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This study delves into the temporal dynamics within the equity market through the

lens of bond traders. Recognizing that the riskless interest rate fluctuates over time,

we leverage the Black-Derman-Toy model to trace its temporal evolution. To gain

insights from a bond trader’s perspective, we focus on a specific type of bond: the

zero-coupon bond. This paper introduces a pricing algorithm for this bond and

presents a formula that can be used to ascertain its real value. By constructing

an equation that juxtaposes the theoretical value of a zero-coupon bond with

its actual value, we can deduce the risk-neutral probability. It is noteworthy

that the risk-neutral probability correlates with variables like the instantaneous

mean return, instantaneous volatility, and inherent upturn probability in the equity

market. Examining these relationships enables us to discern the temporal shifts

in these parameters. Our findings suggest that the mean starts at a negative

value, eventually plateauing at a consistent level. The volatility, on the other hand,

initially has a minimal positive value, peaks swiftly, and then stabilizes. Lastly,

the upturn probability is initially significantly high, plunges rapidly, and ultimately

reaches equilibrium.
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Black-Derman-Toymodel, zero-coupon bond, instantaneousmean return, instantaneous
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1 Introduction

Our study begins with an exploration of the market, as characterized by the

SPDR S&P 500 ETF Trust (SPY). We develop a binomial tree for this market, in

line with the conventions of previous work on binomial option pricing [1], ensuring

the preservation of the market’s mean and natural upturn probability. Following this

foundational understanding, we transition into the evaluation of the term structure of

interest rates (TSIR).

A common approach within the TSIR involves drawing conclusions based on treasury

data and subsequent hypotheses. It is noteworthy that standard TSIR models frequently

assign risk-neutral probabilities as follows: (p̃, q̃) = ( 12 ,
1
2 ). However, this assumption is

challenged by real-world data from the financial market, as highlighted by Hu et al. [1] and

Shreve [2]. A possible avenue then emerges: to decipher the risk-neutral dynamics, even if

only through a largely theoretical model, that align with bond prices. By leveraging such

probabilities, models such as Hu et al. [1] can offer a valuation of derivatives on the TSIR.

In the context of this paper, our meticulous preservation of the equity market’s mean,

natural upturn probability, and volatility in our bond valuation opens up an avenue to

discern bond traders’ perspective on these parameters. This perspective is in contrast to

the implied probabilities perceived by option traders, a nuance previously overlooked by

traditional TSIR models. The crux of this paper, therefore, is to explore the nuances of

the equity market through the lens of bond traders. This research is organized into three

pivotal sections.
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First, we elucidate the Black-Derman-Toy (BDT) model,

tracing its historical significance in mathematical finance. Our

emphasis remains primarily on the discrete incarnation of the BDT

model, which offers insights into the market’s temporal riskless

interest rate transformations. For the computation of the associated

BDT model coefficients, we harness the prior 252 days of U.S. 10-

year treasury bond interest rate data, which are processed using

MATLAB.

Next, our study pivots to the vantage point of bond traders,

introducing the concept of the zero-coupon bond. Through a

binomial model, we endeavor to derive a systematic pricing

algorithm for this bond; this is followed by a method that can

be used to ascertain its real value. By establishing a relationship

between the theoretical and real values of the zero-coupon bond,

we identify the risk-neutral probability. Given that a simplistic

risk-neutral probability assumption of (p̃, q̃) = ( 12 ,
1
2 ) might yield

unrealistic outcomes,1 we expand this concept to derive parameters

such as the instantaneous mean return, volatility, and natural

upturn probability. This is further bolstered with simulated data,

which are used to interpret these parameters over time.

In our conclusion, we discuss insights into the evolutionary

trajectory of the equity market over the span of our study.

2 The BDT model

2.1 The history of the BDT model

The BDT model, named after its creators, Black, Derman,

and Toy, originated within Goldman Sachs during the 1980s.

Initially conceived for the firm’s internal utilization, its significance

garnered broader recognition following its publication in the

Financial Analysts Journal in 1990 [3]. Derman offers a first-hand

account of the model’s evolution in his 2004 memoir [4].

Within the realm of mathematical finance, the BDT model

is highly regarded as a short-rate model that is instrumental

in pricing bond options, swaptions, and various other interest

rate derivatives. It is different from other finance models in that

it is a one-factor model, meaning that the short rate serves

as the sole stochastic determinant for the future trajectory of

all interest rates. The BDT model pioneered the amalgamation

of the mean-reverting behavior of the short rate with the log-

normal distribution, a paradigm shift underscored by Buetow

et al. [5]. Its applicability and relevance persist today, as noted by

Fabozzi [6].

2.2 Theoretical support

In Shreve [2], one can find a presentation of the BDT model

in the discrete case. In the present paper, we will also consider this

form of the BDTmodel. Because the interest rate in the BDTmodel

changes over time, we can consider the interest rate as a risky asset

R and suppose that at every point in time, the interest rate will

strictly go up or not. Additionally, we suppose that the interval

1 An in-depth discussion on this topic can be found in Hu et al. [1].

between two adjacent points in time is1 = 1/252.2 Now, we define

the interest rate return3 in the period [n1, (n+ 1)1]:

r(n+1)1 =
R(n+1)1 − Rn1

Rn1
. (1)

For every n in the range 0, · · · ,N − 14, the interest rate return

can be described as follows:

r(n+1)1 =
{

u1 with probability p,

d1 with probability 1− p,
(2)

where the sequence of returns, denoted by rn1
5 for n = 1, · · · ,N,

comprises identically distributed binary random variables.

Furthermore, let the expected return of r(n+1)1 be represented

as E[r(n+1)1] = µrate
(n+1)1

= µrate1, where µrate stands for

the instantaneous mean return of the interest rate. Therefore, the

relationship becomes

µrate
(n+1)1 = µrate1 = pu1 + (1− p)d1,

which implies that

µrate = pu+ (1− p)d. (3)

Now, let the variance of r(n+1)1 be represented as follows:

V[r(n+1)1] = (σ rate
(n+1)1)

2 = (σ rate)21,

where (σ rate)2 is the instantaneous variance of the interest rate. By

introducing

νrate1 =
σ rate

√
1

,

we can obtain

(σ rate
(n+1)1)

2 = (σ rate)21 = (νrate1 )212. (4)

Given that,

V[r(n+1)1] = E[r(n+1)1]
2 − E

2[r(n+1)1]. (5)

By combining (4) and (5), we can derive

(σ rate
(n+1)1)

2 = (νrate1 )212 = pu212 + (1− p)d212

− [pu1 + (1− p)d1]2 (6)

= pu212 + (1− p)d212 − p2u212 − 2p(1− p)ud12

− (1− p)2d212 (7)

= p(1− p)u212 + p(1− p)d212 − 2p(1− p)ud12

(8)

= p(1− p)(u− d)212. (9)

2 This is based on the standard notion that a typical year comprises 252

business days, making the time interval 1/252, with the units being years.

3 Rn1 signifies the value of the interest rate at time n1. Similar notation

conventions apply elsewhere.

4 In our study, we utilize data spanning 252 days to estimate each

parameter and refine our BDT model. Consequently, N = 1/1 = 252.

5 When r(n+1)1 equals u1, the interest rate exhibits a clear upward trajectory.

However, when r(n+1)1 is equal to d1, the interest rate does not strictly

ascend. By design, u > d should hold true.
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Since u > d, νrate1 =
√

p(1− p)(u− d).

By combining the expressions for µrate and νrate1 in (3) and (9),

we obtain the following system of equations:

{

µrate = pu+ (1− p)d,

νrate1 =
√

p(1− p)(u− d).
(10)

If we treat µrate and νrate1 as constants and u and d as unknown

variables, the solution of (10) should be







u = µrate +
√

1−p
p νrate1 ,

d = µrate −
√

p
1−pν

rate
1 .

(11)

Now, by combining (1), (2), and (11), we obtain

R(n+1)1 =
{

Rn1(1+ u1) with probability p,

Rn1(1+ d1) with probability 1− p,
(12)

=







Rn1

(

1+ µrate1 +
√

1−p
p νrate1 1

)

with probability p,

Rn1

(

1+ µrate1 −
√

p
1−pν

rate
1 1

)

with probability 1− p,

(13)

for n = 0, · · · ,N − 1.

Next, considering the format of the BDT model on page 172 in

Shreve [2],

Rn(ω1 · · ·ωn) = anb
#H(ω1···ωn)
n ,

where

• ωi for i − 1, · · · , n represents the resulting change in the

interest rate. ωi can be either H or T. If ωi = H, the interest

rate increases; if ωi = T, the interest rate does not increase.

• #H(ω1 · · ·ωn) counts the occurrences of H in the given n

periods, representing the number of times the interest rate

increases.

• an and bn are coefficients used to calibrate the model.

Following the form of an and bn in Shreve [2], we assume that

an = R0/c
n
1 and bn = c2, where R0 is the interest rate at time 0,

while c1 and c2 are constants. By combining this assumption with

(13), we deduce the following:

c2

c1
= 1+ µrate1 +

√

1− p

p
νrate1 1, (14)

1

c1
= 1+ µrate1 −

√

p

1− p
νrate1 1. (15)

From relations (14) and (15), we can write

an = R0

(

1+ µrate1 −
√

p

1− p
νrate1 1

)n

, (16)

bn =
1+ µrate1 +

√

1−p
p νrate1 1

1+ µrate1 −
√

p
1−pν

rate
1 1

. (17)

The coefficients in (16) and (17) represent our revised BDT

model for this study.

2.3 Simulation of coe�cients for the BDT
model

In this study, we utilize the interest rate of the U.S. 10-year

treasury bond6 as our primary data source. The reference starting

date is set to June 16, 2023, which means that R0 is set to 0.0377.

Our analysis will utilize 252 days7 of historical data to compute the

values of an and bn.

Employing MATLAB for our computations, we derived the

values for c1 and c2 as c1 = 1.0236 and c2 = 1.0464, respectively.

Figure 1 contrasts the observed market value of the interest rate

with the predicted values deduced from the BDT model, covering

the period from June 15, 2022 to June 16, 2023.

Thus, for dates starting from June 16, 2023, our BDT model

predicts the interest rates Rn(ω1 · · ·ωn) as follows:

Rn(ω1 · · ·ωn) =
0.0377

1.0236n
· 1.0464#H(ω1···ωn).

3 Introduction to zero-coupon bonds

The core objective of this paper is to explore the temporal

dynamics of the equity market as perceived by bond traders. To that

end, this section delves into the relevant details concerning zero-

coupon bonds. Subsequent subsections will first detail a pricing

algorithm specific to zero-coupon bonds. Following that, we will

outline a methodology for deducing the implied value of the

inherent upturn probability, the instantaneous mean return, and

the instantaneous volatility pertinent to the equity market.

3.1 Zero-coupon bond pricing algorithm

A zero-coupon bond can be viewed as a specific type of

European contingent claim8 (ECC). This characterization is due to

its unique features: it has a predetermined maturity date, cannot

be traded prior to its maturity, and guarantees a payoff of $1 upon

maturity regardless of external conditions.

Let us denote the price of the zero-coupon

bond at time t, with the bond reaching maturity at

time T, as B(t,T). It is a given that B(T,T) ≡ 1.

To price this bond, we adopt a traditional binary

model, as described by Shreve [2]. Using the notation

6 Related data are available on the U.S. Department of the Treasury website.

7 Given that the commencement date is June 16, 2023, the data from the

prior 252 days span June 15, 2022 to June 16, 2023. We have opted for a

252-day dataset because it o�ers a suitable sample size, ensuring that besides

market fluctuations, other objective factors remain relatively stable within the

year.

8 We consider a zero-coupon bond to be analogous to a European

contingent claim due to the intrinsic di�erences between the European and

American trading styles. Specifically, European-style trading restricts activity

until the terminal time, while American-style trading permits trading at any

given moment.
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FIGURE 1

Comparison of market and BDT model interest rates.

established earlier,

B(n1,T) =
1

1+ Rn11

{

p̃B[(n+ 1)1,T](u) + (1− p̃)B[(n+ 1)1,T](d)
}

,

(18)

where

• 1 represents the time interval, which is set to 1/252.

• B(n1,T) indicates the bond price at time n1, with a maturity

T = N1.

• B[(n + 1)1,T](u) and B[(n + 1)1,T](d) are potential bond

prices at time (n + 1)1, with the former being greater than

B(n1,T) and the latter being less than or equal to B(n1,T).

• Rn1 is the interest rate at n1, derived using the BDT model.

• p̃ is the risk-neutral upturn probability in the equity market.

For ease of representation, let us denote the bond notations

B(n1,T),B[(n+ 1)1,T](u), and B[(n+ 1)1,T](d) as Bn1, B
(u)
(n+1)1

,

and B
(d)
(n+1)1

, respectively. The instantaneous mean return in the

equity market will be labeled asµe.m. and its variance will be labeled

as σ 2
e.m.. Thus, (ν1)e.m. = σe.m./

√
1.

Given the bond’s ECC nature, it should be backed by an

underlying risky asset S. To ascertain the risk-neutral probabilities,

one could design a risk-free portfolio:

Pn1 = DSn1 − Bn1, (19)

where

• Pn1 is the riskless portfolio value at n1.

• Sn1 is the underlying asset’s price at n1.

• D defines the ratio of shares between the zero-coupon bond

and the risky asset S, ensuring a riskless portfolio.

Given the riskless nature of Equation (19), it inherently satisfies

P
(u)
(n+1)1

= P
(d)
(n+1)1

.

This leads to

DS
(u)
(n+1)1

− B
(u)
(n+1)1

= DS
(d)
(n+1)1

− B
(d)
(n+1)1

. (20)

Equation (20) implies the relationship

D =
B
(u)
(n+1)1

− B
(d)
(n+1)1

S
(u)
(n+1)1

− S
(d)
(n+1)1

. (21)

Given the inherent risk of asset S and recalling the formulation

from (13), we have

S
(u)
(n+1)1

= Sn1

(

1+ µe.m.1 +
√

1− p

p
νe.m.
1 1

)

, (22)

S
(d)
(n+1)1

= Sn1

(

1+ µe.m.1 −
√

p

1− p
νe.m.
1 1

)

. (23)

Substituting (22) and (23) into (21) yields

D =
B
(u)
(n+1)1

− B
(d)
(n+1)1

Sn1σe.m.

√
1

√

p(1− p). (24)
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FIGURE 2

Temporal analysis of the implied return in the equity market.

From Equations (18), (19), and (24), it follows that

Bn1 =
1

1+ Rn11

[(

p− θe.m.

√

p(1− p)1
)

B
(u)
(n+1)1

+
(

1− p+ θe.m.

√

p(1− p)1
)

B
(d)
(n+1)1

]

, (25)

where θe.m. = (µe.m. − Rn1)/σe.m.. From Equation (25), the

risk-neutral upturn probability is given by

p̃ = p− θe.m.

√

p(1− p)1. (26)

With Equations (18) and (26) and the condition B(N1,T) =
B(T,T) ≡ 1, we derive the complete pricing algorithm for the

zero-coupon bond.

3.2 Linking zero-coupon bonds to the
equity market

Our objective in this subsection is to deduce the implied value

of the natural upturn probability, instantaneous mean return, and

instantaneous volatility for the equity market by analyzing them

through the lens of a zero-coupon bond.

The expectation is that the zero-coupon bond’s price, as

calculated using the algorithm detailed in the previous subsection,

aligns with the bond market’s price.9 To ascertain the price of the

9 This price should accurately represent the zero-coupon bond’s real-

world value.

zero-coupon bond within the bondmarket, we refer to Hull [7] and

utilize the following formula:

B(t,T;market value) = exp
[

−(T − t)Y(t,T)
]

, (27)

where

• t represents the present time.

• T denotes the maturity date of the specific zero-coupon bond

(for robustness in our findings, we will be considering bonds

with maturities spanning from two months to thirty years).

• Y(t,T) is the yield to maturity.

The algorithm we developed in the preceding subsection

provides us with a means to calculate the theoretical price of the

zero-coupon bond. This can be represented as follows:

B(t,T,µe.m., p, σe.m.; theoretical value). (28)

Our next step entails equating Equations (27) and (28). Doing

this will reveal the implied values for the natural upturn probability,

instantaneous mean return, and instantaneous volatility, all of

which are vital metrics for understanding the equity market when

it is viewed through the prism of a zero-coupon bond.

3.3 Estimation of parameters for the equity
market

To deduce the values of the parameters µe.m., p, and σe.m., we

will utilize the data associated with the SPY from June 15, 2022 to
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June 16, 2023. This duration encompasses precisely 252 business

days. Our data source will be Yahoo Finance.

The rationale behind selecting these data is multifaceted. Bond

prices often mirror the broader economic landscape. Given that the

SPY can act as a representative index for the economy, it is plausible

to infer that SPY data offer insight not only into the economy’s state

but also into the nuances of the equity market. Our preliminary

estimates for µe.m., p, and σe.m. are 8.0037 × 10−4, 0.4821, and

0.0126, respectively.

As mentioned in the preceding subsection, our task is to

equate (27) and (28). By doing this, we can ascertain the value

of the risk-neutral upturn probability p̃. By leveraging Equation

FIGURE 3

Temporal analysis of the implied volatility in the equity market.

FIGURE 4

Temporal analysis of the implied upturn probability in the equity market.
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(26) and concentrating on the parameters p,µe.m., and σe.m., we

find that any two of the parameters can be utilized to express the

third. Specifically,

µe.m. =
σe.m.(p− p̃)
√

p(1− p)1
+ Rn1, (29)

σe.m. =
(µe.m. − Rn1)

√

p(1− p)1

p− p̃
, (30)

p =
(2p̃+ 1θ2e.m.)−

√

1θ2e.m.[1θ2e.m. + 4p̃(1− p̃)]

2(1+ 1θ2e.m.)
. (31)

Since our start date is set to June 16, 2023, we will let Rn1 be

the riskless interest rate on June 16, 2023, which is 0.0377. Now, by

employing Equations (29), (30), and (31), we can produce graphs

reflecting the implied values forµe.m., σe.m., and p, which are shown

in Figures 2–4, respectively.

From these graphs, we can observe the following trends:

• In Figure 2, the implied return rises sharply from

approximately -0.11. It then starts to climb at a decelerated

pace and eventually stabilizes around 0.025.

• Figure 3 shows that the volatility initially surges, reaching its

zenith at 0.04 by the 10th year. Following this peak, there is a

slight decline, and it settles near 0.035.

• As for Figure 4, the implied upturn probability experiences a

sharp dip from its starting point of roughly 0.83. This decline

slows over time, with the probability ultimately converging to

approximately 0.48.

4 Conclusion

In this study, we delved into the temporal evolution of the

SPY index within the equity market through the lens of bond

traders. Our focus has been on deducing the implied values of the

instantaneous mean return, instantaneous volatility, and natural

upturn probability over time. Our primary conclusions can be

summarized as follows:

• The implied value of the instantaneous mean return is initially

negative. However, with the passage of time, this value

experiences an increase, eventually reaching a stable point.

• As for the implied value of the instantaneous volatility, it

initially has a marginal positive value. Shortly thereafter, it

peaks before possibly descending to a steady state.

• The implied upturn probability starts at a notably high value

but experiences a pronounced decline as time progresses. It

too attains stability over time.
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