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Persistence-based clustering
with outlier-removing filtration

Alexandre Bois*, Brian Tervil and Laurent Oudre

Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli,

Gif-sur-Yvette, France

This article describes a non-parametric clustering algorithm with an outlier

removal step. Our method is based on tools from topological data analysis:

we define a new filtration on metric spaces which is a variant of the Vietoris–

Rips filtration that adds information about the points’ nearest neighbor to the

persistence diagram. We prove a stability theorem for this filtration, and evaluate

ourmethod on point cloud and graph datasets, showing that it can competewith

state-of-the-art methods while being non-parametric.
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1 Introduction

Agglomerative hierarchical clustering is one of themain classes of clustering algorithms

[1, 2]. It considers each data point as its own cluster and iteratively merges clusters. All

state-of-the-art clustering algorithms require to choose parameters such as the number of

clusters (K-means, spectral clustering, etc.), some thresholds (hierarchical clustering), or

a density parameter for density-based clustering [DBSCAN [3, 4] and ToMATo [5]]. The

choice of parameters can be problematic in some cases, especially when clustering is only

one step in a larger algorithm.

Topological data analysis (TDA), and more specifically persistent homology [6, 7], has

been a popular research subject over the last decades, with many applications [8]. The

idea is to construct a sequence of simplicial complexes (a filtration) from given data and

to study how its structure evolves when going through the filtration, using a tool called

persistence diagram. The success of TDA is partly due to stability theorems, which state

that close datasets will have close persistence diagrams, according to some distance between

datasets/diagrams, ensuring in particular that TDA results are robust to noise. One of the

most used filtrations is the Vietoris–Rips filtration, for which a stability theorem has been

proved in [9].

Concretely, 0-dimensional persistent homology links data points until only one

connected component is left. It thus naturally induces a hierarchical clustering algorithm as

the one described in [10–12], that use the Vietoris–Rips filtration to study brain networks

or co-occurrence networks, or the ToMATo algorithm [5], which combines TDA with

a density-based approach. Persistent homology highlights important components of the

data and is thus a suitable tool for threshold choice in hierarchical clustering. In this study,

we introduce a new filtration for metric spaces1 that adds information about the points’

nearest neighbor to the persistence diagramwhichmakes it easier to identify clusters on the

diagram and to remove outliers. We prove its stability and use it to define a non-parametric

algorithm to perform clustering with outlier removal.2

1 For a review on filtrations over graphs, see [13]. Note that a metric space can be seen as a

non-directed weighted graph.

2 Here, we define an outlier as an isolated point, and consider that two close points form a cluster.
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Section 2 is an introduction to TDA. In Section 3, we

introduce our filtration and proved its stability. In Section 4, we

present the algorithm and some experiments on point cloud and

graph datasets.

2 Topological data analysis
background

In this section, we introduce some notions of topological

data analysis.

2.1 Simplicial complexes and filtrations

Definition 1. A k-simplex on a set X is an unordered tuple σ =

[x0, ..., xk] of k+ 1 distinct elements of X. The elements x0, ..., xk are

called the vertices of σ . If each vertex of a simplex τ is also a node

of σ , then τ is called a face of σ . A simplicial complex K is a set of

simplices such that any face of a simplex of K is a simplex of K. We

call S(X) the set of all simplices on X.

Definition 2. An increasing filtration3 of a simplicial complex K

is a family of simplicial complexes (Kα)α≥0 such that K0 = ∅,

α < α′ ⇒ Kα ⊂ Kα′ and
⋃

α≥0 Kα = K.

This definition is useful for theory, but in practice, the number

of simplices is finite, in which case, we will only use a finite set of

indices αi such that ∅ = Kα0 ⊂ Kα1 ⊂ · · · ⊂ Kαm = K and

αi ≤ α < αi+1 ⇒ Kαi = Kα . Without loss of generality, we

can also assume that for all i, there exists a simplex σi+1 ∈ K such

that Kαi+1 = Kαi ∪ {σi+1}. See Figure 1 and [6, 7, 13] for examples

of filtrations.

In clustering applications, data are a (finite) metric space

(X, d). A common and easily computable filtration on X is the

Vietoris–Rips filtration VR(X) = (VR(X,α))α≥0 defined for all

simplices σ by:

∀σ ∈ S(X), σ ∈ VR(X,α) ⇐⇒ ∀x, y ∈ σ , d(x, y) ≤ α

The main idea of TDA is to build a filtration on top of the

data and study how the structure of the simplicial complexes

evolves while increasing the filtration parameter using persistent

homology. Our clustering algorithm only requires 0-dimensional

persistent homology, which we will explain in terms of connected

components. Persistent homology is defined for higher dimensions

in Section 2.3 (we define it for the sake of completeness, as Theorem

10 is about all dimensions).

2.2 0-dimensional persistent homology

Let (Kαi )0≤i≤m be a filtration. For each index i, we go from

Kαi to Kαi+1 by adding a simplex σi+1 to Kαi . If σi+1 is a vertex,

then it creates a new connected component in Kαi+1 , and we

3 In this study, we will simply use the term filtration, as all filtrations

considered will be increasing.

say that this component is born at αi+1. If σi+1 is an edge, it

links two vertices that where already in Kαi (by definition of

a simplicical complex). If those vertices belonged to different

connected components in Kαi , they become one component in

Kαi+1 : we say that one of the two components (the one with the

lowest birth date, by convention) absorbed the younger one, and

that the younger one died at αi+1. In all other cases, there is no

change in connected components when adding σi+1 (changes are

made in higher dimensional homology, see Section 2.3). At the end

of the filtration, all remaining components die at α = ∞. The 0-

dimensional persistence diagram of a filtration is defined as the

multiset of all pairs (birthdateanddeathdate) obtained by the above

construction, counted with multiplicity, along with all pairs (x, x)

with infinite multiplicity.

See Figures 1A–E for an example of persistence diagram. If

(b, d) is a point of a persistence diagram, we call d− b its persistence

(or the persistence of the corresponding connected component).

A distance between persistence diagrams can be defined

as follows:

Definition 3. The bottleneck distance between diagrams D and D′

is defined as:

dB(D,D
′) = inf

γ∈Ŵ(D,D′)
sup
p∈D
||p− γ (p)||∞

where Ŵ(D,D′) is the set of bijections from D to D′, where a point

of multiplicity m is treated as m points, and where ||p − q||∞ =

|xp − xq| when p = (xp, yp), q = (xq, yq) and yp = yq = +∞.

Note that it is necessary to include the diagonal in persistence

diagrams so there exists bijections between diagrams that do not

have the same number of persistent pairs.

2.3 Persistent homology in any dimension

2.3.1 Simplicial homology
Let K be a simplicial complex with maximal simplex dimension

d, F be a field and 0 ≤ k ≤ d.

Definition 4. The space Ck(K) of k-chains is defined as the set

of formal sums of k-simplices of K with coefficients in F, that is

to say, if all the k-simplices of K are σ1, . . . , σnk , all the elements

of the form:

c =

nk
∑

i=1

aiσi, ai ∈ F.

Ck(K) is a vector space whose addition and scalar multiplication

are naturally defined as follows: if c =
∑nk

i=1 aiσi and

c′ =
∑nk

i=1 a′i σi, then:

c+ c′ =

nk
∑

i=1

(ai + a′i)σi.

and for λ ∈ F,

λc =

nk
∑

i=1

(λai)σi.
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FIGURE 1

A filtration and its persistence diagram. (A) Steps 0 to 3 (add vertices 0, 1, 2, and 3). (B) Steps 4 and 5 (add edges 4 and 5). (C) Step 6 (add vertex 6). (D)

Steps 7 and 8 (add edges 7 and 8). (E) 0-dimensional persistence diagram.

Using a field F gives the more general definition, but from now

on, we will only consider F = Z/2Z, so the coefficients are modulo

2, which allows to avoid orientation considerations.

Definition 5. Let σ = [v1, . . . , vk] be a k-simplex with vertices

v1, . . . , vk, and [v1, . . . , v̂i, . . . , vk] be the (k − 1)-simplex spanned

by those points minus vi. The boundary operator ∂ is defined as:

∂ :

{

Ck(K) −→ Ck−1(K)

σ 7−→ ∂σ =
∑k

i=1(−1)
i[v1, . . . , v̂i, . . . , vk].

We have the following sequence of linear maps:

{0} → Cd(K)
∂
→ Cd−1(K)

∂
→ . . .

∂
→ C1(K)

∂
→ C0(K)

∂
→ {0}.

They satisfy ∂ ◦ ∂ = 0 : we call such a sequence of maps

a chain complex. This constitutes the setup for homology. We

can now define cycle and boundaries, homology groups, and

Betti numbers.

Definition 6. We define the set Zk(K) of k-cycles of K as :

Zk(K) = Ker(∂ :Ck(K)→ Ck−1(K))

and the set Bk(K) of k-boundaries of K as :

Bk(K) = Im(∂ :Ck+1(K)→ Ck(K)).

We have Bk(K) ⊂ Zk(K) ⊂ Ck(K), so we can define the kth

homology group as:

Hk(K) = Zk(K)/Bk(K)

and the kth Betti number:

βk(K) = dim(Hk(K)).

βk represents the number of k-dimensional “holes". For example,

β0 is the number of connected components of K, β1 is the

number of loops, and β2 is the number of voids. Betti numbers of

simplicial complexes are computable using a filtration, see [7] for

the algorithm.

2.3.2 Persistent homology
Persistent homology considers studying the evolution of

homology groups while increasing the filtration parameter.

Let (Kαi )0≤i≤m be a filtration such that for each index i, we go from

Kαi to Kαi+1 by adding a simplex σi+1 to K
αi .

We call Ci
k
,Zi

k
,Bi

k
,Hi

k
, andβ i

k
the respective spaces of k-chains, k-

cycles, k-boundaries, kth homology group and kth Betti number of

Ki. The goal is to follow the evolution of Hi
k
as i increases. It can

be shown [7] that when a k-simplex σi+1 (k > 0) is added, it either

creates a new homology class in Hi+1
k

(i.e., a new k-cycle that is

independent of those ofHi
k
) or it closes a k− 1-dimensional hole of

Hi−1
k−1

, so Hi
k−1

has one less homology class than Hi−1
k−1

, in that case,

we say that σi+1 killed a homology class (by convention, we always

consider that when two classes merge, the younger class gets killed).

If k = 0, each new vertex creates a homology class in H0.

The final result of persistent homology is the set of all so-called

persistent pairs (σl(j), σj) such that for each j, σl(j) creates a

component and σj kills it. We say that the persistence (or lifetime)

of such a pair is j − l(j) − 1. The algorithms to compute them are

described in detail in [7]. The k-dimensional persistence diagram

is the set of points of coordinates (αl(j),αj) such that σl(j) is a k-

simplex (counted with multiplicity). The points of the diagonal

y = x are added with infinite multiplicity (it is useful to define

distances). The bottleneck distance between two k-dimensional

persistence diagrams is defined exactly as in Definition 3.

3 Nearest Neighbor Vietoris-Rips
filtration and stability

In this section, we introduce a new filtration: the Nearest Neighbor

Vietoris-Rips (NNVR) filtration, and prove its stability.

Definition 7. Let (X, d) be a metric space. The Nearest Neighbor

Vietoris-Rips filtration NNVR(X,α)α≥0 is defined by:

∀x ∈ X, x ∈ NNVR(X,α) ⇐⇒ α ≥ inf
y∈X,y 6=x

d(x, y)

and for all k-simplices σ with k ≥ 1:

σ ∈ NNVR(X,α) ⇐⇒ σ ∈ VR(X,α)
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This means that the NNVR filtration is the same as the VR

filtration except for 0-simplices, which all enter the VR filtration at

α = 0, whereas they enter the NNVR filtration when α is equal to

the distance to their nearest neighbor. It is easy to verify that NNVR

is indeed a filtration. Figure 2 shows an example of NNVRfiltration.

The stability theorem for the VR filtration is proved in [9], we

use the same framework as they did to adapt the proof to the NNVR

filtration. The theorem states that the NNVR filtration is stable with

respect to the Gromov–Hausdorff distance [14], which we define

below, along with the notions required to prove the theorem.

Definition 8. Let X,Y be two sets and C ⊂ X × Y . For any A ⊂ X

and B ⊂ Y , we note C(A) = {y ∈ Y : ∃x ∈ A, (x, y) ∈ C} and

C⊤(B) = {x ∈ X : ∃y ∈ B, (x, y) ∈ C}. C is called a correspondence

between X and Y if C(X) = Y and

C⊤(Y) = X.

Definition 9. Let (X, dX) and (Y , dY ) be metric spaces and C be a

correspondence between X and Y . The distortion of C is defined as

dis(C) = sup{|dX(x, x′)− dY (y, y
′)| : (x, y), (x′, y′) ∈ C}.

The Gromov–Hausdorff distance between X and Y is:

dGH(X,Y) =
1
2 inf

{

dis(C) :C is a correspondence between X and Y
}

.

We now state the stability theorem.

Theorem 10. Let (X, dX) and (Y , dY ) be totally bounded metric

spaces. Let DX (resp. DY ) be the persistence diagram of NNVR(X)

(resp. NNVR(Y)). Then:

dB(DX ,DY ) ≤ 2dGH(X,Y).

To prove this theorem, we introduce simplicial correspondences

and use results from [9].

Definition 11. Let (KX)α≥0 (resp. (KY )α≥0) be a filtration of a

simplicial complex on a set X (resp. Y). A correspondence C is

called ε-simplicial, if

• For any α ≥ 0 and simplex σ ∈ KX
α , any finite subset of C(σ )

is a simplex of KY
α+ε .

• For any α ≥ 0 and simplex σ ∈ KY
α , any finite subset of C

⊤(σ )

is a simplex of KX
α+ε .

Proposition 4.2 from [9] states that if there is an ε-simplicial

correspondence between two filtered metric spaces X and Y ,

then there exists a so-called ε-interleaving between the persistent

homology groups of X and Y which is a family of linear maps

between homology groups Hk(K
X
α ) → Hk(K

Y
α+ε) and Hk(K

Y
α ) →

Hk(K
X
α+ε) for all α, that commute with the persistence structure.

Theorem 2.3 from [9] states that if there exists such an ε-

interleaving then ε is an upper bound on the bottleneck distance.4

The following lemma synthesizes those results.

4 This theorem requires a tameness hypothesis to be verified. Here, it is the

case because Proposition 5.1 from [9] applies to the NNVR filtration with the

exact same proof as for the VR filtration.

Lemma 12. Let (KX)α≥0 (resp. (KY )α≥0) be a filtration of a finite

simpicial complex on a totally bounded metric space X (resp. Y),

with persistence diagrams DX and DY . If there exists an ε-simplicial

correspondence, then dB(DX ,DY ) ≤ ε.

Proof of Theorem 10: Let ε > 2dGH(X,Y). There exists a

correspondence C such that dis(C) ≤ ε. Let us show that C is

ε-simplicial.

Let α ≥ 0, σ be a simplex of NNVR(X,α) and τ be a finite subset

of C(σ ).

Case 1: τ only has one element: τ = [y]. There exists x ∈ σ such

that y ∈ C(x) and a sequence (xn)n∈N ∈ XN such that 0 < dX(x, xn)

and (dX(x, xn))n∈N converges to a value lower than or equal to α.

Moreover, there exists a sequence (yn)n∈N ∈ YN such that for all n,

yn ∈ C(xn). Then:

∀n ∈ N, inf
z∈Y ,z 6=y

dY (y, z) ≤ dY (y, yn) ≤ dX(x, xn)+ ε

So: inf
z∈Y ,z 6=y

dY (y, z) ≤ α + ε and τ = [y] ∈ NNVR(Y ,α + ε).

Case 2: τ = [y0, ..., yk], k ≥ 1. For all i, j, there exists xi, xj ∈ σ such

that yi ∈ C(xi) and yj ∈ C(xj). Then :

dY (yi, yj) ≤ dX(xi, xj)+ ε ≤ α + ε and τ ∈ NNVR(Y ,α + ε)

where the last inequality holds because [xi, xj] ∈ NNVR(X,α).

The same proof shows that if σ is a simplex in NNVR(Y ,α),

then all finite subsets of C⊤(σ ) are simplices of NNVR(X,α + ε).

So, C is ε-simplicial and Lemma 12 ends the proof.

4 Outlier-removing clustering

4.1 Algorithm

Our clustering algorithm relies on the 0-dimensional persistent

homology construction described in Section 2.2. The idea is to

construct the 0D persistence diagram of the NNVR filtration of

the data, then use it to choose a birth threshold (which tells us

which points are outliers) and a persistence threshold (which tells

us what the clusters are). The thresholds can be chosen manually or

automatically. If they are chosen using a non-parametric procedure,

then the whole clustering algorithm is non-parametric (see next

section formore details). The clustering algorithmworks as follows:

• Input: a finite metric space (X, d).

• Compute the filtration NNVR(X) and its 0-dimensional

persistence diagram.

• Choose a birth threshold and a persistence threshold.

• Mark all points whose birth dates are above the birth threshold

as outliers. Let Y be the remaining points.

• Compute 0-dimensional persistent homology on NNVR(Y),

but do not add edges that would merge components whose

persistence is above the persistence threshold.

• Output: a simplicial complex, where each connected

component is a cluster.
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FIGURE 2

An example of NNVR filtration. The edge weights represent the distance between vertices. For each value of α, vertices and edges with filtration value

equal to α are added. (A) Full graph. (B) α = 1. (C) α = 2. (D) α = 3. (E) α = 10. (F) α = 12. (G) α = 15. (H) α = Persistence diagram.

The benefit of using the NNVR filtration is that, compared to

the VR filtration, it separates outliers from essential components

on the persistence diagram. Components corresponding to outliers

indeed have late death dates in both filtrations as they are far away

from other points. Thus, they give very persistent points with the

VR filtration (where every birth date is 0), which can be hard

to distinguish from other persistent points (as illustrated below).

The NNVR filtration moves them to the right of the persistence

diagram. Note that, if there are no outliers, the same algorithm can

be used with the VR filtration and no birth threshold.

Seeing (X, d) as a graph with n vertices and m edges, the

filtration can be computed in O(m) (the filtration value of each

vertex is the distance to its nearest neighbor, and the filtration value

of each edge is its weight, so reading the m edge weights is enough

to compute the filtration). Computing 0D persistent homology

requires to compute a minimal spanning tree, which can be done in

O(mlog(max(m, n))) using Kruskall’s algorithm. An algorithm to

choose the thresholds (such asmax-jump, described below) should

work in O(n), as there are n points on the persistence diagram. So,

the overall complexity of the method is O(mlog(max(m, n))), so

O(n2log(n)) in the worst case, asm ≤ n2, with equality if the whole

distance matrix is computed (in Euclidean spaces, for example).

4.2 Choice of thresholds

After computing the persistence diagram D, two thresholds are

needed: a birth threshold, which is a threshold on the list of birth

dates of points on the diagram, and a persistence threshold, which

is a threshold on the list of persistence of points on the diagram.

The choice of the birth threshold determines which points are

considered as outliers: if a point on the persistence diagram has

a birth date above the threshold, we exclude the corresponding

point in X and detect it as an outlier. The choice of the persistence

threshold determines which components are significant enough to

be considered as clusters. The number of points whose persistence

is above the threshold is the number of detected clusters.

A natural method to choose the birth and persistence

thresholds is to apply the max-jump algorithm to the list of birth

dates and to the list of persistence values (without the point of

infinite persistence). The algorithm is defined in Algorithm 1.

Data: a list L = [L(1), ..., L(n)].

SL← sorted(L);

J ← [SL(i+ 1)− SL(i)]1≤i≤n−1;

imax ← argmax(J);

thr← (SL(imax)− SL(imax + 1))/2;

Result: thr

Algorithm 1. Max-jump algorithm.

The idea behind this algorithm is to separate significant values

from non-significant ones by using the biggest variation. It is fully

non-parametric, and will always output at least two clusters (one

corresponding to the infinite persistence point, and at least one

point above the persistence threshold). A drawback of this method

is that it can output a persistence threshold that is too low if clusters

are not at the same distance from one another (see point cloud 5 in

section 4.3. for an example).
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We propose two possible solutions to this problem, which

introduce the choice of a parameter. The first one is to apply a

sigmoid function sλ : x 7→
1

1+e−λx to the normalized list L
max(L)

before using max-jump. The normalization makes the data vary

from 0 to 1, which makes it easier to choose a unique parameter

λ for a whole dataset, and the sigmoid function pushes significant

values close to 1, which can lead to a lower threshold than the

one obtained with max-jump. The second alternative we propose

is using OTSU’s method [15] for gray-level threshold selection.

This requires to choose a number of bins for the histograms,

FIGURE 3

(Left) The persistence diagram from Figure 2 with both thresholds chosen with max-jump. The vertical gray line represents the birth threshold, the

gray line parallel to the diagonal represents the persistence threshold (as the persistence of a point is proportional to its distance to the diagonal).

(Right) Clusters (blue and red) and outliers (green) obtained with our algorithm. A point of a given color on the diagram represents the component

that contains the nodes of this color on the graph.

FIGURE 4

(A) Ground truth for the karate club graph with additional outliers, (B) persistence diagram of the NNVR filtration, (C) persistence diagram of the VR

filtration, (D) clusters obtained with the Louvain Community Detection Algorithm, (E) clusters obtained with the NNVR algorithm, and (F) clusters

obtained with the VR algorithm. On (B), the two gray lines represent the two thresholds, the blue (resp. red, purple) point corresponds to the blue

(resp. red, purple) cluster on the graph, green points correspond to outliers, and yellow points are below the persistence threshold.
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FIGURE 5

Clustering results for six point clouds obtained with several methods. Points marked with an X are outliers.
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FIGURE 6

Clustering results for six point clouds obtained with several methods, including the NNVR filtration with max-jump, sigmoid of parameter 4 and

OTSU, and VR filtration. Points marked with an X are outliers.
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TABLE 1 Rand indices for the 14 clustering algorithms applied to the six datasets represented on Figures 5, 6.

Dataset MiniBatch
K-means

A�nity
propagation

MeanShift Spectral
clustering

Ward Agglomerative
clustering

DBSCAN

0 0.50 0.50 0.51 0.99 0.61 0.50 1.00

1 0.74 0.75 0.78 0.99 0.61 0.50 1.00

2 0.88 0.74 0.90 0.91 0.92 0.35 0.91

3 0.81 0.75 0.76 0.93 0.83 0.33 0.94

4 0.99 0.77 1.00 0.79 0.99 0.33 1.00

5 0.34 0.34 0.95 0.34 0.40 0.99 0.97

Dataset OPTICS BIRCH Gaussian
mixture

VR NNVR
max-jump

NNVR sig-4 NNVR otsu

0 1.00 0.50 0.50 0.51 1.00 0.93 1.00

1 1.00 0.76 0.75 0.51 1.00 0.96 1.00

2 0.80 0.33 0.97 0.34 0.35 0.35 0.35

3 0.98 0.33 0.78 0.33 1.00 0.99 0.98

4 1.00 0.77 0.99 0.34 0.78 1.00 1.00

5 0.98 0.99 0.35 1.00 0.99 0.27 0.92

Bold values are the highest Rand indices on each dataset.

which we set to 1,024 by default. As the persistence distribution

is skewed, we apply the algorithm twice and remove values under

the threshold after each iteration. The point cloud experiments on

Section 4.3 illustrate how those alternatives can improve clustering.

For every other dataset, we will always use max-jump by default.

Other methods can be preferred depending on the application, to

make use of prior knowledge on the data (for example, knowledge

about the expected number of clusters or their size).

Figure 3 shows the thresholded persistence diagram (withmax-

jump) and the results of our algorithm on the graph from Figure 2.

4.3 Experiments

We applied our algorithm to the karate club graph, which is

a classical example for community detection in networks [16], to

point clouds from the scikit-learn documentation5 to which we

added four outliers (one in each corner), and to synthetic graph

datasets. Results were evaluated using the Rand index [17], which

is the ratio of the number of correctly labeled points over the

total number of points, ignoring label permutations (so perfect

clustering gives a Rand index of 1 and the index is close to 0 for

bad clustering).

4.3.1 Karate club graph
The karate club graph shows the interactions between the

34 members of a karate club (nodes 0–33). Each interaction is

represented by an edge with a weight between 1 and 7 (a highweight

means more interaction). After a conflict between the instructor

(node 0) and administrator (node 33), the club split up into two

groups: one with the instructor and one with the administrator.

5 https://scikit-learn.org/1.2/modules/clustering.html

The goal is to predict those groups based on the interaction. We

added 10 outliers (nodes 34–43, that could represent people outside

the club), each one with two edges randomly linking it to other

nodes with a random weight between 0.5 and 1. We inverted the

weights of the edges to get a new weighted graph and used the

shortest-path distance.

The results are shown in Figure 4 along with persistence

diagrams for the NNVR and VR filtrations, and results obtained

with the Louvain Community Detection Algorithm [18], which is

a modularity optimization method [we used the NetworkX [19]

implementation with default parameters]. The Rand indices are

0.95 for the NNVR method, 0.65 for the VR method, and 0.73 for

the Louvain method. Note that points from both diagrams have

the same death dates, so outliers have a higher persistence than

relevant points on the VR diagram, which is not the case on the

NNVR diagram. The algorithm exactly recovers the true clusters

for all nodes, except nodes 5, 6, 16, and 10, that form a cluster. This

can be explained by the fact that node 16 is not linked to node 0

and only has two links to 5 and 6, and the edges (5,6) and (5,10)

are, respectively, heavier than (5,0) and (10,0). This point is more

persistent than the blue one on Figure 4 because of the proximity

between nodes 8 and 33.

4.3.2 Point clouds
In the case of point clouds, the metric space is a set of

points in 2D equipped with the Euclidean distance. Figures 5, 6

and Table 1 show the results of 10 clustering algorithms [3, 20–

27], and three versions of our algorithm that all use max-jump

to choose the birth threshold but different methods (described

above) for the persistence threshold: one using max-jump, one

using it after applying a sigmoid with parameter 4, and one using

OTSU. We also test our algorithm with the VR filtration (and

max-jump persistence threshold), on three point clouds. For all
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FIGURE 7

Generated graphs with n = 30, with 2 clusters on (A) and 3 on (B). Edges without a label have a weight of 1.

TABLE 2 Rand indices for n = 30, 40, 50, 60 and k varying from 2 to 10.

n = 30 n = 40 n = 50 n = 60

k NNVR Louvain NNVR Louvain NNVR Louvain NNVR Louvain

2 0.74 0.78 0.69 0.78 1.00 0.84 1.00 0.84

3 0.87 0.87 0.74 0.79 1.00 0.92 1.00 0.89

4 1.00 0.95 0.84 0.88 1.00 0.89 1.00 0.96

5 1.00 0.94 1.00 0.94 1.00 0.90 1.00 0.94

6 0.97 0.92 1.00 0.91 1.00 0.97 1.00 0.94

7 0.98 0.93 1.00 0.96 1.00 0.96 1.00 0.92

8 0.98 0.98 1.00 0.93 1.00 0.92 1.00 0.91

9 0.82 0.95 0.98 0.95 1.00 0.98 1.00 0.92

10 0.45 0.94 1.00 0.95 1.00 0.97 1.00 0.98

Bold values are the highest Rand indices on each dataset.

algorithms, we used the same parameters as the ones used in the

scikit-learn documentation.

The NNVR algorithm with max-jump performs almost

perfectly on datasets 1, 2, 4, and 6. On dataset 5, the persistence

threshold is too high so the algorithm detects two clusters instead

of three, which is not the case for the sigmoid and OTSU methods,

which work perfectly on this dataset. The drawback of the sigmoid

and OTSU methods is that they tend to choose more clusters than

max-jump and can thus choose too many such as for datasets 4 and

6 (and 1 and 2 for the sigmoid). Density-basedmethods outperform

the others on dataset 3. Dataset 6 shows that our algorithm cannot

output only one cluster. The only methods capable of detecting

outliers are DBSCAN, OPTICS, and our NNVR method. Our

method only fails to detect two of the four outliers on dataset

4. DBSCAN and OPTICS detect too many outliers on datasets

3 and 4.

4.3.3 Synthetic graphs
We used the NetworkX’s [19] random_partition_graph

function to generate synthetic graph datasets with a number

of clusters varying from 2 to 10 and containing outliers.

This functions takes as input the size of each cluster, a

probability pin, and a probability pout . It outputs a random

graph where each edge has a probability pin of existing

between two nodes from the same cluster, and pout if

they are from different clusters. The data were generated

as follows:

• Fix a number of iterations n and a number of clusters k, pin =

0.3 and pout = 0.01.

• Set the size of each cluster to 5 plus a random integer between

−3 and 3.

• Add five clusters of size 1 (the outliers).
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• Generate n graphs with the above procedure, and

add their adjacency matrices together. The resulting

matrix is the adjacency matrix of a weighted

graph Gn,k.

See Figure 7 for examples. Table 2 shows the results obtained with

our algorithm (using max-jump for both thresholds) and with the

Louvain method [18], for n = 30, 40, 50 and k varying from 2 to

10. Our method performs better than Louvain’s on 5 and 6 graphs

out of 9 for n = 30 and 40, respectively, and for higher values of

n, when clusters are denser, our method always detects the right

clusters and outliers.

5 Conclusion

In this study, we have defined the NNVR filtration, proved

its stability, and integrated it in a non-parametric hierarchical

clustering algorithm. The NNVR filtration contains more

information than the VR filtration, which makes it possible to

add an outlier detection step to persistence-based clustering.

Our experiments show that our algorithm can perform well

despite being fully non-parametric, and can thus be useful in

many applications. Future research could explore more advanced

methods to choose thresholds on the persistence diagram that

could for example select both thresholds simultaneously or

incorporate some knowledge depending on the application.
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