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In this study, we  aimed to explore the dynamics of rail passengers’ negative 
attitudes that can be  influenced by safety concerns and unreliable train 
operations. We  mainly formulated and analyzed a mathematical model of 
fractional order and derived an optimal control problem considering the Caputo 
fractional order derivative. In the analysis part of the model, we  proved that 
the solutions of the model for the dynamical system are non-negative and 
bounded, and determined the passengers’ negative attitude-free and negative 
attitude persistence equilibrium points of the model. Both the local and global 
stabilities of these equilibrium points were examined. Furthermore, we verified 
the conditions necessary for the existence of optimal control strategies. We then 
proceeded to analyze the proposed control strategies, which aim to prevent 
negative attitudes and improve the attitudes of passengers who have already 
developed negative attitudes. Finally, we  conducted numerical simulations 
to examine the effects of these control strategies. The results revealed that 
protecting passengers from developing negative attitudes and improving the 
attitudes of those who have already developed such attitudes are crucial for 
improving the overall attitude of railway passengers. These measures can 
effectively address any negative experiences caused by safety concerns and 
unreliable train operations.
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1 Introduction

Railway transportation plays a significant role in enhancing market accessibility and 
facilitating efficient travel for both passengers and goods. The progress of railway development 
in developed countries has been remarkable, with advanced infrastructure, efficient operations, 
and continuous technological advancements. However, the progress of railway transportation 
in developing nations encounters notable difficulties due to inadequate operation and 
maintenance of railway infrastructure (1). These difficulties contribute to a growing concern 
regarding the escalation in passengers’ negative attitudes toward railway services (2). 
Understanding the control strategies behind these negative attitudes is crucial for improving 
service quality and addressing passengers’ concerns.

The quality of service offered by public transit can be  understood by measuring its 
performance according to the experiences of its riders (3). Several factors influence passengers’ 
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attitudes toward railway transportation, including service quality, 
safety concerns, a lack of effective communication, frequent 
breakdowns, overcrowding, and reliability of operation (4). Insufficient 
communication during disruptions or emergencies can lead to 
frustration and further dissatisfaction among passengers. Passengers 
often feel helpless and uninformed, which escalates their dissatisfaction 
and contributes to negative attitudes toward train services (5).

A decline in passenger satisfaction and an increase in negative 
attitudes can lead to a decrease in ridership, ultimately affecting the 
revenue and viability of railway operations (6). Lower customer 
satisfaction can also lead to a decline in public trust and support, 
hindering the growth and development of the train industry (7). It is, 
therefore, crucial to thoroughly examine the dynamics behind 
passengers’ negative attitudes to gain valuable insights for 
policymakers and railway operators, enabling them to make well-
informed decisions and implement effective measures to improve the 
overall passenger experience.

To better describe and analyze various aspects of a real-world 
problem in various disciplines, including science and engineering, 
mathematical modeling can serve as a powerful tool for representing 
the problem by using mathematical equations, formulas, and 
algorithms. This can be  observed, for instance, by examining its 
application in various contexts (8–10).

The authors discussed how mathematical modeling can help 
identify the key factors that contribute to the dynamics of real-life 
situations by analyzing the stability of equilibrium points. The classic 
autonomous ordinary differential equations representing evolutionary 
systems have no memory, as their solution is independent of the 
previous instant (11). However, the fractional order differential 
equations, in contrast, incorporate the memory effect of an 
evolutionary system, such as passengers’ attitudes. In the context of 
rail passengers, memory effects can play a significant role in shaping 
their attitudes. These effects refer to the influence of past experiences 
and interactions on the present attitude of individuals. Furthermore, 
memory effects that impact the dynamics include the persistence of 
negative experiences, recency bias, confirmation bias, social influence, 
and expectation formation.

A fractional order model means a representation of a system 
described by a fractional differential equation or a system of such 
Equation (12). Mathematicians have developed several approaches for 
fractional derivatives, such as Grunwald-Letnikov, Riemann-Liouville, 
and Caputo’s fractional derivatives. The Riemann-Liouville method 
results in initial conditions that include the limiting values of the 
Riemann-Liouville fractional derivatives at the lower bound t a= , 
and these types of initial conditions lack a recognized physical 
interpretation. Applied engineering problems require the formulation 
of a fractional order model with the use of physically interpretable 
initial conditions, such as X a X a X a( ) ( ) ( )′ ′′, , , and so on. Caputo’s 
approach enables the formulation of initial conditions for fractional 
order differential equations at the lower terminal t a=  (12).

The Caputo fractional derivative approach is another 
mathematical technique that can be employed for evolutionary 
systems with memory effect. The application of this approach has 
been dealt with in various contexts (13–17). Bhalekar et al. (18) 
considered the dynamics of the fractional order systems involving 
non-local derivative operators on singular points in the solution 
trajectories of the systems. The study investigated the behavior of 
the trajectories when the eigenvalues λ  are at a specified stable 

region and examined the existence of singular points in the 
trajectories of such systems in a given region. Echenausía-Monroy 
et al. (19) investigated a physical interpretation of fractional-order 
derivatives in a jerk system using an electronic approach based on 
unstable dissipative systems (UDSs) and a saturated non-linear 
function (SNLF). The results of the analysis revealed that, when the 
orders of the fractional integration are considered, the areas of the 
generated attractor are modified with respect to the integer-order 
dynamic. Zhou et  al. (20) clarified the physical process for 
fractional dynamical systems. The dynamics in fractional order 
systems have been discussed extensively for presenting possible 
guidance in the field of applied mathematics and 
interdisciplinary science.

Motivated by the concepts discussed above, in this study, 
we  constructed a Caputo fractional derivative compartmental 
modeling approach to analyze the dynamics of passengers’ negative 
attitudes toward railway transportation. These advanced analytical 
techniques enable us to gain insights into the underlying factors 
contributing to negative attitudes and explore strategies for improving 
passengers’ attitudes.

The remainder of this article is structured as follows: in section 2, 
we present some basic terminologies necessary for the formulation of 
mathematical models of fractional order. The formulation of integer 
and fractional order models is given in section 3. Section 4 presents 
the optimal control problem, followed by the numerical simulation in 
section 5. Finally, in section 6, we conclude the article with a summary 
and discuss future work.

2 Basic terminology of fractional order 
calculus

The following concepts of fractional order calculus will serve as a 
foundation for constructing the fractional order model in this study:

Definition 1: The Caputo fractional order derivative of order ϑ  
for a function f Cn∈  is defined by Vargas-De-León (17) and 
Petrás (21).

 
( ) ( ) ( )( ) ϑ

ϑ ζ
ζ ζ ϑ

ϑ ζ
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Γ − −∫0
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 ( ) ( )ϑ ϑ→

C
tends to 1tD f t f t as  

(2)

Definition 2: The Caputo fractional order integral of order ϑ > 0  
for a function f Cn∈  is defined by Vargas-De-León (17) and 
Petrás (21).

 
( ) ( ) ( )( )ϑϑ ζ

ζ ζ ϑ
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Definition 3: Let γ γ1 20 0> >,  be positive parameters, then the 
Mittag–Leffler function is defined by Mainardi (22), Fernandez and 
Husain (23), and Özarslan and Fernandez (24).
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Definition 4: Suppose γ2 1=  is the constant parameter. Then, the 
Mittag–Leffler function is defined by Mainardi (22) and Özarslan and 
Fernandez (24).
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Definition 5: A constant number θ∗  is identified as an 
equilibrium point of the Caputo-fractional order model when

 
C , , if and only if ,D t f t t f tt

ϑθ θ ϑ θ( )= ( )( ) ∈[ ] ( )=∗, 0 1 0
 

(6)

Proposition 1: The Laplace transform of the Caputo fractional 
order derivative with order ϑ,  n n n N− < ≤ ∈1 ϑ ,  is given by 

L D h s s H s s ht
k

n
k kϑ ϑ ϑ( )( ) = ( ) − ( )

=

−
− −∑

1

1
1 0 , where H s( )  is the Laplace 

transform of the function h t( ) .
Proposition 2: The Laplace transformation of the two-parameter 

functions of the Mittag–Leffler case is given by Balatif et al. (25).
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Proposition 3 (Generalized Mean Value theorem): Suppose 

h t Tf( )∈   0,  and C D h t Tt f
ϑ ( )∈   0,  for ϑ∈( 0 1, . Then, the 

theorem states that ( ) ( ) ( )ϑ
= +

Γ
10h t h  C D h tt

ϑ ϑζ( ) ,  where 

ζ ∈ 0,t  for each t  such that 0 < ≤t Tf .

Note: These statements follow from Proposition 3.

 a. The function h  is non-decreasing for all 
t Tf∈ 0, , if C D h tt

ϑ ( ) ≥ 0.
 b. The function h  is non-increasing for all 

t Tf∈ 0, , if C D h tt
ϑ ( ) ≤ 0.

Proposition 4: Suppose g t L( )∈ ( )∩ ( )∞    and ∈,  
n n n N− < ≤ ∈1 ϑ , . Then, the following conditions hold

a.  ( ) ( )ϑ ϑ =( ) .C
tD I g t g t
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0
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 c. Specifically, if 0 1< <ϑ , then (Iϑ C D g t g t gt
ϑ ) .( ) = ( ) − ( )0

 d. For a constant function g t b( ) =  then ( )ϑ = 0.C
tD b

3 Models’ formulation

3.1 Description and assumptions of the 
models

To analyze the dynamics of the passengers’ negative attitudes 
toward railway transportation, we  divided the total number of 
passengers, denoted by M(t) at a given time t, into five distinct 
mutually exclusive classes: susceptible passengers who can develop 
negative attitudes whenever they are exposed, which is denoted by 
S(t), passengers who are exposed to negative attitudes due to perceived 
safety concerns and unreliable operation of train services, which is 
denoted by E(t), passengers who developed negative attitude due to 
safety concerns, which is denoted by ( ) ,SI t  passengers who 
developed negative attitudes due to unreliable train operation, which 
is denoted by ( ) ,UI t  and passengers whose negative attitudes 
changed, which is denoted by R(t). The passengers who developed 
negative attitudes due to unreliable train operation may have 
encountered trains running late or not adhering to the schedule, 
leading to frustration and dissatisfaction.

 ( ) ( ) ( ) ( ) ( ) ( )= + + + + + .S UM t S t E t I t I t R t
 

(7)

Acquiring a negative attitude from another passenger is not 
influenced by the number of passengers around, and susceptible 
individuals within the population acquire negative attitudes from 
other passengers at a standard incidence rate given by

 
( ) ( ) ( )( )β

λ = ρ +ρSC 1 2t t .S UI t I
M  

(8)

where

ρ1  is the relative effect of passengers with negative attitudes due to 
safety concerns;

ρ2  is the relative effect of passengers with negative attitudes due to 
unreliable train operation; and

β  is the transmission rate of negative attitude.

To construct the Caputo fractional order model for the 
transmission dynamics of negative attitudes among passengers in a 
population, certain key assumptions need to be considered.

A portion q  of susceptible passengers who were exposed to 
negative attitude, i.e., S(t) transfers to the I tS ( ) , a portion of 
passengers who developed negative attitudes due to safety concerns at 
a rate ϖ , while the remaining portion 1−q  joins ( ) ,UI t  a portion 
of passengers who developed negative attitudes due to unreliable train 
operation at the same rate.

Passengers with negative attitude due to safety concerns I tS ( )  
and those with negative attitude due to unreliable train operation 
I tU ( ) progress to the portion of passengers whose negative attitudes 
R t( )  at the rates α1  and α2 , respectively. The rate η  is the 
progression of individuals from the IS  portion to IU . Other 
parameters and state variables are stated in Tables 1, 2.

The population flow diagram, which is based on the model 
descriptions and assumptions given above, illustrates how the negative 
attitude of passengers disseminates among the population.
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3.2 Integer order model

The integer order model, a system of non-linear first-order 
ordinary differential equations, is based on the population flow 
diagram given in Figure 1 and represents the evolution of passengers’ 
negative attitudes, which is given by

 
( )λ= Κ − +SC

dS d S
dt

 

dE
dt

d ESC= − +( )λ ϖS

 
( ) ( )ϖ= − − +α +η1

d 1 q d
dt
S

S
I E I

 
( )ϖ= +η − +α2

d d
dt
U

S U
I q E I I

 

dR
dt

I I dRS U= + −α α1 2
 

(9)

subject to  
S 0 0( ) > ,

 
E IS0 0 0 0( ) ≥ ( ) ≥,

 
IU 0 0( ) ≥ , and 

R 0 0( ) ≥   
(10)

3.3 Fractional order model

In this subsection, we reformulated the transmission dynamics of 
passengers’ negative attitude model (Equation 9). This is done by using 
Caputo derivatives, which allows us to incorporate memory effects 

and gain a deeper understanding of the evolution of passengers’ 
negative attitudes. The mathematical representation of this fractional 
order model can be observed in Equation 11.

 ( )ϑ ϑ ϑλ= − +
C

Kt SCD S d S

 ( )ϑ ϑ ϑλ ϖ= − +
C

St SCD E d E

 ( )ϑ ϑ ϑ ϑ ϑ ϑϖ α η= − + +1

C
t S SD I q E d I

 
C

dD I q E I It U S U
ϑ ϑ ϑ ϑ ϑ ϑϖ α= + − +( )η 2

 
C

D R I I d Rt S U
ϑ ϑ ϑ ϑα α= + −1 2  

(11)

The initial data for the proposed fractional order model  
(Equation 11) is demonstrated by

 
S E I I RS U0 0 0 0 0 0 0 0 0 0( ) ≥ ( ) ≥ ( ) ≥ ( ) ≥ ( ) ≥, , , ,

 
(12)

The analysis of the fractional order model given in Equation 11 is 
presented in the Supplementary material, where theorem 1 shows the 
non-negativity and boundedness of the model, and theorem 2 
demonstrates the existence and uniqueness of solution of the model. 
The equilibrium points and basic reproduction bombers are calculated 

TABLE 1 Description of parameters.

Parameter description

d Natural mortality rate.

K Population recruitment rate.

ϖ Rate at which passengers exposed to negative attitudes develop negative attitudes either due to safety concerns or unreliable train operation.

1α Rate of progression from passengers who developed negative attitudes due to safety concerns to the group whose negative attitudes have changed.

η The progression rate of passengers who developed negative attitudes due to safety concerns to the portion of passengers with negative attitudes due to unreliable train operation.

2α Rate of progression from passengers who developed negative attitudes due to unreliable train operation to the group whose negative attitudes changed.

q Portion of passengers who were exposed to negative attitudes and transferred to passengers’ group who developed negative attitudes due to unreliable train operation ( )I tU .

TABLE 2 Definitions of state variables.

Variable definition

S Passengers who are susceptible to passengers’ negative attitude.

E Passengers who are exposed to negative attitudes.

IS Passengers who developed negative attitudes due to safety concerns.

IU Passengers who developed negative attitudes due to unreliable train operation.

R Passengers whose negative attitudes have changed.
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in section 3. The local stability of the negative attitude free equilibrium 
point is addressed in theorem 3, while the global stability of 
equilibrium points is illustrated in theorems 5 and 6.

4 Optimal control problem

The negative attitude of rail passengers is a complex behavior that 
can be influenced by various factors. In the context of unreliable train 
operations and safety concerns, it is important to address this negative 
attitude to improve the overall passenger experience.

The prevention control strategy aims to reduce the number of 
susceptible passengers by addressing the factors contributing to 
negative attitudes. For example, improving train operations and 
implementing safety measures can help create a positive passenger 
experience and reduce the likelihood of developing negative attitudes. 
By focusing on prevention, the goal is to minimize the number of 
passengers who become exposed to negative attitudes and 
subsequently develop negative attitudes.

On the other hand, the improvement control strategy focuses on 
addressing the negative attitudes of passengers who developed negative 
attitudes and helping them to change their attitudes. Assisting in the 
process of changing their negative attitudes can be done through various 
measures, such as providing information, assistance, and support to 
passengers who have developed negative attitudes. By actively addressing 
and improving these negative attitudes, the goal is to facilitate the process 
of changing their negative attitudes and ultimately reducing the overall 
number of passengers who develop negative attitudes.

By combining both prevention and improvement control 
strategies, the researchers proposed a comprehensive approach to 
managing rail passengers’ negative attitudes. This approach 
acknowledges the importance of addressing the root causes of negative 
attitudes through prevention while recognizing the need to support 
and improve the attitudes of those who have already developed 
negative attitudes. Through this control design, the researchers aimed 
to create a positive rail travel experience for passengers, which in turn 
can enhance customer satisfaction and loyalty.

We presented three control strategies that depend on time and are 
designed to modify the fractional order model (Equation 11). These 
strategies are represented by the Lebesgue controlling functions 
u t1 ( ) , u t2 ( ) , and u t3 ( ) , with 0 ≤ ( ) ( ) ( ) ≤u t u t u t1 2 3 1, , .

These functions serve as measures of control and are defined 
as follows:

 1. The measure to prevent passengers’ negative attitudes is aimed 
at minimizing the effective contact rate, and it is represented by 
the control measure u t1 ( ) . This measure involves taking 
actions to enhance the management of congestion during train 
operations and improve the daily operation of trains by 
ensuring punctuality and regularity.

 2. The time-dependent control measures represented by u t2 ( )  
and u t3 ( )  are improvement strategies for passengers who 
developed negative attitudes as a result of safety concerns and 
unreliable train operations, respectively.

The new reformulation of the Caputo fractional order model’s 
optimal control problem (Equation 11) is based on the control 
variables mentioned earlier.

 
( )( ) ( )ϑ ϑ ϑ

ϑ ϑ ϑ
ρ ρ β +

 = − − +
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 

1 2
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I I
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D E u t
I I
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d Et
S Uϑ

ϑ ϑ ϑ
ϑ ϑ
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− +( )1 1
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C

D I q E d u t It S S
ϑ ϑ ϑ ϑ ϑ ϑϖ η α= −( ) − + + ( )( )1 2 1

 
C

D I q E N d u t It U S U
ϑ ϑ ϑ ϑ ϑ ϑϖ η α= + − + ( )( )3 2

 
C

D R u t I u t I d Rt S U
ϑ ϑ ϑ ϑα α= ( ) + ( ) −2 1 3 2  

(13)

with initial data S 0 0( ) > , E IS0 0 0 0( ) ≥ ( ) ≥, , IU 0 0( ) ≥ , 
and R 0 0( ) ≥ , and the controlling set is 

( ) ( ) ( )( ) ( ) ( ) ( ){ } ∆ = ≤ ≤ ∈ 1 2 3 1 2 3, , : 0 , , 1, 0,C fu t u t u t u t u t u t t T , 
where Tf is the final time of implementing control measures.

The aim of the control problem is to minimize the number of 
people who are exposed to and develop negative attitudes while 
increasing the number of individuals whose negative attitudes change, 
taking into account the cost of implementing control strategies. To 
achieve this, we formulated an objective function that represents the 
goal of reducing the number of individuals who have already 
developed negative attitudes in the population.

 
( ) χ χ χ Γ Γ Γ = + + + + + 

 ∫ 2 2 21 2 3
1 2 3 1 2 3 1 2 30
, , I I

2 2 2
fT

S UJ u u u E u u u dt
 (14)

To manage the number of individuals who developed negative 
attitudes and the associated costs of implementing prevention and 
improvement control strategies, we strived to minimize u t u t1 2( ) ( ), , 
and u t3 ( )  while considering the system (Equation 14) as a constraint.

In this section, the value Tf  represents the final time, while the 
coefficients χ χ1 2, , and χ3 are positive weight constants. The 

measures Γ Γ1 2,
2 2

, and Γ3
2

 represent the relative costs of prevention 

FIGURE 1

The passengers’ flow diagram.
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and improvement corresponding to the controls u u1 2, , and u3 , 
respectively. Additionally, these measures help to balance the units of 
the integrand.

The objective is to locate the optimal values for the controls 
U u u u= ( )1 2 3, , , denoted as U u u u∗ ∗ ∗ ∗= ( )1 2 3, , ,  to achieve the desired 
state trajectories S E I IS U

∗ ∗ ∗ ∗, , , , and R∗  that are solutions of 
(Equation 14) over a given time interval 0,Tf  . These state 
trajectories should also satisfy the initial data and minimize the 
objective function.

In the cost functional, the term χ1E represents the cost related to 
individuals exposed to negative attitudes, the term χ2IS  refers to the 
cost related to individuals who developed negative attitudes due to safety 
concerns, and the term χ3IU  represents the cost related to individuals 
who developed negative attitudes due to unreliable train operation.

Additionally, χi  (where i =1 2 3, , ) are positive constants that 
represent the cost of implementing the three strategies to control, 
and Γi  (where i =1 2 3, , ) is the corresponding effort made to 
minimize the dissemination of negative attitudes toward these 
strategies. Tf  represents the duration for which the control 
measures are applied.

The aim is to determine the optimal control variable u t( )  that 
minimizes the objective function min

u U
J u

∈
( ) , which is subject to the 

new optimal control dynamical system given in  Equation 13 with the 
initial data.

The vector u u u u= { , , )1 2 3  is the vector that controls the system, 
and the set

 
( )( )∞  = ∈ ≤ ≤ =   

3
0, , 0 1, 1,2,3,f iU u L T u i

 
(15)

is a closed and bounded set of controls that are admissible.

4.1 Existence and optimality of the control 
strategies

The fractional order dynamical system (Equation 11) with  
(Equation 12) can be rewritten as follows:

 
C , ,D Y G t Y t H t Y t u t Tt f

ϑ = ( )( )+ ( )( ) ≤ ≤, ,0

( ) = 0,Y t Y  where Y t S t E t I t I t R tS U( ) = ( ) ( ) ( ) ( ) ( )( ), , , ,  
represents the state variables of the dynamical system, and 
u t u t u t u t( ) = ( ) ( ) ( )( , ,1 2 3  represents the control functions or 
variables in the control problem mentioned in  Equation 13. The 
functions G and H are given as follows:
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To establish the existence of the three optimal control strategies, 
we need to verify the following conditions:

 • The control trajectories have at least one feasible solution.
 • The set of admissible controls is convex, bounded, and closed.
 • The function represented by G t Y t H t Y t, ,( )( ) + ( )( )  is bounded 

with respect to both the state variables and the 
controlling variables.

 • The expression χ χ χ Γ Γ Γ
+ + + + +2 2 21 2 3

1 2 3 1 2 3I I
2 2 2S UE u u u  is 

convex on the set of admissible controls U .

According to the definitions mentioned in the manuscript, the 
conditions can be expressed as follows:

If we consider control functions with values u1 1= ,  u2 0= , and 
u3 0=  within the admissible control set U  defined in  Equation 15 and 

the solution Y S E I RU= ( ), ,I , ,S  of the fractional order model 
(Equation 11) with given initial data, then the set of all feasible solutions 
for the control problem is not empty. Furthermore, based on the 
definition of the admissible control set U ,  this control set is bounded, 
closed, and convex. Additionally, according to the existence and 
uniqueness criteria for model (Equation 11), the solutions of model 
(Equation 13) are unique and bounded because 0 1,iu≤ ≤  for i =1 2 3, , .

Theorem 7: The function defined by G t Y t H t Y t u, ,( )( ) + ( )( )  
satisfies the solution.

Y S E RA C= ( ), ,I ,I ,  such that

 ( ) ( ) ( )( )+ ≤ +1 2|| , , || max , || || || ||G t Y H t Y k k Y u
 

(16)

where 
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and   k2 1 2 1= +( )( )max β ρ ρ ηϑ ϑ ϑ ϑ, , .

Proof: Let us consider the matrix G t Y t, ( )( )  in a rewritten form.
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where 
( )ϑ ϑ ϑϑ ρ ρβ +

= −
1 2K S UI I

D
S M

.

Given the definition of the matrix G t Y t, ( )( ) , we can see that 
ϑ ≤K S . Additionally, considering the bounded nature of the solution, 

we demonstrate that
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By employing a similar procedure, we  can demonstrate 
the following:

 
( ) ( )( )ϑ ϑ ϑ ϑβ ρ ρ η≤ +1 2|| , || max , ,1 || ||.G t Y u

Theorem 8: The function expressed as 

( ) χ χ χ Γ Γ Γ
= + + + + +2 2 21 2 3

1 2 3 1 2 3, , I I
2 2 2S Ut Y u E u u u  is convex 

within the admissible control region U , and there exists a 
non-negative constant k  such  
that  t Y u ku, ,( ) ≥ .

Proof: For the function  t Y u, ,( ) , we derived the corresponding 
Hessian matrix given by
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Therefore, the matrix   is a positive definite matrix in the 
admissible control region U  and hence  t Y u, ,( ) is strictly convex 

in U .  Let Γ Γ Γ =  
 

1 2 3min , , ,
2 2 2
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. Thus, 

we established the proof.
Theorem 9: There is an optimal control point u u u u∗ ∗ ∗ ∗= ( )1 2 3, ,  

and the model-associated solutions

Y S E N N RS R
∗ ∗ ∗ ∗ ∗ ∗= ( ), , , ,  that minimize the objective function 

J u( )  on the admissible control set U , such that min
u U

J u J u
∈

∗( ) = ( ) .

The optimality necessary condition: The optimality necessary 
condition, as stated in Teklu and Terefe (26), is required to be fulfilled 
by the optimal control problem (Equation 13), and  Equation 14 is 
adapted from Pontryagin’s maximum principle stated in Mandal et al. 
(13), Ahmed et  al. (16), and Teklu and Terefe (27), and it is also 
fulfilled by changing into a minimizing Hamiltonian function with 
respect to the control variables u u u1 2 3, ,( ) . The Hamiltonian function 
corresponding to  Equations 13 and  14 is derived as follows:
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where λ λ λ λ1 2 3 4t t t t( ) ( ) ( ) ( ), , , ,  and λ5 t( )  are the co-state 
variables or adjoint variables.

Theorem 10: Let us give the optimal control solutions ui
∗  for 

i =1 2 3, ,  and the solutions of the optimal control problem 
(Equation 13) that minimize the objective function (Equation 15) in 
the admissible control region U , then there are functions 
λ λ λ λ1 2 3 4, , , , and λ5  such that
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where B d= +( )ϑ ϑα1 .
The conditions for the transversality of the system (Equation 18) 

can be expressed as λi fT∗ ( ) = 0 , i = …1 2 5, , , . These conditions are 
based on the Hamiltonian function H  defined mentioned in  
Equation 17. Additionally, the optimal control strategy can 
be determined by
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where λ λ λ λ λ1 2 3 4 5t t t t t( ) ( ) ( ) ( ) ( ), , , , , and λ6 t( )  are the 
co-state variables or adjoint variables and the conditions for 
transversality that are mentioned earlier.

Proof: The existence of the co-state variables 
λ λ λ λ λ1 2 3 4 5t t t t t( ) ( ) ( ) ( ) ( ), , , ,  is demonstrated by applying 
Pontryagin’s maximal principle, as shown in reference (15, 28). 
Furthermore, the characterization of each optimal control strategy 
outlined in Equation 13 is achieved by solving the following set of 
partial differential equations within the interior of the admissible 
control set U  as follows:

 

∂
∂

=
∂
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=
∂
∂

=
H
u

H
u

H
u1 2 3

0.
 

(19)

5 Numerical simulation

In this section, we conducted numerical simulations of model 
(Equation 11) and control problem (Equation 13) to gain a deeper 
understanding of the system’s behavior and pinpoint the most efficient 
optimal control strategies that influence the evolution of passengers’ 
attitudes. These simulations yield visualizations, enhancing our 
intuitive grasp of how different factors affect the transmission 
dynamics and serving as valuable tools for scenario evaluation. 
We  utilized the ODE45 solver in MATLAB 2023a for numerical 
simulations to capture the dynamics of the passengers’ attitude model. 

This solver, belonging to the second-order Runge–Kutta family of 
methods and utilizing either the Euler forward or backward finite 
difference method, is chosen for its ability to generate accurate and 
reliable results (29).

5.1 Numerical simulations to show the 
effect of changing fractional order

Some values of the fractional order ϑ  are taken to check the 
performance of the proposed model. The simulation curve illustrated in 
Figures 2A-D indicates how changes in fractional order affect the negative 
attitudes of passengers toward railway transportation. Based on the results 
of Figure 2, it can be observed that, when the fractional order decreases, 
there is a decrease in the numbers of exposed passengers and passengers 
with negative attitudes due to safety concerns and unreliable train 
operations. These changes are attributed to the memory effect.

Moreover, decreasing fractional order leads to an increase in the 
number of passengers whose negative attitudes toward railway 
transportation have changed. This indicates that the fractional order 
model yields better model accuracy than the integer order model.

5.2 Numerical simulation of the optimal 
control problem

To assess the effects of controlling strategies and validate the 
analytical findings of the fractional order optimal control problem, 
we conducted a numerical simulation (Equation 13) using MATLAB 
2023a programming codes.

We employed the Euler forward or/and backward finite difference 
method for the simulation, using different initial conditions and 
assuming specific baseline parameter values to be  χ χ χ1 2 3 32= = = , 
Γ =1 40 , Γ =2 43 , Γ =3 48,  q = 0 5. , β = 0 38. , η= 0 34. , d2 0 2= . , 
d = 0 23. ,  =K 100 , ϖ = 0 4. , α1 0 45= . , and α2 0 38= . . In this 
subsection, we conducted a numerical simulation using the Euler 
forward method to investigate the impact of controlling strategies on 
the state variables in the optimal control problem (Equation 13). 
We assumed that the order of the derivative is ϑ = 0 96. .

Figures  3–5 in the numerical simulations demonstrated the 
importance of control strategies in addressing the dissemination of 
negative attitudes among passengers in the community. We considered 
optimal controlling strategies to showcase the impact of protection 
and improvement measures on reducing transmission rates. The first 
strategy involves implementing only the protection strategy ( u1 ). The 
second strategy focuses solely on the improvement of the attitudes 
individuals ( u2 ) who developed negative attitudes due to safety 
concerns. The third strategy targets the improvement of the attitudes 
of individuals ( u3)  who developed negative attitudes due to unreliable 
train operation. The fourth strategy combines both improvement 
strategies ( u2  and u3 ) simultaneously, and finally, the fifth strategy 
involves implementing all of the controlling strategies ( u1 , u2 , and 
u3 ) together.

5.2.1 Effect of protection ( 1 0u ≠ )
In this sub-section, we conducted a numerical simulation under 

two conditions: one without applying improvement-controlling 
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strategies and the other with the implementation of a preventive 
strategy (Strategy 1), that is, by setting 1 0u ≠ , u2 0= ,  and u3 0=  
while also considering the value ϑ = 0 96. . The graphical 
representation in Figure  3 that illustrates the influence of the 
prevention strategy on the dynamics of passengers’ transmission of 
negative attitudes shows that implementing the controlling strategy 
u1  significantly decreases the exposed passengers, the passengers who 
developed negative attitudes due to safety concerns, and the passengers 
who developed negative attitudes due to unreliable train operation, 
while there was an increase in the number of susceptible passengers 
and in the number of passengers whose negative attitudes changed.

5.2.2 Effect of improvement strategies ( 2 0u ≠
and 3 0u ≠ )

In this subsection, we performed numerical simulations without 
applying a protection control strategy (u1 ) and applying the 
improvement strategies 2( 0u ≠ and 3 0)u ≠ . From the simulation 
illustrated by Figure 4B shows that individuals in the exposed class are 
reduced slightly as compared to Figure  3B, but passengers who 
developed negative attitudes due to safety concerns and the passengers 
who developed negative attitudes due to unreliable train operation are 
reduced rapidly compared to the first similar classes.

5.2.3 Effect of protection and improvement 
strategies ( 1 20, 0,u u≠ ≠ and 3 0)u ≠

In this subsection, we performed numerical simulations without 
applying all controlling strategies in place and by applying all possible 
controlling strategies 1 2( 0, 0,u u≠ ≠ and 3 0)u ≠  simultaneously.

Here, we can compare the impact of implementing the different 
control strategies on the emergence of negative attitudes. Figure 5A 
demonstrates that implementing all proposed control strategies 
significantly increases the number of susceptible individuals 
compared to the numbers shown in Figures 3A, 4A. Additionally, 
Figure 5B illustrates that all proposed controlling strategies greatly 
decrease the number of exposed individuals compared to the 
number of exposed individuals illustrated in Figures  3B, 
4B. Furthermore, Figure 5C reveals that all proposed controlling 
strategies have a considerable impact on reducing the number of 
passengers who developed negative attitudes compared to the 
numbers in Figures 3C,D, 4C. Finally, in Figure 5D, implementing 
all proposed strategies notably increases the number of individuals 
whose negative attitudes changed compared to the number of 
individuals whose negative attitudes changed as illustrated in 
Figures 3E, 4D. Ultimately, it is observed from Figure 5 that applying 
all possible controlling strategies 1 2( 0, 0,u u≠ ≠  and 3 0)u ≠  

A B

C
D

FIGURE 2

Effect of fractional order on the status of the state variables.
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simultaneously leads to a significant reduction in the number of 
passengers who develop negative attitudes in the community after 
10 years. When compared to other strategies, implementing 
protection alone or improvement strategies alone, both protection 
and improvement strategies together is the most effective strategy 
in addressing the evolution of negative attitudes due to unreliable 
train operations or safety concerns among passengers in 
the community.

6 Conclusion

In this study, the dynamics of passengers who developed negative 
attitudes by applying the Caputo fractional order derivative approach 
whenever the fractional order ϑ = 0 96.  is presented. Some 
fundamental proprieties of the solutions of the proposed fractional 
order model, such as existence, uniqueness, positivity, and 
boundedness, are analyzed. We derived the formula for the model’s 

A B

C

E

D

FIGURE 3

Effect of the prevention strategy (𝑢1) on the negative attitude status of different population groups with 𝜗=0.96.
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basic reproduction number using the next-generation operator 
approach. Using the stability criteria for the fractional order model, 
we analyzed the results of the stability of the proposed model with 
respect to the basic reproduction number. We examined the local and 
global asymptotical stability of the negative attitude-free equilibrium 
points whenever the corresponding basic reproduction number is less 
than unity.

Moreover, we carried out the local and global stability of the 
negative attitude endemic equilibrium point of the model. 
We formulated and analyzed the corresponding optimal control 
problem for the fractional order model by incorporating three 
time-dependent control strategies: prevention measures, 
improvement measures for negative attitudes due to safety 
concerns, and improvement measures for negative attitudes due to 
unreliable train operation by applying the Pontryagin’s maximum 
principle. Moreover, using the well-known Euler’s forward or/and 
backward finite difference numerical methods, we established the 
results of the numerical simulation of the proposed optimal control 
problem. From the results of the numerical simulation given in 
Figure  5, we  concluded that applying all possible controlling 
strategies 1 2( 0, 0,u u≠ ≠ and 3 0)u ≠  simultaneously greatly 
decreases the number of passengers who developed negative 
attitudes in the community after a decade. Strategy 4 is the most 

effective strategy to tackle the disseminating rate of passengers’ 
negative attitudes throughout the community compared to 
other strategies.

Finally, as this study is not comprehensive, other researchers in 
the field have the opportunity to enhance the proposed model by 
including additional factors such as a stochastic approach, considering 
the age structure of passengers and refining the model with relevant 
real-world data.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

GH: Conceptualization, Formal analysis, Investigation, 
Methodology, Resources, Software, Supervision, Validation, 
Visualization, Writing – original draft, Writing – review & editing. ST: 
Conceptualization, Formal analysis, Investigation, Methodology, 

A B

C D

FIGURE 4

Effect of the improvement strategies [𝑢2 and (𝑢3)] on the negative attitude status of different population groups with 𝜗=0.96.

https://doi.org/10.3389/fams.2024.1290494
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Hailu and Teklu 10.3389/fams.2024.1290494

Frontiers in Applied Mathematics and Statistics 12 frontiersin.org

Resources, Software, Supervision, Validation, Visualization, Writing 
– original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fams.2024.1290494/
full#supplementary-material

References
 1. Alemu A. Success factors and challenges of railway megaprojects in Ethiopia. J Bus 

Adm Stud (2016) 8:1.

 2. Berger A, Hoffmann R, Lorenz U, Stiller S. Online railway delay management: 
hardness, simulation and computation. Simulation (2011) 87:616–29. doi: 
10.1177/0037549710373571

 3. Dziekan K. (2008). Ease-of-use in Public Transportation: A User Perspective on 
Information and Orientation Aspects. Stockholm, Sweden: Royal Institute of Technology.

 4. Cheng YH. Exploring passenger anxiety associated with train travel.  
Transportation (2010) 37:875–96. doi: 10.1007/s11116-010- 
9267-z

A B

C D

FIGURE 5

Effect of all the control strategies (𝑢1  = 0 𝑢2 = 0 and 𝑢3= 0) simultaneously on the passengers’ negative attitude status of different population groups  
with 𝜗 = 0.96.

https://doi.org/10.3389/fams.2024.1290494
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fams.2024.1290494/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fams.2024.1290494/full#supplementary-material
https://doi.org/10.1177/0037549710373571
https://doi.org/10.1007/s11116-010-9267-z
https://doi.org/10.1007/s11116-010-9267-z


Hailu and Teklu 10.3389/fams.2024.1290494

Frontiers in Applied Mathematics and Statistics 13 frontiersin.org

 5. Currie G, Muir C. Understanding passenger perceptions and behaviors during 
unplanned rail disruptions. Transp Res Procedia (2017) 25:4392–402. doi: 10.1016/j.
trpro.2017.05.322

 6. Marteache N, Bichler G, Enriquez J. Mind the gap: perceptions of passenger 
aggression and train car supervision in a commuter rail system. J Public Transp (2015) 
18:61–73. doi: 10.5038/2375-0901.18.2.5

 7. Kuo T, Chen CT, Cheng WJ. Service quality evaluation: moderating influences of 
first-time and revisiting customers. Total Qual Manag Bus Excell (2018) 29:429–40. doi: 
10.1080/14783363.2016.1209405

 8. Din A, Khan FM, Khan ZU, Yusuf A, Munir T. The mathematical study of climate 
change model under nonlocal fractional derivative. Partial Differ Equ Appl Math (2022) 
5:100204. doi: 10.1016/j.padiff.2021.100204

 9. Sene N. Analytical solutions of a class of fluids models with the Caputo fractional 
derivative. Fractal Fract (2022) 6, 3–8. doi: 10.3390/fractalfract6010035

 10. Ghosh U, Pal S, Banerjee M. Memory effect on Bazykin’s prey-predator model: 
stability and bifurcation analysis. Chaos, Solitons Fractals (2021) 143, 3–14. doi: 
10.1016/j.chaos.2020.110531

 11. de Barros LC, Lopes MM, Pedro FS, Esmi E, dos Santos JPC, Sánchez DE. The 
memory effect on fractional calculus: an application in the spread of COVID-19. 
Comput Appl Math (2021) 40:4–5. doi: 10.1007/s40314-021-01456-z

 12. Podlubny I. Fractional Differential Equations: An Introduction to Fractional 
Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of 
Their Applications, vol. 198. San Diego, California, USA: Academic Press. (1999).

 13. Mandal M, Jana S, Nandi SK, Kar TK. Modelling and control of a fractional-order 
epidemic model with fear effect. Energy Ecol Environ (2020) 5:421–32. doi: 10.1007/
s40974-020-00192-0

 14. Matignon D. Stability results for fractional differential equations with applications 
to control processing. Comput Eng Syst Appl (1996).

 15. Teklu SW. Analysis of fractional order model on higher institution students’ 
anxiety towards mathematics with optimal control theory. Sci Rep (2023) 13:6867. doi: 
10.1038/s41598-023-33961-y

 16. Ahmed E, El-Sayed AMA, El-Saka HAA. On some Routh-Hurwitz conditions for 
fractional order differential equations and their applications in Lorenz, Rössler, Chua 
and Chen systems. Phys Lett Sect A Gen At Solid State Phys (2006) 358:1–4. doi: 
10.1016/j.physleta.2006.04.087

 17. Vargas-De-León C. Volterra-type Lyapunov functions for fractional-order 
epidemic systems. Commun Nonlinear Sci Numer Simul (2015) 24:75–85. doi: 10.1016/j.
cnsns.2014.12.013

 18. Bhalekar S, Patil M. Singular points in the solution trajectories of fractional order 
dynamical systems. Chaos (2018) 28:113123. doi: 10.1063/1.5054630

 19. Echenausía-Monroy JL, Gilardi-Velázquez HE, Jaimes-Reátegui R, Aboites V, 
Huerta-Cuellar G. A physical interpretation of fractional-order-derivatives in a jerk 
system: electronic approach. Commun Nonlinear Sci Numer Simul (2020) 90:105413. doi: 
10.1016/j.cnsns.2020.105413

 20. Zhou P, Ma J, Tang J. Clarify the physical process for fractional dynamical systems. 
Nonlinear Dyn (2020) 100:2353–64. doi: 10.1007/s11071-020-05637-z

 21. Petrás I. (2011). Fractional-Order Nonlinear Systems. Modeling, Analysis and 
Simulation. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-18101-6_2

 22. Mainardi F. Why the mittag-leffler function can be considered the queen function 
of the fractional calculus? Entropy (2020) 22, 2–3. doi: 10.3390/e22121359

 23. Fernandez A, Husain I. Modified mittag-leffler functions with applications in 
complex formulae for fractional calculus. Fractal Fract (2020) 4:1–2. doi: 10.3390/
fractalfract4030045

 24. Özarslan MA, Fernandez A. On the fractional calculus of multivariate Mittag-
Leffler functions. Int J Comput Math (2022) 99:247–73. doi: 
10.1080/00207160.2021.1906869

 25. Balatif O, Boujallal L, Labzai A, Rachik M. Stability analysis of a fractional-order 
model for abstinence behavior of registration on the electoral lists. Int J Differ Equa 
(2020) 2020:1–8. doi: 10.1155/2020/4325640

 26. Teklu SW, Terefe BB. Mathematical modeling analysis on the dynamics of 
university students animosity towards mathematics with optimal control theory. Sci Rep 
(2022a) 12:11578. doi: 10.1038/s41598-022-15376-3

 27. Teklu SW, Terefe BB. Mathematical modeling investigation of violence and racism 
coexistence as a contagious disease dynamics in a community. Comput Math Methods 
Med (2022b) 2022:1–13. doi: 10.1155/2022/7192795

 28. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF, Trirogoff KN, 
Neustadt LW. L. S. Pontryagin selected works: the mathematical theory of optimal 
processes. Angew Chem Int Ed (1967) 6:951–2.

 29. Yang WY, Cao W, Chung TS, Morris J. Applied Numerical Methods Using 
MATLAB®, Hoboken, New Jersey: John Wiley and Sons (2005).

https://doi.org/10.3389/fams.2024.1290494
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://doi.org/10.1016/j.trpro.2017.05.322
https://doi.org/10.1016/j.trpro.2017.05.322
https://doi.org/10.5038/2375-0901.18.2.5
https://doi.org/10.1080/14783363.2016.1209405
https://doi.org/10.1016/j.padiff.2021.100204
https://doi.org/10.3390/fractalfract6010035
https://doi.org/10.1016/j.chaos.2020.110531
https://doi.org/10.1007/s40314-021-01456-z
https://doi.org/10.1007/s40974-020-00192-0
https://doi.org/10.1007/s40974-020-00192-0
https://doi.org/10.1038/s41598-023-33961-y
https://doi.org/10.1016/j.physleta.2006.04.087
https://doi.org/10.1016/j.cnsns.2014.12.013
https://doi.org/10.1016/j.cnsns.2014.12.013
https://doi.org/10.1063/1.5054630
https://doi.org/10.1016/j.cnsns.2020.105413
https://doi.org/10.1007/s11071-020-05637-z
https://doi.org/10.1007/978-3-642-18101-6_2
https://doi.org/10.3390/e22121359
https://doi.org/10.3390/fractalfract4030045
https://doi.org/10.3390/fractalfract4030045
https://doi.org/10.1080/00207160.2021.1906869
https://doi.org/10.1155/2020/4325640
https://doi.org/10.1038/s41598-022-15376-3
https://doi.org/10.1155/2022/7192795

	Improving passengers’ attitudes toward safety and unreliable train operations: analysis of a mathematical model of fractional order
	1 Introduction
	2 Basic terminology of fractional order calculus
	3 Models’ formulation
	3.1 Description and assumptions of the models
	3.2 Integer order model
	3.3 Fractional order model

	4 Optimal control problem
	4.1 Existence and optimality of the control strategies

	5 Numerical simulation
	5.1 Numerical simulations to show the effect of changing fractional order
	5.2 Numerical simulation of the optimal control problem
	5.2.1 Effect of protection ()
	5.2.2 Effect of improvement strategies ( and)
	5.2.3 Effect of protection and improvement strategies ( and 

	6 Conclusion
	Data availability statement
	Author contributions

	References

