valuable insights into their

respective capabilities in classifying brain regions in MRI scans.

False Positives (FP) represent instances incorrectly classified as

positive when they are actually negative. In this regard, LS-SVM

stands out remarkably by achieving zero False Positives, signifying

its precision and the absence of misclassifications. SVM and RBF

also perform well with a small number of False Positives (2 and 4,

respectively), but LS-SVM’s performance in this aspect is superior.

ANN, with 4 False Positives, aligns closely with SVM and RBF but

lags behind LS-SVM.

On the other hand, False Negatives (FN), indicating instances

incorrectly classified as negative when they are actually positive,

are crucial in medical applications where missing abnormalities

can lead to delayed diagnoses. LS-SVM excels with just 1 False

Negative, demonstrating its heightened sensitivity to detecting

positive instances. SVM and RBF perform well in this respect with

3 and 6 False Negatives, respectively, while ANN’s 9 False Negatives

indicate its relative weakness in identifying positive instances.

Accuracy, which represents the overall proportion of correctly

classified instances, is notably higher for LS-SVM at 98.97%,

showcasing its superiority in correctly classifying brain regions in

MRI scans. SVM follows closely with an accuracy of 95.0%, while

RBF and ANN achieve lower accuracy scores at 90.0 and 87.0%,

respectively. These results highlight LS-SVM’s exceptional accuracy

in comparison to the other classifiers.

The error rate, measuring the proportion of misclassified

instances, is significantly lower for LS-SVM at 0.01%, indicating

the classifier’s precision and reliability. SVM also demonstrates a

low error rate at 0.05%, affirming its ability to classify brain regions
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FIGURE 10

FP, FN, accuracy and error rate of di�erent classifiers.

accurately. In contrast, RBF and ANN have higher error rates at

0.11 and 0.14, respectively, suggesting a comparatively higher level

of misclassification.

The analysis of performance metrics for different classifiers

in our brain region classification study reveals critical insights

into the capabilities and effectiveness of each method. These

findings are instrumental in understanding the nuances

of classifier performance, with a particular focus on their

abilities to accurately classify brain regions in MRI scans.

Among the classifiers examined, one stands out as the clear

frontrunner: the (LS-SVM). With exceptional dominance in

multiple aspects, including False Positives, False Negatives,

accuracy, and error rate, LS-SVM emerges as a powerful and

precise tool in the field of medical imaging. This section

delves into the key findings and strengths derived from our

comprehensive analysis, emphasizing the significance of LS-

SVM as a valuable asset in enhancing the accuracy of brain

tumor diagnosis.

Key Findings and Strengths:

• LS-SVM Dominance: The most prominent and consistent

finding in the analysis is the exceptional performance of the

LS-SVM classifier. It excels in several crucial aspects, including

minimizing False Positives, False Negatives, accuracy, and

error rate. This dominance signifies its reliability and precision

in accurately classifying brain regions in MRI scans, making it

a standout choice for this critical task.

• Zero False Positives: LS-SVM achieves the remarkable feat

of having zero False Positives, which means it does not

misclassify any negative instances as positive. This zero

tolerance for false alarms is crucial in medical applications, as

it significantly reduces the risk of unnecessary interventions

and incorrect diagnoses.

• Minimized False Negatives: LS-SVM’s capacity to minimize

False Negatives, with only one instance, underscores its

exceptional sensitivity to detecting positive instances. This

capability is of utmost importance in medical imaging, where

missing abnormalities can lead to delayed or overlooked

diagnoses, with potentially severe consequences.

• Exceptional Accuracy: LS-SVM achieves the highest

accuracy among all classifiers, at 98.97%. This extraordinary

accuracy reflects its ability to correctly classify brain regions,

highlighting its importance in precision medical image

analysis, where accurate results are critical.

• Low Error Rate: LS-SVM boasts the lowest error rate of 0.01%,

signifying its precision and reliability in classifying brain

regions. A low error rate is pivotal in medical applications,

where misclassifications can have severe implications for

patient care and diagnosis.

• SVM’s Strong Performance: While LS-SVM outperforms

all other classifiers, it is essential to recognize the strong

performance of SVM, which achieves a high accuracy and low

error rate. This strength makes SVM a credible alternative

in cases where the specific advantages of LS-SVM may not

be required.

4 Conclusion

Our investigation has propelled the domain of brain tumor

classification in MRI imaging by introducing a groundbreaking

methodology that integrates Least Squares Support Vector

Machines (LS-SVM) with Multi-Scale Morphological Texture

Features (MMTF) extracted from T1-weighted MR images. The

comprehensive assessment conducted on a substantial dataset

comprising 139 cases, including both abnormal and normal brain

images, has unequivocally showcased the unparalleled performance

of LS-SVM, surpassing established classifiers like SVM, RBF,

and ANN. This achievement stands as a hallmark, boasting

an extraordinary accuracy rate of 98.97%, coupled with an

exceptional reduction in misclassifications, evidenced by zero False

Positives and minimal False Negatives. The clinical implications

are substantial, promising enhanced diagnostic precision and

sensitivity to abnormalities in brain tumor identification, which

directly impacts and elevates the standard of care in medical

imaging and radiology.

Our research not only advances the immediate clinical

application of precise brain tumor classification but also

contributes significantly to the scientific understanding of classifier

methodologies in medical imaging. The exceptional performance

of LS-SVM sets a new benchmark, offering heightened accuracy,

reduced misclassifications, and substantial scientific insights
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into classifier capabilities in medical diagnostics. Moreover, the

limitations of our study, chiefly the reliance on a relatively confined

dataset, necessitate future exploration using more extensive and

varied data to validate and generalize LS-SVM’s applicability in

diverse clinical settings. Additionally, further investigation into

the interpretability of LS-SVM’s classifications would augment its

practical utility in clinical scenarios, supporting radiologists in

comprehending and trusting the automated diagnostic process.

The findings from our research hold transformative potential

for immediate and future applications in clinical settings. LS-SVM’s

exceptional accuracy and reliability in classifying brain regions

in MRI scans, along with the scientific insights derived from

our analysis, pave the way for the development of more reliable

and precise diagnostic tools in medical imaging. In summary,

our investigation significantly advances brain tumor classification

methodologies, highlighting LS-SVM’s unprecedented accuracy

and reliability. This breakthrough offers a promising avenue

for reshaping and improving brain tumor diagnosis, providing

a more dependable and precise tool for radiologists and

healthcare professionals.

Future research endeavors could significantly expand on this

study by encompassing larger, more diverse datasets to further

validate and generalize the robustness of LS-SVM in varied

clinical settings. Additionally, delving into the interpretability

and explainability of LS-SVM’s classifications could substantially

enhance its practical applicability in clinical scenarios, aiding

radiologists in comprehending and trusting the automated

diagnostic process. Exploring the integration of advanced imaging

modalities or incorporating additional features, such as dynamic

or functional imaging parameters, could broaden the scope of this

research, potentially leading to more comprehensive and accurate

diagnostic tools. Furthermore, investigating the adaptability of this

methodology to real-time or longitudinal imaging data could fortify

its applicability in ongoing monitoring and treatment evaluation

for brain tumor patients. These future directions hold promise

for refining and expanding the application of LS-SVM in medical

imaging and strengthening its role in precise and reliable brain

tumor classification.
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