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This study proposes and analyzes a deterministic mathematical model to

describe the dynamics of corruption transmission. We began by proving that

the solution to the model is bounded and positive. The next-generation

matrix approach is used to compute the basic reproduction number (R0) in

relation to corruption-free equilibrium. The Jacobian and Lyapunov functions

are used to show that corruption-free equilibrium is asymptotically stable in

both locally and globally when R0 < 1, and otherwise, an endemic corruption

equilibrium develops. Furthermore, the sensitivity of the model’s parameters

was investigated. The findings demonstrate that religious precepts govern public

education. The two sectorsmost susceptible to corruption control are education

and corrections. The study recommends investingmore in the provision of public

education to citizens by creating awareness among all and including it in the

education curriculum and religious leaders to teach their followers seriously

about the impact of corruption as well as the use of jail as punishment. The

numerical simulation results agreed with the analytical results.
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1 Introduction

TheWorld Bank [1] defines corruption as an illicit activity committed for personal gain

and benefit by public (government) or private (business) officials who abuse their position

of authority or influence. According to Abdulrahman [2], individuals may be corrupted

and then gradually grow into the most corrupt individuals. It is indistinct in terms of color,

shape, odor, collusion, secrecy, stealth, and shamelessness [3]. According to Rothstein [4],

corruption has a negative impact on a nation’s ability to flourish and is widespread and

present to varied degrees throughout the world. It is a cancer to the development of the

economy, the social order, and the political system [5].

Several mathematical studies have been conducted to better understand the causes

and methods for preventing corruption around the world [6]. For example, Danford et

al. [7] quantitative modeling and analysis of Tanzanian corruption dynamics using control

measures demonstrated a direct relationship between the study’s parameters and the basic

reproduction number (R0). According to their research, the corruption-free equilibrium

is globally asymptotically stable for R0 < 1. An endemic equilibrium persists and the

corruption-free equilibrium point is unstable if R0 > 1. While it is challenging to

totally remove corruption, it might be lessened by raising wages in the public sector and

decreasing poverty.

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2024.1323479
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2024.1323479&domain=pdf&date_stamp=2024-05-13
mailto:bezeleke48@gmail.com
https://doi.org/10.3389/fams.2024.1323479
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2024.1323479/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Aga et al. 10.3389/fams.2024.1323479

In their study, Akanni et al. [8] examined a deterministic

mathematical model that considers the impact of society onmorally

upright people to explain the transmission dynamics of corruption.

The model’s positivity and boundedness are established, and

the next-generation matrix approach is used to get the basic

reproduction number. The research demonstrates that when

R0 < 1, corruption-free equilibrium is asymptotically stable

both locally and globally. Additionally, whenever R0 > 1, the

endemic equilibrium point is asymptotically stable both locally and

globally. Globally, a great deal of research has been conducted

on how pandemics evolve. The evaluation and forecasting of the

corruption pandemic’s spread, together with the identification of

its parameters, were thoroughly and meticulously examined in

the studies [9–15]. A mathematical model of corruption dynamics

including stability analysis was created by Nathan and Jackob

[13]. In their research, they covered the necessity of sustained

engagement and active participation on the side of anti-corruption

players such as governments, the commercial sector, academia, civil

society, and media.

Over the course of a year, a number of authors have used

mathematical models to assess the effects of corruption on national

development and the best control strategies for the dynamics

of corruption. These authors include [16–24]. In particular,

Lemecha [25] constructed and examined a mathematical model

with a constant recruitment rate from the total population to

investigate the dynamical nature of corruption governing the

model. The awareness raised by anti-corruption efforts and in

prison counseling was factored into the mathematical model

of corruption that was constructed. The analysis shows that

the corruption-free equilibrium is locally asymptotically stable

whenever the reproduction number is smaller than one. The

analytical results were validated using numerical simulation.

As mentioned above, all studies developed mathematical

models of corrupt transmission dynamics by viewing different

aspects. But many of them did not consider honest individuals

become susceptible in one model. But, the honest peoples have a

chance to be susceptible due to desire or poverty and also analysis

the effects of education, religious, and punishment on transmission

dynamics of corruption.

The remainder of this research is as follows: Section 2

presents the mathematical model framework for the propagation

of corruption. In Section 3, we investigate the positivity and

boundedness of solutions, as well as the stability of the endemic and

corruption-free equilibria. Section 4 covers the subject of numerical

simulation. Section 5 offers a conclusion at the end.

2 Model formulation

The model formulation and its description were covered in

this section. The entire population is split into four classes in this

model: susceptible class S(t), which is composed of those who do

not participate in any corrupt activity; corrupted class C(t), which

is composed of those who actually participate in corrupt behavior;

recovered class R(t), those who are stopped from doing any corrupt

activity; and those who do not commit corruption are honest class

H(t). The entire population is provided by N(t) = S(t) + C(t) +

R(t)+ H(t).

FIGURE 1

Flow chart of the model.

We assume that the recruitment rate of π increased the

susceptible class. The ω rate at which the honest people become

vulnerable is caused by poverty or desire. However, susceptible

people begin to practice corruption after coming into touch with

corrupt people, are persuaded by them at a rate of β , and are

moved to the corrupted class; the remaining portion will join

the honest class as a result of public education γ and religious

instruction η. Corrupted individuals stop doing corruption and

join recovery class due to public education, religious, jail at rate

ξ , and natural death rate of µ, respectively. Since, the recovery

class there is a temporally stay meaning that after short interval

of time, individuals leave the class at the rate of (1 − τ )α join

susceptible class or the remaining join the honest class at rate of ατ .

The flow chart in Figure 1 and the Table 1 depicts the explanation

mentioned previously.

Putting all model equations together, we obtain the following

non-linear system of differential equations:























dS
dt

= π − βSC + α(1− τ )R+ ωH − (γ + η + µ)S,
dC
dt

= βSC − (γ + η + ξ + µ)C,
dR
dt

= (γ + η + ξ )C − (α + µ)R,
dH
dt

= (γ + η)S+ ατR− (µ + ω)H,

(1)

with initial conditions, S(0) > 0,C(0) ≥ 0,R(0) ≥ 0, andH(0) ≥ 0.

The parameters appearing in the system 1 are described and

interpreted in the Table 1.

3 Model analysis

3.1 Non-negativity and invariant region

The constraint on the model’s solution is found using the

invariant area.
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TABLE 1 Description of parameters.

Parameter Description

π Recruitment rate of susceptible individuals

µ Natural death rate of individuals

β Contact rate of susceptible individuals with

corrupted individuals

α Proportion of recovered individuals that join

susceptible class

ω Rate of honesty human become susceptible

η Rate of change of corrupt due to education

γ Rate of change of corrupt due to religious

ξ Rate of change of corrupt due to jail

Theorem 1. For the system 1, a positively invariant set is the closed

area

� =

{

(S,C,R,H) ∈ R4+ :N(t) ≤
π

µ

}

.

Proof 1 Differentiating the entire population N(t) with respect

to time t and subtracting all values of state variables from system 1,

we obtain

dN

dt
= π − µN, (2)

and then solving the Equation 2, we obtain

N(t) =
π

µ
+

[

N0 −
π

µ

]

e−µt . (3)

Hence, from Equation (3) N(t) → π
µ
as t → ∞ that indicates

N(t) ≤ π
µ
. Therefore, � is the feasible region of system 1.

Theorem 2. The solution set (S(t),C(t),R(t),H(t)) of system 1 is

positive for all t ≥ 0 for non-negative initial conditions.

Proof 2 Let us take the first equation from the system 1.Without

loss of generality, omit all terms from the equation that do not

contain the state variable S because our intention is to test for

positivity of only S(t).

dS

dt
≥ −(βC + γ + η + µ)S. (4)

Integrating Equation (4) with respect to time and applying

separable method of variables with the initial condition, we get

S(t) ≥ S(0)e−
∫

(βC+γ+η+µ)dt > 0. (5)

Hence, Equation (5) shows that S(t) > 0. Similarly, for others.

This proves that the solution of system 1 is positive for all t ≥ 1.

3.2 Corruption-free equilibrium

When there is no corruption in the community, or C = 0, we

have what is known as corruption-free equilibrium (CFE). After

finding the non-corrupted state variable by solving for the right

hand side of system 1, we obtain

40 =

(

π

µ(γ + η + ω + µ)
, 0, 0,

π(γ + η)

µ(ω + µ)(γ + η + ω + µ)

)

.

3.3 Basic reproduction number

The average number of secondary cases that could result

from the introduction of one corrupt person into a completely

susceptible community is known as the basic reproduction number

(R0) [17]. The next-generation matrix technique described in [9,

26] can be used to obtain it. Rewriting the system 1 is the first stage,

and it should begin with the recently compromised class.

dC

dt
= βSC − (γ + η + ξ + µ)C. (6)

Then, the basic reproduction number of the model is the

spectral radius of the next-generation matrix FV−1, where F is the

matrix of new corrupted terms and V is the matrix of transition

terms. Then Equation (6) can be written as the form of F-V, where

F = βSC and V = (γ + η + ξ + µ)C. (7)

The Jacobian matrices of F and V of Equation (7) are obtained

by differentiating with respect to C as follows:

F =
∂F

∂C
= βS, V =

∂V

∂C
= γ + η + ξ + µ. (8)

Then, evaluating Equation (8) at the corruption-free
equilibrium point, we get

F =
∂F

∂C
=

πβ

µ(γ + η + ω + µ)
, V =

∂V

∂C
= γ + η + ξ + µ. (9)

Hence, in Equation (9), the matrix V(40) is invertible and thus

V−1 =
1

γ + η + ξ + µ
.

By the principle of next-generation matrix,

R0 =
πβ

µ[(γ + η + ω + µ)(γ + η + ξ + µ)]
.

3.4 Local stability of CFE points

Theorem 3. The corruption-free equilibrium point is locally

asymptotically stable ifR0 < 1 and unstable otherwise.

Proof 3 To proof this theorem, first linearize the system 1

by using Jacobian matrix method, and then evaluating at the

corruption-free equilibrium point, we get

J =











−(γ + η + µ) −
πβ

µ(γ+η+ω+µ)
α(1− τ ) ω

0 πβ

µ(γ+η+ω+µ)
− (γ + η + ξ + µ) 0 0

0 γ + η + ξ −(α + µ) 0

γ + η 0 ατ −(µ + ω)











. (10)
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Expanding the characteristic equation |J − λI| = 0 Equation (10),

we get two eigenvalues

λ1 =
πβ

µ(γ + η + ω + µ)
− (γ + η + ξ + µ),

= (γ + η + ξ + µ)(R0 − 1) < 0,

only if R0 < 1 and λ2 = −(α + µ) < 0. The remaining roots are

the solution to the following equation:

λ2 + λC + D = 0, (11)

where C = (γ + η + 2ω + 2µ) and D = µ(γ + η + ω + µ).

Thus, Equation (11) has a strictly negative real root if and only if

C > 0,D > 0, and CD > 0, according to the Rourth-Hurwitz

criterion that we applied. Given that C > 0 is the sum of positive

parameters, it is evident that this is the case. As a result,40 is locally

asymptotically stable.

3.5 Global stability of CFE point

Theorem 4. The corruption-free equilibrium of the system 1 is

globally asymptotically stable ifR0 < 1 and unstable ifR0 > 1.

Proof 4 To prove the global stability of the corruption-free

equilibrium we use the method of Lyapunov functions. Define

L =
1

2
C2, then

dL

dt
=

∂L

∂C

dC

dt
. (12)

Now, from system 1, we have

dC

dt
= βSC − (γ + η + δ + ξ + µ)C.

Therefore, Equation (12) become

dL

dt
=

∂L

∂C

∂C

∂t
,

= C(βSC − (γ + η + ξ + µ))C,

= C2(βS− (γ + η + ξ + µ)). (13)

Since S∗ = π
µ(γ+η+ω+µ)

and then, from Equation (13), we get

dL

dt
= C2

(

πβ

µ(γ + η + ω + µ)
− (γ + η + ξ + µ)

)

,

= C2(γ + η + ξ + µ)

(

πβ

µ(γ + η + ω + µ)(γ + η + ξ + µ)
− 1

)

,

= C2(γ + η + ξ + µ) (R0 − 1) . (14)

Hence, from Equation (14), we have

dL

dt
≤ 0 for R0 < 1.

Therefore, every solution to the system 1 with initial conditions

in � that approaches the corruption-free equilibrium point as time

t tends to infinity whenever R0 < 1 does so in accordance with

LaSalle’s invariant principle [27].

3.6 Stability analysis of endemic
equilibrium

The endemic equilibrium point of the model is denoted by 4∗

and it occurs when the correction persists in the community. To

obtain the endemic equilibrium, we equate all the right hand side

of system 1 to zero and solve them. Consequently, to solve for, it

is necessary to make the provided Equations 1 equal to zero. This

implies:

π − βSC + α(1− τ )R+ ωH − (γ + η + µ)S = 0,

βSC − (γ + η + ξ + µ)C = 0,

(γ + η + ξ )C − (α + µ)R = 0,

(γ + η)S+ ατR− (µ + ω)H = 0. (15)

The persistent recruitment equilibrium, solving for the

remaining variables, we get

(γ + η + δ + ξ )C∗ − (α + µ)R∗ = 0,

(α + µ)R∗ = (γ + η + δ + ξ ),

R∗ =
(γ + η + δ + ξ )

α + µ
.

Next, the value of S∗ can be found as follows from

Equation (15):

βS∗C∗ − (γ + η + δ + ξ + µ + µc)C
∗ = 0,

βS∗ = (γ + η + δ + ξ + µ + µc),

S∗ =
(γ + η + δ + ξ + µ + µc)

β
.

Finally,

(γ + η)S∗ + ατR∗ − (µ + ω)H∗ = 0,

(µ + ω)H∗ = (γ + η)S∗ + ατR∗ ,

(µ + ω)H∗ =
(γ + η)(γ + η + δ + ξ + µ + µc)

β
+

ατ (γ + η + δ + ξ )

α + µ
,

H∗ =
1

(µ + ω)

[

(γ + η)(γ + η + δ + ξ + µ + µc)

β
+

ατ (γ + η + δ + ξ )

α + µ

]

.

and

C∗ =
(α + µ)

[

(ω + µ)(R0 − 1)+ ω(γ + η)+ ω(γ + η)
]

β
[

(ω+µ)(α+µ)
(γ+η+ξ )

+
α(ω+µ)−ατ
γ+η+ξ+µ

]

Theorem 5. The endemic equilibrium point (EEP) of system 1 at

4∗ is locally asymptotically stable ifR0 > 1.

Proof 5 We employ the linearizion approach to demonstrate
the local stability of the endemic equilibrium point of the system 1.
At the endemic equilibrium point, the Jacobian J(4∗) matrix thus
becomes

J =









−(βC∗ + γ + η + µ) −βS∗ α(1− τ ) ω

βC∗ βS∗ − (γ + η + δ + ξ + µ) 0 0

0 γ + η + δ + ξ −(α + µ) 0

γ + η 0 ατ −(µ + ω)









(16)

The characteristic equation of the Jacobian matrix 16 at the

endemic equilibrium point is also given by:

P(λ) = λ4 + A1λ
3 + A2λ

2 + A3λ + A4 (17)
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where

A1 = (α + µ)+ (ω + µ)+ (β + γ + η + δ + ξ + µ),

A2 = (β + γ + η + δ + ξ + µ)(α + ω + 2µ)+

β(γ + η + δ + ξ + µ)+ βα(1− τ )(γ + η + δ + ξ ),

A3 = [β(γ + η + δ + ξ + µ)+ βα(1− τ )(γ + η + δ + ξ )]

(α + ω + 2µ),

A4 = β(γ + η + δ + ξ + µ)+ βα(1− τ )(γ + η + δ + ξ )

(α + µ)(ω + µ)

If the characteristic polynomial of Equation (17) satisfies the

Routh-Hurwitz requirements, its eigenvalues will be negative.

Therefore, if R0 > 1, the EEP of system 1 will be locally

asymptotically stable.

Theorem 6. The endemic equilibrium point (EEP) of system 1 at

4∗ is glocally asymptotically stable ifR0 > 1.

Proof. To analyze the global stability of the endemic equilibrium

point, we construct the Lyapunov function defined by

L(S∗,C∗,R∗,H∗) =
1

2

[

(S(t)− S∗)+ (C(t)− C∗)(R(t)− R∗)

+(H(t)−H∗)
]2

(18)

Computing the derivative of the Equation (18) with respect to

time, we obtain as

dL

dt
=

[

(S(t)− S∗)+ (C(t)− C∗)(R(t)− R∗)+ (H(t)−H∗)
]

d

dt
[S+ C + R+H],

=
[

(S(t)− S∗)+ (C(t)− C∗)(R(t)− R∗)+ (H(t)−H∗)
]

dN

dt
.(19)

Since

dN

dt
≤ π − µN (20)

Thus, using Equation (20), Equation (19) becomes

dL

dt
≤

[

(S(t)− S∗)+ (C(t)− C∗)(H(t)−H∗)

+(R(t)− R∗)
]

(π − µN)

≤

(

N −
π

µ

)

(π − µN) (21)

From Equation (21), we get the following result by rearranging

and simplifying the expression

dL

dt
≤

1

µ
(π − µN)2

Therefore,

dL

dt
(S,C,R,H) ≤ 0 and

dL

dt
= 0

iff S = S∗,C = C∗,R = R∗,H = H∗

Thus, the dominant invariant set in �: dL
dt

= 0 is one set C∗.

As a result of [27, 28] invariant principle, the corruption endemic

equilibrium is globally asymptotically stable in �.

3.7 Sensitivity analysis

Sensitivity analysis is used to find

model parameters that significantly affect

R0. We computed using the definition

of the normalized sensitivity index given

in [9, 29].

Definition 1. The normalized sensitivity index of a variable,

R0, that depends differentiability on a parameter, u,

is defined as

3R0
u =

∂R0

∂u
×

u

R0
, (22)

for u represents all the basic parameters.

The sensitivity analysis for the basic reproduction number of

system 1 using Equation (22) of itsR0 is given by:

3
R0
β =

∂R0

∂β
×

β

R0
= 1 > 0,

3R0
ω =

∂R0

∂ω
×

ω

R0
=

ω(γ + η)

(γ + η + ω + µ)(ω + µ)
> 0,

3R0
γ =

∂R0

∂γ
×

γ

R0
= −

γ (2γ + 2η + 2µ + δ + ξ )

(γ + η + ω + µ)(γ + η + δ + ξ + µ)
< 0,

3R0
η =

∂R0

∂η
×

η

R0
= −

η(2γ + 2η + 2µ + δ + ξ )

(γ + η + ω + µ)(γ + η + δ + ξ + µ)
< 0,

3
R0
ξ =

∂R0

∂ξ
×

ξ

R0
=

−ξ

γ + η + δ + ξ + µ
< 0.

The sensitivity indices of the basic reproductive number with

respect to main parameters are found in Table 2.

The equation above contains the fundamental reproductive

number’s sensitivity indices with regard to the key parameters, and

hence, the results demonstrated that while the other parameters

stayed constant. If the values of the parameters with positive indices

ω and β increase, it indicates that they have a significant influence

on the spread of corruption in the community. Additionally,

when their values rise, the parameters γ , η, and ξ , whose

sensitivity indices are negative, have the effect of lessening the

burden of corruption in the community. As a result, stakeholders

and policymakers should endeavor to increase the parameters

of the negative indices and decrease the good indices. However,

increasing human mortality rates to combat corruption epidemics

is unethical, so they are not taken into account in the study of

sensitivity analysis.

4 Numerical simulations

In this part, we illustrate numerical simulations of the system

1 for different values of the parameters given in the model

and illustrate that these simulations are consistent with the

qualitative behavior of the system solutions. Our simulations look

at how different parameter combinations in the model affect how

corruption dynamics are transmitted. We used several parameters

with constant variables or with different beginning values in

numerical simulation to examine the influence of the parameters

on corruption dynamics, thus that S(0) = 210,C(0) = 75,R(0) =
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FIGURE 2

Corruption dynamics of the model.

FIGURE 3

(A) E�ect of η on corrupted individuals. (B) E�ect of η on honest individuals.

10, and H(0) = 50. The natural death rate is computed as

µ =
1

66.71× 12
per month, where 66.71 years is the average

life expectancy in Ethiopia [30]. The numerical simulations of the

model (1) were conducted by Matlab software using parameters

values found in Table 3.

As demonstrated by Figure 2, the number of corrupt humans

rises from t = 0 to t = 3 at the outset because of a rise in the

rate of want and poverty in society, which encourage the majority

of people to participate in corrupt activities. Due to the fact that

some people go to recover from corruption through education,

religious instruction, and punishments, the number of corrupt

people declines sharply after t = 3. Since some honest persons join

susceptible classes at a rate of ω, the number of honest individuals

increases from t = 0 to t = 2 due to the natural recovery rate.

After that, the number of honest individuals decreases. Because of

the presumption that there is temporary immunity at the recovered

class, the recovered class stays empty. The number of people

who have recovered from corruption has significantly increased

over time because some people have recovered as a result of

mass education, natural causes, religious beliefs, and incarceration.

Figure 2 illustrates how R0 = 2.2906 > 0 is the explanation

for the rise in the number of corrupt people. The picture also

demonstrates how contact with dishonest people reduced the

amount of susceptible individuals.
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FIGURE 4

(A) E�ect of η on corrupted individuals. (B) E�ect of η on honest individuals.

FIGURE 5

E�ect of prison on corrupted individuals.

4.1 E�ect of education on the honest and
corrupted individuals

Figures 3A, B illustrate how the number of the corrupt

individual reduces and the number of the honest individual

increases when γ is changed from 0.2 to 0.35. The figure

shows us that as we go up, the proportion of corrupt people

drops and the proportion of onset people rises. We can

see from the simulation results in Figures 3A, B that we

can reduce corrupted populations via teaching. Therefore,

to raise awareness among the populace, the government

should invest more in educating the public about the

detrimental effects of corruption. Curriculum developers

should also include corruption studies into the curricula at all

educational levels.

4.2 The e�ects of religious teaching
against corruption

The effect was explored with by varying its value from 0.009

to 0.9, as we can see in Figures 4A, B. The graph indicates that

when η rises, the proportion of dishonest people falls and the

proportion of truthful people rises. Therefore, the model made the

assumption that most adherents had faith in their religious leaders.
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TABLE 2 Sensitivity indices table.

Parameter
symbol

Sensitivity indices

β Positive

ω Positive

γ Negative

η Negative

ξ Negative

µ Negative

TABLE 3 Values of parameters used in the simulations.

Parameter Value Reference

π 143,608 [29]

µ 1
66.71×12

per month [30]

β 0.0234 [25]

τ 0.002 Assumed

ω 0.05 Assumed

α 0.06 [31]

γ 0.08 Assumed

η 0.0125 [25]

δ 0.01 [31]

ξ 0.000001 [2]

In this instance, it is imperative that greater religious instruction

be incorporated into the national fight against corruption. The

model made the assumption that the majority of adherents have

faith in their scholars for adding additional religious leaders to the

fight against corruption is imperative in this instance in the nation.

Corrupt practices have decreased, according to the graph, since

t = 2, or about two months after the technique was implemented.

The majority of the community can thus benefit from investing

in religious instruction, which will lower the rate of corruption in

the area.

4.3 The e�ects of prison against corruption

Figure 5 illustrates how, as ξ ’s value rises, it becomes more

significant in reducing the number of corrupted individuals. The

chart shows that it raises the number of honest people while

decreasing the number of corrupt people. Figure 5 illustrates this

point by demonstrating that the more religious leaders educate

their followers about corruption as a sin, the fewer corrupt people

there are in the community. The model made the assumption that

the majority of followers trusted their religious leaders; therefore,

more religious leaders need to be involved in the national effort to

combat corruption. According to the graph, corruption decreased

from t = 3, or roughly three months after the strategy’s inception.

In general, from stability analysis, sensitivity analysis, and

numerical simulation, transmission and recovery rate had a great

power in controlling the corruption. Therefore, concerned bodies

should try to minimizing transmission rate and maximizing

recovered rate to reduce the corruption in the community.

5 Conclusion

This article developed and examined a mathematical model on

the dynamics of corruption transmission. First, we demonstrated

that the model is both mathematically and epidemiologically

well-posed within a certain region. We examined the model using

a qualitative study. In addition to calculating the fundamental

reproduction number R0, equilibrium point stability was

examined. The corruption-free equilibrium point is globally

asymptotically stable wheneverR0 is smaller than unity, according

to Lyapunov’s theory. The fundamental reproduction number

R0 is directly impacted by the parameters β and α, as can be

shown from the analytical study of R0. Since the fundamental

reproduction number rises to more than one, the transmission rate

from susceptible persons to corrupted individuals is represented

by the parameter β . This implies that the higher the contact

rate, the more common corruption is in the nation. Therefore,

the community’s corruption is regulated. The parameters stand

for prison, education, and religious instruction, respectively.

As these parameters rise, the effective reproduction number

falls below one. These results imply that since corruption goes

against religious teaching and faith, more work should be done

to educate the general people. Additionally, religious leaders

should be given more responsibility for effectively educating their

followers about the negative impacts of corruption. Therefore, in

future deterministic modeling of optimal control strategies for

corruption, transmission in two interconnected patches can be

developed to analyze the impact of migration.
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