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Introduction: Bayesian approaches to patient phenotyping in clinical

observational studies have been limited by the computational challenges

associated with applying the Markov Chain Monte Carlo (MCMC) approach

to real-world data. Approximate Bayesian inference via optimization of the

variational evidence lower bound, variational Bayes (VB), has been successfully

demonstrated for other applications.

Methods: We investigate the performance and characteristics of currently

available VB and MCMC software to explore the practicability of available

approaches and provide guidance for clinical practitioners. Two case studies are

used to fully explore the methods covering a variety of real-world data. First, we

use the publicly available Pima Indian diabetes data to comprehensively compare

VB implementations of logistic regression. Second, a large real-world data set,

Optum
TM

EHR with approximately one million diabetes patients extended the

analysis to large, highly unbalanced data containing discrete and continuous

variables. A Bayesian patient phenotyping composite model incorporating latent

class analysis (LCA) and regression was implemented with the second case study.

Results: We find that several data characteristics common in clinical data,

such as sparsity, significantly a�ect the posterior accuracy of automatic VB

methods compared with conditionally conjugate mean-field methods. We find

that for bothmodels, automatic VB approaches requiremore e�ort and technical

knowledge to set up for accurate posterior estimation and are very sensitive to

stopping time compared with closed-form VB methods.

Discussion: Our results indicate that the patient phenotyping composite Bayes

model is more easily usable for real-world studies if Monte Carlo is replaced

with VB. It can potentially become a uniquely useful tool for decision support,

especially for rare diseases where gold-standard biomarker data are sparse but

prior knowledge can be used to assist model diagnosis and may suggest when

biomarker tests are warranted.

KEYWORDS

variational Bayes, latent class analysis, patient phenotyping, real-world evidence,

electronic health records

1 Introduction

With the growing acceptance by clinical regulators of using real-world evidence to

supplement clinical trials, there is increasing interest in the use of Bayesian analysis for both

experimental and observational clinical studies [1]. The identification of specific patient

groups sharing similar disease-related phenotypes is core to many clinical studies [2].

Secondary use of electronic health records (EHR) data has long been incorporated
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in phenotypic studies [3]. Recent studies cover a wide range

including health economics models [4], innovative trial designs for

rare disease drug design [5], and application of EHR information

for antibiotic dose calculations [6]. The most popular approach

that has evolved for identification of cohorts belonging to a

particular phenotype of interest is an expert-driven rule-based

heuristic dependent on data availability for a given phenotypic

study, for example, Cuker et. al. [7]. The application of machine

learning to patient phenotyping has become an active area of

research [8] but such approaches do not consider prior knowledge

and hence are limited, particularly where data are sparse, for

example, with rare diseases. The patient phenotyping approach

presented in this study uses Bayesian statistics to provide a

formal mathematical method for combining prior information

with current information at a study design stage for identification

of phenotypes as a means of selecting a study population. This

offers a mathematically principled method for incorporating expert

opinion and other prior information that can potentially improve

study population precision.

Markov Chain Monte Carlo (MCMC) is considered the

gold standard for Bayesian inference because, in theory, it

asymptotically converges to the true posterior distribution if run

for a sufficient number of iterations thereby reaching a stationary

posterior distribution [9]. Its application has been limited by the

computational challenges of applying MCMC to large real-world

clinical data. In Bayesian analysis, we are usually interested in

the posterior distribution p(Z|X) where Z are latent variables

{z1, ..., zn} and X are observed data {x1, ..., xn}. In many real-

world models of interest, the denominator of Bayes’ theorem, p(X),

often referred to as the evidence, and evaluates to
∫
p(Z,X)dZ,

typically gives rise to analytically or computationally intractable

integrals [10]. Approximate Bayesian inference via optimization

of the one-sided evidence lower bound is often called Variational

Bayes (VB) or Variational Inference (VI). In VB, optimization

is used to find an optimum distribution q(Z) from a family of

tractable distributions Q such that it is as close to the posterior

distribution p(Z|X) as possible. The optimization aims to locate

q∗(Z), the distribution that minimizes the Kullback-Leibler (KL)

divergence of q(Z) and p(Z|X). This optimization approach is often

significantly more computationally efficient than MCMC at the

expense of an approximated posterior that cannot be improved

with more iterations.

VB has been successfully demonstrated for other patient

phenotyping applications. Song et al. applied variational inference

with a deep learning natural language processing (NLP) approach

to patient phenotyping [11]. Li et al. propose another NLP model,

MixEHR, that applies a latent topic model to EHR data [12].

They apply a VB coordinate ascent approach to impute mixed

disease memberships and latent disease topics that apply to a given

patient EHR cohort. Hughes et al. developed a mean-field VB

model for multivariate generalized linear mixed models applied to

longitudinal clinical studies [13].

Latent class analysis (LCA) is widely used when we want

to identify patient phenotypes or subgroups given multivariate

data [14]. A challenge in biomedical LCA is the prevalence of

mixed data, where we may have combinations of continuous,

nominal, ordinal, and count data, further complicated by missing

and inaccurate data across variables. Bayesian approaches to LCA

may better account for this data complexity. The Bayesian approach

serves as a connection between rule-based phenotypes, which

heavily depend on medical expert knowledge and opinion, and

data-driven machine learning methods that solely rely on the

information within the data being analyzed, without the ability to

incorporate relevant prior knowledge [15]. White andMurphy [16]

included a variational inference approach to latent class analysis

with their BayesLCA R package.

Hubbard et al. [17] proposed a composite LCA/regression

model that might be used in a general context for observational

studies that use EHR data. They consider the common clinical

context where gold-standard phenotype information, such as

genetic and laboratory data, is not fully available. A general

model of this form has high potential applicability for use in

clinical decision support across disease areas and with primary and

secondary clinical databases. In this study, we want to evaluate VB

for this context and compare with several MCMC implementations

to determine which are potentially suitable choices for large real-

world biomedical studies of this form. Our primary objective

is to determine whether VB can enable wider use of Bayesian

approaches in large biomedical studies with acceptable accuracy in

a clinical setting.

This study is motivated by a patient phenotyping composite

Bayes LCA/regression model of the form proposed by Hubbard

et al. [17]. It can potentially become a uniquely useful tool for

clinical decision support, especially for rare disease areas where

gold-standard biomarker data are sparse, if the computational

challenges of MCMC can be ameliorated. In this study, we use

the same composite Bayesian LCA/regression model form and

motivating example as Hubbard et al., namely pediatric T2DM,

to test whether the proposed LCA model translates to a different

EHR database with the same target disease under study (Optum
TM

EHR). Pediatric T2DM is rare, so it naturally gives rise to the

data quality issues we would like to explore with our approach.

We extend the Hubbard et al. study to incorporate VB to

investigate whether a much larger EHR data set is amenable

to this form of Bayesian model. Our aim in this study is to

investigate whether a VB approach to Bayesian LCA/regression

phenotyping scales to real-world large EHR data and delivers a

posterior approximation acceptably close to MCMC in a clinical

setting. We compare a range of readily available VB software

within two case studies comparing how closed-form and black-

box VB methods perform with clinical data. The structure of

the study is as follows. Section 2 details the VB algorithms

and available software compared including comparison with a

maximum likelihood estimation (MLE) approach for completeness

since the majority of clinical analyses currently employ MLE.

Note that the aim of this study is to focus on scalable Bayesian

methods so we did not carry out a detailed comparison with either

machine learning or frequentist/MLE approaches. This section also

describes the data used for each case study and how each serves

our primary objective of comparing a wide range of VB algorithms

and software with a special focus on generalizable Bayesian models

for large real-world data; Section 3 presents the results for both

use cases; Section 4 concludes with a summary and discussion

of advantages and challenges of using VB for EHR-based patient

phenotyping with suggestions for further work. The primary goal

is matching the gold-standard MCMC algorithm as closely as
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possible while enabling timely completion of large-scale clinical

observational studies.

2 Materials and methods

Our primary objective is to investigate whether a VB approach

to a potentially generalizable composite Bayesian LCA/regression

phenotypingmodel scales to real-world large EHR data and delivers

a posterior approximation acceptably close to MCMC in a clinical

setting. We find there is a lack of available VB software suitable

for our composite Bayesian LCA/regressionmodel. For that reason,

we included a simpler case study using a purely logistic regression

model with the widely available Pima Indians’ diabetes data1. This

enabled us to include conditionally conjugate closed-formmethods

that are available for VB logistic regression in a wider comparison

of VB and MCMC.

MCMC has become the de facto gold-standard method

for Bayesian analysis due to its theoretical guarantee that, if

iterated to infinity, it will eventually sample from the true

posterior distribution given by Bayes’ rule [18]. In practice, it is

difficult to determine how many iterations are needed before an

MCMC sampling chain has converged to stable bounds around

the true posterior. We therefore usually run several separate

sampling chains for some pre-specified number of iterations,

including so-called burn-in initial iterations that we ignore for

convergence assessment [19]. Convergence assessment usually

includes comparison of diagnostic measures between the separate

sampling chains [20]. JAGS is a Metropolis-Hastings sampler that

specializes in Gibbs sampling [21]. Gibbs sampling can sample

discrete and continuous latent parameters. Stan is a Metropolis-

Hastings sampler that uses a different approach, Hamiltonian

Monte Carlo, that can be faster to reach convergence but, instead

of sampling discrete latent variables, integrates across each class

of each discrete latent variable [22]. This is a technique called

marginalizing-out or integrating-out the discrete latent variables

from the posterior distribution2. A benefit of marginalizing-out

discrete latent variables is a model specification that allows greater

exploration of the tails of the distribution (see footnote 2). However,

it requires specific Stanmodel syntax which complicates translation

of JAGS models with discrete parameters.

VB has become popular in cases where MCMC computation

is particularly challenging. VB employs optimization of the lower

bound on the marginal likelihood to minimize the Kullback-Leibler

divergence of a member of some posited family of approximations

to the real posterior distribution [23]. This lower bound is often

referred to as the Evidence Lower Bound (ELBO) or the Bayes

free energy. The Blei et. al. [24] comprehensive review of VB

address VB from a statistical viewpoint. Their study covers both the

deterministic mean-field approach, coordinate ascent variational

inference (CAVI) as well as stochastic mean-field optimization that

scales to very large data. They provide outline algorithms for both

approaches. Stochastic Variational Inference (SVI) makes use of

repeated subsampling of the data points to noisily optimize the

ELBO [25].

1 https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-

database

2 See Section 8: Latent Discrete Parameters in the Stan Users Guide.

For the logistic regression case study, we compared JAGS

and Stan MCMC with ten VB software packages plus a textbook

implementation (Table 1). Five of the software packages use

automatic black-box approaches. Automatic approaches focus on

optimizing difficult variational objectives where the exponential

family property for the proposed variational density may not

apply [26]. These methods attempt to generalize non-conjugate

inference to apply across many models without specific model

derivation of the objective functions, hence the “black-box” label.

For example, Automatic Differentiation Variational Inference

(ADVI) [26] is a hybrid approach using Monte Carlo estimates

of the ELBO gradient written as an expectation that can be

repeatedly sampled within a stochastic optimization algorithm.

ADVI transforms the support of latent variables to the real

coordinate space before computing the ELBO using Monte Carlo

integration. It then uses stochastic gradient ascent to maximize the

ELBO. All of this is performed automatically, without user input.

The Stan implementation for ADVI incorporates several

algorithm hyperparameters that can be tuned3. We found

combinations of several algorithm hyperparameters affected both

runtime and how closely the result converged (or failed to

converge) to estimates similar to those obtained with MCMC.

The iter hyperparameter is important to ensure the algorithm is

allowed to run long enough to achieve ELBO convergence. For our

EHR data set, we found a large number of iterations were needed

(15,000). The default of 10,000 seems a good general starting point.

We found the elbo_samples default (100) was far too low for our

EHR data. The elbo_samples hyperparameter sets the number of

samples for Monte Carlo estimate of the ELBO. For our data, we

found best accuracy with a value approximately 10,000. This setting

increased the run time of the algorithm to the extent it was not

significantly quicker than MCMC. The tol_rel_obj hyperparameter

sets the stopping criterion. For our EHR data, we set it lower (0.001)

than the default of 0.01 as we found cases where the ELBO had not

converged at the time the algorithm stopped. We used the default

values for other hyperparameters.

For the Bayesian composite LCA/regression case study, we

first reproduced the Hubbard et al. model [17] with JAGS

MCMC [21] using the Optum
TM

EHR T2DM data. This gives

us confidence that the composite Bayes LCA/regression model

can generalize to other similar EHR data. We then followed up

with Stan [22] implementations of Hamiltonian MCMC and VB

to investigate how the model specification translates to other

algorithmic approaches. As we could not find available closed-form

implementations suitable for our composite Bayes LCA/regression

model, such as coordinate ascent or stochastic mean-field VB,

we used Stan Automatic Differentiation Variational Inference

(ADVI) [27] for this case study.

2.1 Logistic regression model

We used the standard logistic regression model for binary

classification. Given a data set with n observations and m observed

feature variables, where xi represents the observed variables for the

3 See Section 13: Variational Inference Algorithm: ADVI in the Stan User’s

Guide.
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TABLE 1 VB and MCMC algorithms in the logistic regression case study.

Algorithm Description Type Automatic Programming

CAVI Coordinate ascent variational inference mean-field VB No R

Own VI Textbook implementation of CAVI based on Murphy [10] mean-field VB No R

SVI Stochastic variational inference mean-field VB No R

varbvs Fast variable selection for large-scale regression mean-field VB No R

sparsevb Spike-and-Slab VB for Linear and Logistic Regression mean-field VB No R

Stan MC Stan Hamiltonian Monte Carlo MCMC No R (rstan)

Stan VB Stan ADVI variational Bayes mean-field or full-rank VB Yes R (rstan, CmdStanR)

ADVI Automatic differentiation variational inference Mean-field VB Yes Python

FRADVI Full-rank automatic differentiation variational inference Full-rank VB Yes Python

NFVI Normalizing flow variational inference Mean-field or full-rank VB Yes Python

ASVGD Amortized Stein variational gradient descent Operator VB Yes Python

Automatic VB methods do not require analytical derivation of the ELBO objective function.

ith observation, and yi represents the binary response, the logistic

regression model predicts the probability p(yi = 1|xi) using the

logistic function

p(yi = 1|xi) =
1

1+ e−zi
(1)

where zi is the linear combination of the features and their

corresponding coefficients:

zi = β0 + β1xi1 + β2xi2 + · · · + βmxim (2)

where β0 is the intercept coefficient, and we have βm

coefficients for the 1, . . . ,m feature variables. In Bayesian

logic regression, we can define priors on the coefficients. We

used normal priors in this study as all predictor variables

are continuous.

2.1.1 Pima Indians’ diabetes data
We used the Kaggle subset1 of Pima Indian adult T2DM data

to facilitate a wide comparison of VB implementations [28]. The

response, yi, is the variable Outcome (diagnosed T2DM). The

predictors, xi, are all continuous variables (pregnancies, glucose,

blood pressure, skin thickness, insulin, BMI, diabetes pedigree, and

age). A logistic regression model was fitted to all predictors as

there are many available VB software implementations for logistic

regression so it serves as a suitable comparative baseline approach.

Our objective with this case study is to compare conditionally

conjugate closed-form methods, for example, [29] with black-

box automatic methods, for example, [26] using clinically

relevant data.

2.1.2 VB logistic regression software
Two VB software libraries in R were compared; sparsevb [30]

and varbvs [31] along with published implementations of CAVI

and SVI from the GitHub4 of Durante and Rigon [29]. sparsevb

uses mean-field CAVI VB. Their package focuses specifically on

variable selection in high dimensional data for regression models

using a spike-and-slab prior to induce sparsity. Their package

includes a novel parameter updating order to improve the CAVI

algorithm performance. varbvs is also focused on variable selection,

in this case aimed at genome-wide association studies. varbvs is

sensitive to the variable ordering and initialization of optimization

procedure. The Python library PyMC3 [32] supports four VB

methods that were included in this study (Table 1). All four are

automatic black-box methods similar to those found in Stan. The

ADVI algorithm from PyMC3 has a similar programming approach

to Stan. Full-rank ADVI (FRADVI) generalizes the mean-field

approximation. The off-diagonal terms in the covariance matrix

capture posterior correlations across latent random variables.

This should result in a more accurate posterior approximation.

The Normalizing Flows VI (NFVI) approach originates from

Rezende and Mohamed [33] whereby a standard initial density is

transformed into a more complex proposed density by applying

a sequence of invertible transformations until a preset level of

complexity is obtained. The aim is to improve the posterior

accuracy. The Amortized Stein Variational Gradient Descent

(ASVGD) approach is from Liu and Stein [34]. ASVGD is related

to the study by Rezende and Mohamed [33]. They introduce a

particle-based framework that allows for automatic differentiation

through stochastic computation graphs to efficiently estimate

gradients. In this approach, the mean parameters are treated as a

set of particles. We included a naïve textbook implementation of

CAVI from Murphy [10] to assess how better the Durante & Rigon

published implementation is. We applied 5-fold cross-validation

(CV) to the data set to investigate the stability of the different

implementations. For algorithms containing hyperparameters, we

performed a grid search over a range for each hyperparameter

within each CV iteration.

4 https://github.com/tommasorigon/logisticVB
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TABLE 2 Model specification for Bayesian latent variable model for EHR-derived phenotypes for patient i.

Variable Model Priors

Latent phenotype Di Di ∼Bern(g(Xiβ
D + ηi)) βD ∼MVN(0,6D); ηi ∼Unif(a, b)

Availability of biomarkers Rij , j = 1, ..., J Rij ∼Bern(g((1,Xi ,Di)β
R
j )) βR

j ∼MVN(µR ,6R)

Biomarkers Yij , j = 1, ..., J Yij ∼N(g((1,Xi ,Di)β
Y
j , τ

2
j )) βY

j ∼MVN(µY ,6Y ); τ
2
j ∼InvGamma(c, d)

Clinical codes Wik , k = 1, ...,K Wik ∼Bern(g((1,Xi ,Di)β
W
k )) βW

k ∼MVN(µW ,6W )

Prescription medications Pil , l = 1, ..., L Pil ∼Bern(g((1,Xi ,Di)β
P
l )) βP

l ∼MVN(µP ,6P)

g(·) = exp(·)/(1 + exp(·))

2.2 Composite Bayes LCA/regression
model

The canonical form for LCA assumes that each observation

i, with U observed categorical response variables xi =

{xi1, xi2, . . ., xiU}, belongs to one of C latent classes. Class

membership is represented by a latent class indicator zi = {1, ...,C}.

The marginal response probabilities are

P(xi) =

C∑

c=1

πc

U∏

u=1

P(xiu|zi = c) (3)

where zi is the latent class that observation i belongs to, and

π c is the probability of being in class c. The variables x are

assumed to be conditionally independent given class membership,

an assumption known as local independence.

The composite Bayes LCA/regression model applied is from

Hubbard et al. [17] and follows the general specification shown

in Table 2. In the T2DM model example, Di represents the latent

dichotomous propensity for observation i to be in the T2DM class,

that is, the value of C in Equation 3 denotes that either the patient

has T2DM or does not have T2DM. There are three variables in U;

biomarker indicator Rij, where j has two categories, laboratory test

availability for HbA1c and Random Blood Glucose for observation

i; ICD clinical codes Wik, where k has two categories, diagnosis

of T2DM and at least one endocrinologist visit; and diabetes

medications Pil, where l has two categories, metformin and insulin.

The latent phenotype variable for each patient, Di, is assumed to be

associated with patient characteristics that include demographics

(for pediatric T2DM, they are age, higher-risk ethnicity, and BMI

z-score) denoted by X in the model specification. This model

allows for any number of clinical codes or medications, and in

this model, each clinical code and medication are binary indicator

variables to specify if the code or medication was present for that

patient. Since it is common for biomarker laboratory tests, Yij, to

be missing across a cohort of patients, biomarker availability, Rij, is

an important component of the model. This is because biomarkers

are widely considered to be high-quality prognostic data for many

disease areas [35] and availability of a biomarker measurement

can be predictive of the phenotype since laboratory tests are often

proxies for physician diagnoses.

The model likelihood for the ith patient is given by

L(ηi,β
D,βR,βY ,βW ,βP, τ 2|Xi) =

∑

d=0,1

P(Di = d|ηi,β
D,Xi)

J∏

j=1

f (Rij|Di = d,Xi,β
R
j )f (Yij|Di

= d,Xi,β
Y
j , τ

2
j )

Rij

K∏

k=1

f (Wik|Di = d,Xi,β
W
k )

L∏

l=1

f (Pil|Di = d,Xi,β
P
i ) (4)

where βD associates the latent phenotype to patient

characteristics, ηi is a patient-specific random effect parameter,

and parameters βR,βY ,βW , and βP associate the latent phenotype

and patient characteristics to biomarker availability, biomarker

values, clinical codes, and medications, respectively. Xi represents

M patient covariates, such as demographics (Xi = Xi1, ...,XiM). The

mean biomarker values are shifted by a regression quantity βY
j,M+1

for patients with the phenotype compared to those without5.

The sensitivity and specificity of binary indicators for clinical

codes, medications, and the presence of biomarkers are given

by combinations of regression parameters. For instance, in a

model with no patient covariates, sensitivity of the kth clinical

code is given by expit(βW
k0

+ βW
k1
), while specificity is given

by 1 − expit(βW
k0
), where expit(·) = exp(·)/(1 + exp(·)). We

validate this model with a real-world example, namely, pediatric

T2DM. Table 3 indicates how the composite Bayes LCA/regression

phenotyping model maps to this disease area. f (·) in Equation 4

represents the probability function that will depend on the specific

disease application of the model.

Informative priors are used to encode known information on

the predictive accuracy of glucose; Yi1 = N (90.6+42Di, 16.93) and

HbA1c; Yi2 = N (5.4 + 1Di, 0.45) laboratory tests for T2DM. The

biomarker priors inform a receiver operating characteristic (ROC)

model since the biomarkers are normally distributed. The prior

values were selected to correspond to an area under the ROC curve

(AUC) of 0.95 [17].

Although the pediatric T2DM example comprises two

measured variables for each of Yi, Wi, and Ri, the model can be

5 M + 1 is to account for the regression intercept.
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TABLE 3 Mapping the composite Bayes LCA/regression phenotyping model factors to the pediatric T2DM study for patient i.

Model Variable Data Elements

Latent phenotype Di Presence of T2DM for observation i (binary latent variable, Di ∈ {0, 1},

where 1 indicates presence of T2DM) based on patient characteristics,

for example, demographics

Availability of Biomarkers Rij , j = 1, ..., J Availability of (j=1) Glucose and (j=2) HbA1c biomarker data

Biomarkers Yij , j = 1, ..., J Laboratory test values for (j=1) Glucose and (j=2) HbA1c CPT codes

Clinical codes Wik , k = 1, ...,K (k=1) ICD Code for T2 Diabetes and (k=2) CPT code for Endocrinologist Visit

Prescription medications Pil , l = 1, ..., L NCDMedication codes for (l=1) Insulin and (l=2) Metformin

expanded to multiple biomarkers, clinical codes, and medications

for other disease areas and easily extends to include additional

elements, for example, the number of hospital visits or the number

of medication prescriptions, or, for other disease conditions or

study outcomes, comorbidities, and medical costs. Given our

objective is to determine the utility and performance of VB in

tackling a problem of this nature, in comparison with MCMC,

we extend the Hubbard et al. study by comparing a range of

alternative methods to JAGS that included alternative MCMC

and VB using Stan. Our aims were to characterize the advantages

and challenges posed by this extendable patient phenotyping

composite Bayes LCA/regression model using VB approaches

compared to the traditional Gibbs/Metropolis-Hastings sampling

MCMC approach. The following sub-sections discuss each of these

approaches in turn.

2.2.1 Optum
TM

EHR data
We used licensed Optum

TM
EHR data for the generalizable

Bayesian LCA model. This data set is comprised of EHR records

from hospitals, hospital networks, general practice offices, and

specialist clinical providers across the United States of America.

It includes anonymized patient demographics, hospitalizations,

laboratory tests and results, in-patient and prescribed medications,

procedures, observations, and diagnoses. The data provide most

information collected during a patient journey provided all care

sites for a given patient are included in the list of Optum
TM

data contributors. This data set is one of the most comprehensive

EHR databases in the world [36] and is used extensively for real-

world clinical studies [37]. The data set used in our case study

contains Optum
TM

EHR records collected between January 2010

and January 2020.

The initial processing step is to identify, from the overall

Optum
TM

data set, a cohort of pediatric patients with elevated

risk of T2DM, to subsequently perform phenotyping. For this

analysis, we extracted a patient cohort of pediatric patients with

equivalent T2DM risk characteristics defined in Hubbard et al. [17].

We transformed our Optum
TM

data schema into the same form

as the Hubbard et al. data schema to test how well the proposed

Bayesian LCA model translates from the Hubbard et al. PEDSnet

EHR data to the Optum
TM

EHR data. The PEDSnet data used

by Hubbard et al. are located within the USA Northeast region

which comprises approximately 13% of the Optum
TM

data which

cover the whole USA. To account for potential variance of pediatric

T2DM prevalence across the USA, we used the Northeast subset

of the Optum
TM

EHR for the composite Bayes LCA/regression

comparison, although we also ran the study using all of the

data. The data specification in Figure 1 shows how the data were

extracted from Optum
TM

EHR. The overall objective for this

specification was to arrive at the same patient identification rules

used by Hubbard et al. We also restricted the data variables to

those used in the Hubbard et al. study. The patient BMI z-score was

calculated from the US Centers for Disease Control and Prevention

Growth Charts [38] using patient age, sex, and BMI. The full

US Optum
TM

EHR pediatric T2DM data extraction is compared

with Hubbard et al. PEDSnet data in the supporting information

(Supplementary Table S1).

2.2.2 Gibbs Monte Carlo sampling
We used JAGS [21] as the baseline approach for comparison

with all other methods since it uses the simplest method of

Metropolis-based MCMC [39]. Our initial baseline objective was

to reproduce the Hubbard et al. model using the same methods

they employed but against a different EHR database. We used the

same JAGS LCAmodel published by Hubbard et al. in their GitHub

supplement6.

2.2.3 Hamiltonian Monte Carlo sampling
We used Stan MC [22] for an alternative MCMC comparison

given that Stan makes use of a different Metropolis-based

sampling method to JAGS and particularly for our model

employs marginalization of discrete latent variables. Stan uses a

variant of Hamiltonian Monte Carlo called ’No U-turn Sampler

(NUTS)’ [40]. This approach includes a gradient optimization step,

so it cannot sample discrete latent parameters in the way JAGS

can. Instead, StanMC integrates the posterior distribution over the

discrete classes [41], so this is a useful comparison to the discrete

sampling Gibbs approach.We translated the JAGSmodel directly to

a Stan model using similar sampling notation and had reasonable

results (Table 4) though Stan does have various helper functions,

for example, log-sum-exp and the target log-probability increment

statement.

6 https://github.com/rhubb/Latent-phenotype/
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FIGURE 1

Data specification for pediatric patients at risk of T2DM in Optum
TM

EHR database. The bottom row shows the number of patients having the model

study characteristics for the pediatric T2DM phenotype for the relevant variables.

TABLE 4 Comparison of composite LCA/regression model results for clinical attributes.

Posterior mean (95% CI)

(a) JAGS Gibbs MCMC (b) Stan HMC (c) Stan VB

T2DM code sensitivity (expit(βW
10 + βW

11 )) 0.15 (0.12, 0.18) 0.10 (0.09, 0.11) 0.12 (0.10, 0.12)

T2DM code specificity (1-expit(βW
10 )) 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 0.99 (0.99, 0.99)

Endocrinologist visit code sensitivity (expit(βW
20 + βW

21 )) 0.18 (0.15, 0.21) 0.20 (0.18, 0.21) 0.22 (0.19, 0.22)

Endocrinologist visit code specificity (1-expit(βW
20 )) 0.99 (0.98, 0.99) 0.98 (0.97, 0.99) 0.97 (0.97, 0.99)

Metformin code sensitivity (expit(βP
10 + βP

11)) 0.40 (0.36, 0.44) 0.21 (0.20, 0.21) 0.19 (0.19, 0.20)

Metformin code specificity (1-expit(βP
10)) 0.98 (0.98, 0.99) 0.93 (0.92, 0.93) 0.93 (0.92, 0.94)

Insulin code sensitivity (expit(βP
20 + βP

21)) 0.55 (0.51, 0.59) 0.35 (0.31, 0.35) 0.20 (0.19, 0.20)

Insulin code specificity (1-expit(βP
20)) 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00)

Mean shift in HbA1c (βY
12) 4.80 (4.72, 4.81) 4.77 (4.76, 4.78) 4.77 (4.75, 4.78)

Mean shift in glucose (βY
11) 89.30 (89.10, 90.01) 88.59 (88.48, 88.71) 22.80 (21.06, 24.92)

2.2.4 Variational inference
We used Stan Automatic Differentiation VB [26] for

comparisonwithMCMC. In Stan, there is only one implementation

of variational inference, the automatic differentiation

approach [27]. We found this was challenging for the composite

Bayes LCA/regression model. For both Stan MCMC and VB,

we used the same Stan model definition7. There is a lack of

closed-form solutions implemented in R or Python for variational

Bayes LCA.

7 See Supplementary Appendix S2 for the Stan LCA model details.

Figure 2 illustrates a common problem with current VB

implementations. There are two hyperparameters for stopping, a

maximum number of ELBO calculation iterations and a difference

threshold (delta) between iteration t and t − 1. In Figure 2,

we can see that the argmin{ELBO} has effectively converged

after approximately 30,000 iterations but we have set maximum

iterations to 200,000 and the threshold tolerance relatively low

meaning it is never reached so the algorithm continues well

past the best estimate it can produce. Unfortunately, there is no

way a priori to know what a suitable threshold tolerance should

be as ELBO values are unbounded or the effective number of

iterations for ELBO convergence as this depends on various factors
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FIGURE 2

Runtime ELBO (solid) and threshold delta (dashed) for all iterations. ELBO and threshold have been normalized to the same scale. We can see there is

a diminishing return after approximately 30,000 iterations (vertical dotted line). In this example, the algorithm ran for over a day longer than it needed

to (on a Dell XPS computer with 8-cpu Intel core i9 and 64 GB RAM memory) in finding the best posterior estimate it could generate.

FIGURE 3

Average coe�cient mean over the 5-fold normalized to the MCMC model (top row). The cell values are calculated by simply normalizing the true

values to the corresponding MCMC true value, that is, cell = βtrue
βmcmc

. The programming environment is indicated in the y-axis labels by R for R

programming and Py for Python programming. All standard errors are less than 0.25 of the mean SE for MCMC.
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including model specification and algorithm tuning. However, the

variational approach uses significantly less computer memory than

MCMC. With this EHR phenotyping model on our computer

system, VB used 1.8GB vs. 37GB of RAM memory for a

three-chain MCMC.

2.2.5 Comparison with maximum likelihood
approach

We used the R package clustMD [15] to compare a maximum

likelihood (MLE) clustering approach to Bayesian LCA. clustMD

employs a mixture of Gaussian distributions to model the latent

variable and an expectation maximization (EM) algorithm to

estimate the latent cluster means. It also employs Monte Carlo EM

for categorical data. clustMD supports mixed data so is appropriate

in our context. To use clustMD, the data must be reordered

to have continuous variables first, followed by ordinal variables

and then nominal variables. For our data, the computational

runtime was approximately 50% of JAGS MCMC, approximately

62 h.

TABLE 5 Proportions of zero values in Pima Indians data in total, for the

negative Outcome class and for the positive Outcome class.

Variable Total Negative Positive

Pregnancies 0.145 0.146 0.142

Glucose 0.007 0.006 0.007

BloodPressure 0.046 0.038 0.060

SkinThickness 0.296 0.278 0.328

Insulin 0.487 0.472 0.515

BMI 0.014 0.018 0.007

3 Results

A Dell XPS 7590 laptop with an 8 CPU Intel core i9 processor

and 64GB memory was used for this study. This computer also has

an NVIDIA GeForce GTX 1650 GPU, but it was not used.

3.1 Logistic regression model

Eleven VB implementations were compared against several

MCMC implementations. We used JAGS MCMC as our baseline

comparison. The mean of the model coefficients averaged over

the 5-fold was compared with the MCMC baseline (Figure 3).

The heatmap indicates some variables are more challenging

across multiple VB methods, for example, skin thickness and

insulin, which have a high proportion of zero values (Table 5).

CAVI, however, returns coefficients very close to MCMC, and

it returns comparable empirical performance (Figure 4) and

computational performance (Figure 5). Overall, the closed-form

conditionally conjugate VB methods outperform automatic black-

box VB implementations both empirically and computationally.

Two Python implementations from the package PyMC3,

Full-rank ADVI (FRADVI) and Amortized Stein Variational

Gradient Descent (ASVGD) could not be configured to produce

reasonable results despite a full grid search across their algorithm

hyperparameters.

It is notable from Figure 3 that the sign for some coefficients

is different to that of MCMC, especially the coefficients for blood

pressure and insulin for both Stan implementations. The resulting

data in Table 6 show that JAGSMCMC returns negative coefficients

for both variables whereas Stan HMC and VB return positive

coefficients for these variables (apart from one Stan VB fold). We

FIGURE 4

Predictive performance for 5-fold cross-validation. MCMC is the baseline. The purpose of running cross-validation is to check the model stability

across data slices.
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FIGURE 5

Computational run times in seconds. Four methods produced sub-second performance (red dotted line), and three had <10 s run time (blue dotted

line). These are very significant improvements compared with MCMC (∼10 min). All results are using the Dell XPS 7590 laptop mentioned at the start

of this section.

used flat priors for this model so perhaps more informative priors

are required for the Stan methods, as mentioned in Chapter 1 of

the Stan user’s guide. These implementations might also be more

influenced by data containing a high proportion of zeros.

The empirical predictive performances closest to MCMC were

CAVI, SVI [29], and varbvs [31] (Figure 4). All three are mean-

field methods that require analytical derivation of the optimization

ELBO in contrast to automatic methods ADVI and NFVI [32].

All five methods remained reasonably stable across the five cross-

validation folds.

3.2 Composite Bayes LCA/regression
model

The baseline results using the Northeast region subset of

Optum
TM

obtained from JAGS were close to the Hubbard

et al. results (Table 7). The differences in biomarker shift can

be explained by the wider patient geographic catchment and

differences inmissing data for PEDSnet andOptum
TM

. The striking

difference for Endocrinologist visit sensitivity could be due to the

much smaller proportion of such visits occurring in the Optum
TM

data, that is, 63.43% in PEDSnet EHR vs. 5.9% in Optum
TM

EHR.

Following these results, we are confident in the extensibility of

the model to the same disease area with different EHR data.

Unfortunately, the computational performance is poor using JAGS.

For example, a subset of ∼38,000 observations taking 16 h

to run.

We tested posterior diagnostics, goodness-of-fit diagnostics,

and the empirical performance of the composite model. Stan has

comprehensive posterior diagnostics available via the posterior [42]

and bayesplot [43] R packages. The loo R package [44]

provides goodness-of-fit diagnostics based on Pareto Smoothed

Importance Sampling (PSIS) [45], leave-one-out cross-validation,

and theWatanabe-Akaike/Widely Applicable information criterion

(WAIC) [44, 46].

TABLE 6 Resulting coe�cients for 5-fold for blood pressure and insulin

comparing MCMC with Stan_MC and Stan_VB.

Method Fold Blood pressure Insulin

MCMC 1 -0.017 -0.002

MCMC 2 -0.011 -0.001

MCMC 3 -0.011 -0.001

MCMC 4 -0.011 -0.001

MCMC 5 -0.015 -0.001

Stan_MC 1 0.020 0.002

Stan_MC 2 0.020 0.002

Stan_MC 3 0.020 0.002

Stan_MC 4 0.020 0.002

Stan_MC 5 0.020 0.002

Stan_VB 1 0.020 0.006

Stan_VB 2 0.009 0.010

Stan_VB 3 0.030 0.008

Stan_VB 4 0.030 -0.009

Stan_VB 5 0.030 0.006

3.2.1 Posterior diagnostics
The posterior diagnostics plots for the biomarkers in Figure 6

show that, for (a) MCMC, we see no evidence of collinearity and

the posterior means appear close to those we obtained with JAGS

(b). The mcmc pairs plot for VB appears reasonable for HbA1c but

not for the glucose biomarker rpg_b_int prior. There appears to be

a correlation between the glucose priors and the expected value

for glucose is far from that obtained with MCMC (Table 4). We

were unable to fully explain this correlation and the glucose mode

far from that reported by MCMC. We made several amendments

to the model specification along with algorithm hyperparameter
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TABLE 7 Comparison of Optum
TM

results with Hubbard et al. PEDSnet using the same JAGS LCA model published in Hubbard et al. GitHub [17].

Posterior mean (95% CI)

(a) PEDSnet data (b) Optum
TM

data

T2DM code sensitivity (expit(βW
10 + βW

11 )) 0.17 (0.15, 0.20) 0.15 (0.12, 0.18)

T2DM code specificity (1-expit(βW
10 )) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)

Endocrinologist visit code sensitivity (expit(βW
20 + βW

21 )) 0.94 (0.92, 0.95) 0.18 (0.15, 0.21)

Endocrinologist visit code specificity (1-expit(βW
20 )) 0.93 (0.93, 0.94) 0.99 (0.98, 0.99)

Metformin code sensitivity (expit(βP
10 + βP

11)) 0.31 (0.28, 0.35) 0.40 (0.36, 0.44)

Metformin code specificity (1-expit(βP
10)) 0.99 (0.99, 0.99) 0.98 (0.98, 0.99)

Insulin code sensitivity (expit(βP
20 + βP

21)) 0.66 (0.61, 0.70) 0.55 (0.51, 0.59)

Insulin code specificity (1-expit(βP
20)) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)

Mean shift in HbA1c (βY
12) 3.15 (3.06, 3.24) 4.80 (4.72, 4.81)

Mean shift in Glucose (βY
11) 90.62 (90.25, 91.00) 89.30 (89.10, 90.01)

FIGURE 6

bayesplot pairs plots for (A) Stan HMC and (B) Stan VB for the two biomarkers (HbA1c and random plasma glucose, RPG). Each biomarker contains

two priors as defined in the model specification (Table 2). The b_int prior is the multivariate normal, βY
j , representing a biomarker test result for

normal, non-diabetes patients and the b_dm prior encodes known information on predictive accuracy containing values corresponding to a ROC

AUC of 0.95. as described in Hubbard et al. Sections 2.2 and 2.5 [17].

tuning that all returned the same effect for glucose. Since there is

a single chain for VB, there is only the top triangular set, which

represents 100% of the posterior samples. This type of plot does not

communicate the relative variances of the posteriors.

3.2.2 Goodness of fit
We used approximate leave-one-out cross-validation from the

R loo package to evaluate the goodness of fit for the model. loo

uses log-likelihood point estimates from the model to measure its

predictive accuracy against training samples generated by Pareto

Smoothed Importance Sampling (PSIS) [45]. The PSIS shape

parameter k is used to assess the reliability of the estimate. If k <

0.5, the variance of the importance ratios is finite and the central

limit theorem holds. If k is between 0.5 and 1, the variance of

the importance ratios is infinite but the mean exists. If k > 1,

the variance and mean of the importance ratios do not exist. The

results for the two biomarkers (Figure 7) show all of the n=38,000
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FIGURE 7

PSIS plots for the two biomarkers, HbA1c (top row) and Random Glucose (bottom row) under MCMC (left) and VB (right). Both biomarkers are well

below k=0.5. The HbA1c biomarker is slightly worse for VB with a segment of observations above 0 but is well within good territory. The random

glucose biomarker appears better in VB compared to MCMC, but we know that the expected value obtained by VB for glucose is not as close to the

true value obtained by MCMC.

FIGURE 8

clustMD plots running 2 latent clusters. (A) shows a parallel coordinates plot for all variables, (B) shows the cluster variances for all variables.

observations are in a k < 0.5 range. It appears VB performs

approximately as well as MCMC in the context of the PSIS metric.

3.2.3 Empirical performance
The model sensitivity analysis for the indicator variables shows

good agreement with MCMC (Table 4). The mean shift estimates

for biomarkers glucose variable under ADVI.

3.2.4 Comparison with maximum likelihood
approach

For clustMD, we take cluster 1 as the T2DM class as it is

the minority cluster. The cluster means parallel coordinate plot in

Figure 8A indicates similar HbA1c (4.81) and glucose (89.9) levels

compared to the Bayesian model. Cluster 1 has a significantly larger

variance (Figure 8B) possibly due to the high imbalance of the

T2DM positive class in the data.
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4 Discussion

We compared the use of VB and MCMC for Bayesian latent

class analysis and logistic regression models with the objective of

scaling a composite LCA/regression patient phenotyping model

proposed by Hubbard et al. [17] We compared a number of

alternative methods for estimating parameters in the model to

identify if the intrinsic computational limitations from MCMC

can be overcome in a real-world clinical setting using VB. We

compared VB and MCMC for logistic regression and latent class

analysis for similar clinical settings with two data sets, Pima

Indians’ diabetes and Optum
TM

EHR diabetes data. We set out

some practical issues in using VB compared to MCMC for these

methods on these data such as model stability, data size (primarily

in terms of large N), and mixed discrete and continuous data.

Some practical guidance included balancing accuracy and runtime

via hyperparameter settings and amelioration of label switching

via setting constraints on the priors to ensure close vicinity to

the clinically expected solution. For Bayes LCA, we found a lack

of closed-form VB implementations currently available so we

used black-box automatic approaches. We find automatic black-

box VB methods as implemented both for the baseline Pima

Indian logistic regression model and the Optum
TM

EHR composite

LCA/regression model are complex to configure and very sensitive

to model and prior definition, algorithm hyperparameters and

choice of gradient optimiser. The composite Bayes LCA/regression

model was significantly more challenging to implement, but it

was possible to achieve reasonable results with careful model

specification and hyperparameter tuning. This, however, results in

an iterative trial-and-error approach that we find can sometimes

be more cumbersome than running a multi-chain MCMC. This

study has a number of limitations. In the Optum
TM

EHR case study,

we have not fully explained why the VB posterior prior values

for random plasma glucose are so different to those obtained via

MCMC (both JAGS and Stan). This result is a potential question for

further work. Further limitations are the exploration of examples

where some (but not all) methods run into issues and a discussion

as to why this may be, for example, Kucukelbir et. al., allude

to potential avenues in Section 5 of their ADVI paper [26] and

Dhaka et. al. list several challenges with black-box approaches

to VB [47]. Further work could also explore how these methods

compare for not only large n but also large p, such as for genetic

data. Since data sparsity is an important aspect of clinical data, we

feel a comprehensive investigation of this area is warranted. We

also deliberately restricted our comparison to Bayesian methods

so that prior information could be incorporated, so we did not

include detailed comparisons with machine learning or frequentist

methods. The Pima Indians case study demonstrated that the

closed-form conditionally conjugate mean-field approach to VB,

even though it has many simplifying assumptions, performed

best of the VB approaches, excelling both computationally and

in achieving posterior accuracy comparable to the MCMC gold

standard for that data set.
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