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This study aims to address the di�culties in solving coupled generalized

non-linear Burger equations using local fractional calculus as a framework.

The methodology used in this work, particularly in the area of local fractional

calculus, combines the Elzaki transform with the Adomian decomposition

method. This combination has proven to be a highly e�ective strategy for

addressing non-linear partial di�erential equations within the local fractional

context, which finds numerous practical applications. The proposed method

o�ers a systematic and easily understandable procedure for tackling both linear

and non-linear partial di�erential equations (PDEs). It provides an easy-to-follow

path to solve these problems. We o�er a real-world example that exhibits the

method’s successful use in resolving issues to corroborate its e�cacy. The

obtained solution is visually represented to illustrate the practical utility of this

approach.
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1 Introduction

The main aspiration of fractional calculus is to extend differentiation integration

to fractional order, which has been around since the seventeenth century, thanks

to the groundbreaking work of Leibnitz, Euler, Lagrange, Abel, Liouville, and many

others [1–3]. A growing area of mathematics called fractional calculus (FC) has diverse

applications in all connected sectors of science and problems of engineering. Some of

the findings were published in books or related review articles [4–11]. It is interesting

to note that these derivatives and integrals are not just mathematical oddities, these

models are increasingly being employed in fields such as engineering fields, electrical

circuits, digital control systems, fluid movement, and many more [12–14]. Fractional

differential equations have seen a lot of use in physics and engineering over the

last few decades. Thousands of efforts have been put into developing reliable and

consistent numerical and analytical methodologies to solve these fractional equations

over the past decade or more [15–25]. To find precise and approximative analytical
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solutions, certain potent techniques have been developed, few of

them are Yang-Laplace decomposition approach [26], Sumudu

decomposition in local fractional [27], the method of variational

iteration [28, 29], the method of homotopy analysis [30, 31], and

the method of fractional difference [32]. For fractional differential

equations, the method of Adomian decomposition and the method

of variational iteration stand out among the rest because they offer

approximations of the issues under consideration without the use

of linearization or discretization.

Burger [33] developed Burger’s equations, which were derived

by qualitatively approximating Navier Stoke’s equation. To

comprehend non-linear diffusion and dissipation phenomena, such

as those pertaining to shock waves, unsaturated oil, soil dynamics

in water, cosmology, approximation theory of flow, and non-

linear kinematics wave of debris flows, Burger’s equation is an

essential tool.

Here, we investigated an equation of one of the most important

coupled non-linear Burgers [34]. Recent years have seen the

application of coupled partial differential equations in several

practical scientific and engineering fields. Burgers’ coupled-form

equations, also known as coupled partial differential equations,

provide an approximation for the flow theory that arises when a

shock wave travels through a viscous fluid. The novel aspect of this

paper is that it will investigate the generalized non-linear coupled

Burger equations listed below:

{

∂ωM
∂τω

− ∂2ωM
∂m2ω − 2MnMω

m + (MN)ωm = 0
∂ωN
∂τω

− ∂2ωN
∂m2ω − 2NnNωm + (MN)ωm = 0,

(1)

Many authors have used different techniques to solve coupled

Burgers equations. For example, Rashid and Ismail solved one-

dimensional coupled Burgers equations using the Fourier pseudo-

dospectral method. Mesh-free interpolation was accomplished

using the methods developed by Rashid and Ismail [35], Islam et al.

[36], and Alqahtani and Prasad [37], who also invented the RBF

collocation method to numerically treat coupled Burger equations

and other non-linear PDEs. The generalized non-linear coupled

Burger equation within the framework of local fractional calculus

is difficult to solve, as the equation has generalized form in terms

of non-linearity. Researchers have solved many non-linear coupled

equations so far but, generalized form of that equation is more

advanced form and direct methods are not available.

For the numerical evaluation of coupled equations, Kumar and

Pandit [38] adopted a composite numerical technique that was built

using finite difference and Haar wavelets. For an analytical solution

represented by Burger equations, Mohammadi and Mokhtari [39]

used a reproducing Kernal approach. Bak et al. [40] created a new

strategy in 2019 called a semi-Lagrangian strategy to numerically

solve coupled Burger equations. To show how our suggested

approach might be utilized to address issues that arise in applied

science and engineering, we compare our findings with those

of [40]. In this investigation, we employ the Elzaki transform

decomposition method within the framework of local fractional

calculus. This approach is constructed through the utilization of

the Adomian decomposition method and the Elzaki transform

in local fractional form [41]. The objective is to address the

challenges posed by solving generalized non-linear coupled Burgers

Equation (1). The Elzaki transform decomposition technique has

an advantage in its applicability, speed of convergence, and

accuracy, unlike other numerical methods. Applying the Elzaki

transform decomposition technique yields the series solution. The

Elzaki transform decomposition technique is a very effective tool in

finding the solution of the generalized non-linear coupled Burger

equation. It can also be applied to several other more complex

ordinary differential equations (both linear and non-linear). This

technique does not require linearization and initial guess points.

This research advocates the adoption of the proposed method

for addressing real-life problems in various domains of applied

mathematics. Tarig and Elzaki [42] introduced a modified version

of the Sumudu transform, known as the Elzaki transform and

applied it to solve a wide range of partial differential equations and

ordinary differential equations that emerge in the realms of physics,

engineering, and biology.

The Elzaki-Adomian composition method is an effective and

powerful tool that can be used to solve differential equations that

cannot be solved by Sumudu Transform [42]. The method can

be used to solve the non-linear Klein-Gordon equation. Klein -

Gordon mathematical model [43] is regarded as one of the most

essential models in quantum mechanics. The method can also

be used to solve the non-linear Sine Gordon equation [41], this

equation plays a major role in the propagation of fluxons in

Josephson junctions between two superconductors. Furthermore,

it is applicable in non-linear optics, solid-state physics, and stability

of fluid motions.

Not every kind of non-linear equation will exhibit convergence

of ADM. The features of the equation being solved determine

whether the approach will converge, and there are situations

in which convergence might be challenging. ADM was created

especially to solve non-linear issues. While it is applicable to

linear problems, other numerical techniques’ like the finite element

or finite difference methods’ are frequently more effective when

dealing with linear equations. Certain parameter choices may

have an impact on the procedure, and it can occasionally be

difficult to identify the best values for the parameters. Depending

on the type of problem and how many terms are in the series

solution, the accuracy of ADM can change. Sometimes, a lot of

terms are needed to get a reasonable level of precision. When

working with equations that need a lot of terms in the series

expansion, the procedure could be very computationally expensive.

It is crucial to remember that, despite its drawbacks, ADM has

been effectively used to solve a variety of non-linear issues in a

variety of domains. The particulars of the topic at hand determine

which numerical approach is best, and researchers frequently

combine several approaches to handle different facets of a given

problem. The other segments of the study are composed along the

below lines:

Section 2: Preliminaries.

Section 3: Existence and oneness of solution.

Section 4: Elzaki transform decomposition method in local

fractional.

Section 5: Applications.

Section 6: Conclusions.

Section 7: Conflict of interest.

Section 8: Funding.

Section 9: Acknowledgments.
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2 Preliminaries

Throughout this endeavor, basic definitions and introductory

concepts of Elzaki transform in local fractional and calculus of

fractional domain are provided. In the beginning, the local fractal

derivative is described using the [41–46],

Definition 1. Let R is a real-valued function [45, 46], such as

|R(t)− R0(t)| < µβ ,

the fractal derivative at t = t0 in local sense, is defined as

DβR (t0) =
dβ

dtβ
R (t) |to

= lim
t→t0

1β (R (t)− R (t0))

(t − t0)
β

,

where

1β (R (t)− R (t0)) ∼= [R (t)− R (t0)]Ŵ (1+ β) .

Definition 2. If �(ℓ) in fractal space has order ω(0, 1), then the LF

integral of�(ℓ) is defined in the interval (α, λ) as follows.

sIt
(ω)�(ℓ) =

1

Ŵ (1+ ω )

t
∫

s

�(θ)
(

dθ
)ω

=
1

Ŵ (1+ ω )
lim
1θ→0

j=I−1
∑

j=0

�
(

θj
) (

1θj
)ω

,

where 1θj = θj+1 − θj, 1θ = max{1θ1,1θ2,1θ3, ....} and
[

θj, θj+1
]

, j = 0, ..., I − 1, θ0 = s, θM = t, is a division of (α, λ)

([45, 46]).

Theorem 1. We have the Laplace transform of local fractional

derivative defined as Lω
{

ψω
(

p
)}

= kωLω
{

ψ
(

p
)}

− ψ (0) .

Definition 3. The Elzaki transform in local fractional [42] of

function ψ
(

p
)

of order ω is defined by

LFEω
{

ψ
(

p
)}

= Fω (r)

=
τω

Ŵ (ω + 1)

∞
∫

0

Eω
(

−τ−ωpω
)

ψ
(

p
) (

dt
)ω
, 0 < ω ≤ 1,

integral convergence occurs and τω ∈ ω The inverse of Elzaki

transform in local fractional of function [42] ψ
(

p
)

is elucidate by

LFEω
−1 {Fω (r)} = ψ

(

p
)

, 0 < ω ≤ 1.

Theorem 2. Let LFEω
{

ψ
(

p
)}

= Fω (r) and LFEω
{

ζ
(

p
)}

=

Gω (r). Then, we have

LFEω
{

ψ
(

p
)

+ ζ
(

p
)}

= Fω (r)+ Gω (r) .

Theorem 3. Let Lω
{

ψ
(

p
)}

= ψ
L,ω
t (t) and LFEω

{

ψ
(

p
)}

=

Fω (r). Then, we get

LFEω
{

ψ
(

p
)}

= τωLω

{

ψ

(

1

p

)}

,

Lω
{

ψ
(

p
)}

= tωLFEω

{

ψ

(

1

p

)}

.

Theorem 4. Let LFEω
{

ψ
(

p
)}

= Fω (r). Then, we get

LFEω

{

dωψ
(

p
)

dpω

}

=
Fω (r)

τω
− τωψ (0 ) .

3 Existence and oneness of solution

Wehave the generalized fractional coupled Burger equations as:

∂ωI

∂oω
−
∂2ωI

∂κ2ω
− 2In

∂ωI

∂κω
+
∂ωIN

∂κω
= 5(κ , o), (2)

∂ωN

∂oω
−
∂2ωN

∂κ2ω
− 2Nn ∂

ωN

∂κω
+
∂ωIN

∂κω
= 3(κ , o), (3)

with

I (κ , 0) = F (κ) ,

N (κ , 0) = P (κ) ,

System (Equations 2, 3) can be written as

{

Lω [I (κ , o)] = ρ [I (κ , o)] ,

Lω [N (κ , o)] = ρ [N (κ , o)] .

where Lω = ∂ω

∂0ω and

ρ [I (κ , o)] = 5(κ , o)+ ∂2ωI
∂κ2ω

+ 2In ∂
ωI
∂κω

− ∂ωIN
∂κω

(4)

ρ [N (κ , o)] = 3(κ , o)+
∂2ωN

∂κ2ω
+ 2Nn ∂

ωN

∂κω
−
∂ωIN

∂κω

Theorem 1: Let ρ [I (κ , o)] defined by Equation (4) is local

fractional continuous and satisfies Lipschitz condition i.e.,

∣

∣ρ[I1(κ , o)]− ρ[I2(κ , o)]
∣

∣ ≤ ηω
∣

∣I1(κ , o)− I2(κ , o)
∣

∣ ,

0 ≤ ω ≤ 1, 0 < η < 1.

Then the system

Lω [I (κ , o)] = ρ [I (κ , o)] ,

Lω [N (κ , o)] = ρ [N (κ , o)]

{

I (κ , o) = F (κ) ,

N (κ , o) = P (κ) ,

Has a distinctive solution in Cω[l, p], where Cω is the domain of

a function of continuous and having derivative with fractal orderω.
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Proof. Assume the map2 :Cω[l, p] → Cω[l, p] be defined by

2[I(κ , o)] = I0(κ)+
1

Ŵ (1+ ω)

∫ θ

ω

ρ[I(κ , s)](ds)ω

First, we establish by induction that

∥

∥2r
{

I1(κ , o)
}

−2r
{

I2(κ , o)
}∥

∥

ω

≤
ηrω|pω−lω|
Ŵr(1+ω)

p∥
∥I1(κ , o)− I2(κ , o)

∥

∥

ω
,

r = 1, 2, 3...

For r = 1, one can get

∥

∥2
{

I1(κ , o)
}

−2
{

I2(κ , o)
}
∥

∥

ω

≤

∣

∣

∣

1
Ŵ(1+ω)

∫ θ

ω
ρ

{

I1(κ , s)
}

− ρ
{

I2(κ , s)
}

(ds)ω
∣

∣

∣
,

∥

∥2
{

I1(κ , o)
}

−2
{

I2(κ , o)
}
∥

∥

ω
≤

∣

∣

∣

∣

1

Ŵ (1+ ω)

∫ θ

ω

ηω
∣

∣21(κ , s)

−22(κ , s)
∣

∣ (ds)ω
∣

∣

This implies that

∥

∥2
{

I1(k, o)
}

−2
{

I2(k, o)
}
∥

∥

ω
≤
ηω

∣

∣pω − lω
∣

∣

Ŵ (1+ ω)

∥

∥I1(k, o)

−I2(k, o)
∥

∥

ω

Assume the equality holds for r = j

∥

∥2j
{

I1(κ , o)
}

−2j
{

I2(κ , o)
}
∥

∥

ω

≤
ηjω

∣

∣pω − lω
∣

∣

j

Ŵj (1+ ω)

∥

∥I1(κ , o)− I2(κ , o)
∥

∥

ω

For r = j+ 1, consider

∥

∥2j+1
{

I1(κ , o)
}

−2j+1
{

I2(κ , o)
}
∥

∥

ω

=

∣

∣

∣

1
Ŵ(1+ω)

∫ θ

ω
ρ[2j

{

I1(κ , s)
}

]− ρ[2j
{

I2(κ , s)
}

](ds)ω
∣

∣

∣
,

Further it can be written as,

∥

∥2j+1
{

I1(κ , o)
}

−2j+1
{

I2(κ , o)
}∥

∥

ω

≤

∣

∣

∣

1
Ŵ(1+ω)

∫ θ

ω
ηω

∣

∣2j
{

I1(κ , s)
}

−2j
{

I2(κ , s)
}∣

∣(ds)ω
∣

∣

∣
.

Therefore,

∥

∥2j+1
{

I1(κ , o)
}

−2j+1
{

I2(κ , o)
}∥

∥

ω

≤
η(j+1)ω|pω−lω|

j+1

Ŵ(j+1)(1+ω)

∥

∥I1(κ , o)− I2(κ , o)
∥

∥

ω
,

So it validates our presumptions.

Now, we have

η(j+1)ω
∣

∣pω − lω
∣

∣

j+1

Ŵ(j+1) (1+ ω)

∥

∥I1(κ , o)− I2(κ , o)
∥

∥

ω
→ 0

as r → ∞.

Similarly for Equation (3) one can write

η(j+1)ω
∣

∣pω − lω
∣

∣

j+1

Ŵ(j+1) (1+ ω)

∥

∥N1(κ , o)− N2(κ , o)
∥

∥

ω
→ 0,

as r → ∞.

Therefore system presents a unique solution.

4 Elzaki transform (local fractional)
decomposition method

We use the Elzaki transform decomposition method on general

local fractional non-linear coupled equations:

∂ωI

∂κω
+
∂ωI

∂oω
+ Pω,1 (I,N)+ Qω,1 (I,N) = 5(κ , o) , (5)

∂ωN

∂κω
+
∂ωN

∂oω
+ Pω,2 (I,N)+ Qω,2 (I,N) = 3(κ , o) (6)

where ∂ω

∂(.)ω shows the linear derivative operator in local

fractional, of order ω, 0 < ω ≤ 1 along with the initial conditions,

Qω,1 (I,N) and Qω,2 (I,N) are the linear operators in local

fractional, Pω,1 (I,N) and Pω,2 (I,N) are the local fractional

operators with non-linearity and 5(κ , o) ,3(κ , o) are two

unidentified functions. The following steps will obtain an analytical

solution for this system.

If both sides of the Equation (5) are subjected to the Elzaki

transform in local fractional

LFEω

[

∂ωI
∂κω

]

+LFEω

[

∂ωI
∂oω

]

+LFEω
[

Pω,1 (I,N)
]

+

LFEω
[

Qω,1 (I,N)
]

=LFEω [5(κ , o)] ,

LFEω

[

∂ωN
∂κω

]

+LFEω

[

∂ωN
∂oω

]

+LFEω
[

Pω,2 (I,N)
]

+

LFEω
[

Qω,2 (I,N)
]

=LFEω [3(κ , o)] .

If the Elzaki transform’s differential property is used, we have

LFEω [I] = τ 2ωI (κ , 0)+ τωLFEω [5(κ , o)]

−LFEω

[

∂ωI
∂κω

+ Pω,1 (I,N)+ Qω,1 (I,N)
]

,
(7)

LFEω [N] = τ 2ωN (κ , 0)+ τωLFEω [3(κ , o)]

−LFEω

[

∂ωN
∂κω

+ Pω,2 (I,N)+ Qω,2 (I,N)
]

,

After applying inverse LFET to both sides of Equation (7).

I = LFEω
−1

(

τ 2ωI (κ , 0)
)

+LFEω
−1

{

τω
(

LFEω [5(κ , o)]
)}

−LFEω
−1

[

τω
{

(

LFEω
)

[

∂ωI
∂κω

+ Pω,1 (I,N)+ Qω,1 (I,N)
]}] (8)

N = LFEω
−1

(

τ 2ωN (κ , 0)
)

+LFEω
−1

{

τω
(

LFEω [3(κ , o)]
)}

−LFEω
−1

[

τω
{

(

LFEω
)

[

∂ωN
∂κω

+ Pω,2 (I,N)+ Qω,2 (I,N)
]}]
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Now according to the Adomian decomposition method,M and

N can be replaced by infinite series.

I (κ , o) =
∞
∑

i=0

Ii (κ , o) , (9)

N (κ , o) =
∞
∑

i=0

Ni (κ , o) , (10)

And the non-linear terms can be written as,















Pω,1 (I,N) =
∞
∑

i=0
Ai,

Pω,2 (I,N) =
∞
∑

i=0
Bi,

(11)

where Ai and Bi are Adomian Polynomials. If Equations (9–11) are

substituted in Equation (8), we get

I = LFEω
−1

(

τ 2ωI (κ , 0)
)

+LF Eω
−1

{

τω
(

LFEω [5(κ , o)]
)}

−LFEω
−1



τω







(

LFEω
)





∂ω
(

∞
∑

i=0
Ii(κ ,o)

)

∂κω
+

∞
∑

i=0
Ai

+Qω,1

(

∞
∑

r=0
Ii,

∞
∑

i=0
Ni

)]}]

(12)

When the two sides of Equation (12) are compared, we get

I0 (κ , o)=
LFEω

−1 (

τ 2ωI (κ , 0)
)

+LFEω
−1 (

τω
[(

LFEω [5(κ , o)]
)])

,

and

I1 (κ , o) = −LFEω
−1

(

τω
[(

LFEω

[

∂ωI0
∂κω

+ A0

+Qω,1 (I0,N0)
])])

and

I2 (κ , o) = −LFEω
−1

(

τω
[(

LFEω

[

∂ωI1
∂κω

+A1 + Qω,1 (I1,N1)
])])

as well as

I3 (κ , o) = −LFEω
−1

(

τω
[(

LFEω

[

∂ωI2
∂κω

+ A2

+Qω,1 (I2,N2)
])])

and so on. In the same manner

N1 (κ , o) = −LFEω
−1

(

τω
[(

LFEω

[

∂ωN0

∂κω
+ B0

+Qω,1 (M0,N0)
])])

and

N2 (κ , o) = −LFEω
−1

(

τω
[(

LFEω

[

∂ωN1

∂κω
+ B1

+Qω,1 (M1,N1)
])])

as well as

N3 (κ , o) = −LFEω
−1

(

τω
[(

LFEω

[

∂ωN2

∂κω
+ B2

+Qω,1 (M2,N2)
])])

and so on.

The system Equations (5, 6)’s analytical solution for (I,N)

comes out as

I (κ , o) = lim
L→∞

L
∑

i=0
Ii (κ , o) ,

N (κ , o) = lim
L→∞

L
∑

i=0
Ni (κ , o) .

5 Applications

As an example, consider Burger equations in the context of a

generalized coupled non-linear system

∂ωM

∂τω
−
∂2ωM

∂m2ω
− 2MnMω

m + (MN)ωm = 0, (13)

∂ωN

∂τω
−
∂2ωN

∂m2ω
− 2NnNωm + (MN)ωm = 0, (14)

0 < ω ≤ 1 along with the initial conditions.

M (m, 0) = sinω
(

mω
)

,N (m, 0) = sinω
(

mω
)

.

If both parts of Equations (13, 14) in the system are applied with

the LFET,























LFEω [M (m, τ)] =
[

p2ωsinω (mω)
]

−pω
[(

LFEω

[

− ∂2ωM
∂m2ω − 2MnMω

m + (MN) ωm

])]

,
LFEω [N (m, τ)] =

[

p2ωsinω (mω)
]

−pω
[(

LFEω

[

− ∂2ωN
∂m2ω − 2NnNωm + (MN) ωm

])]

.

(15)

Each equation in Equation (15) is solved by using the inverse

LFET on both sides























M (m, τ) = sinω (mω)

−LFEω
−1

(

pω
[(

LFEω

[

− ∂2ωM
∂m2ω − 2MnMω

m + (MN) ωm

])])

,

N (m, τ) = sinω (mω)

−LFEω
−1

(

pω
[(

LFEω

[

− ∂2ωN
∂m2ω − 2NnNωm + (MN) ωm

])])

.

(16)

To replace each function of the solution, use the Adomian

decomposition technique, (M,N) is written as an infinite series















M (m, τ) = lim
L→∞

L
∑

r=0
Mr (m, τ) ,

N (m, τ) = lim
L→∞

L
∑

r=0
Nr (m, τ) ,

(17)

and the non-linear term can be decomposed as,

MnMω
m =

∞
∑

r=0

Ar (M) , (18)
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(MN)(ω)m =

∞
∑

r=0

Br (M,N) ,

NnNωm =

∞
∑

r=0

Cr (N) . (19)

Substitute Equations (17–19) in Equation (16), then we have















































































∞
∑

r=0
Mr (m, τ) = sinω (mω)

−LFEω
−1









pω

















LFEω









− ∂2ω

∂m2ω

(

∞
∑

r=0
Mr (m, τ)

)

−2
∞
∑

r=0
Ar (M)+

∞
∑

r=0
Br (M,N)

































,

∞
∑

r=0
Nr (m, τ) = sinω (mω)

−LFEω
−1









pω

















LFEω









− ∂2ω

∂m2ω

(

∞
∑

r=0
Nr (m, τ)

)

−2
∞
∑

r=0
Cr (N)+

∞
∑

r=0
Br (M,N)

































.

(20)

Now when we compare both sides of Equation (20), we get

M0 (m, τ) = sinω
(

mω
)

, (21)

and

M1 (m, τ) = −LFEω
−1

(

pω
[(

LFEω

[

−
∂2ωM0

∂m2ω
− 2A0 (M)

+B0 (M,N)])]) , (22)

as well as

M2 (m, τ) = −LFEω
−1

(

pω
[(

LFEω

[

−
∂2ωM1

∂m2ω
− 2A1 (M) (23)

+B1 (M,N)])]) ,

and

M3 (m, τ) = −LFEω
−1

(

pω
[(

LFEω

[

−
∂2ωM2

∂m2ω
− 2A2 (M) (24)

+B2 (M,N)])]) ,

By using the same approach, other terms can be obtained. Also,

N0 (m, τ) = sinω
(

mω
)

, (25)

and

N1 (m, τ) = −LFEω
−1

(

pω
[(

LFEω

[

−
∂2ωN0

∂m2ω
− 2C0 (M)

+B0 (M,N)])]) , (26)

as well as

N2 (m, τ) = −LFEω
−1

(

pω
[(

LFEω

[

−
∂2ωN1

∂m2ω
− 2C1 (M)

+B1 (M,N)])]) , (27)

and

N3 (m, τ) = −LFEω
−1

(

pω
[(

LFEω

[

−
∂2ωN2

∂m2ω
− 2C2 (M)

+B2 (M,N)])]) , (28)

and so on. The first few components ofAr(M), Br(M,N) andCr(N)

polynomials (Equation 16) are obtained as

A0 (M) = M0
n.M0,m

(ω), (29)

and

A1 (M) = M0
nM1,m

(ω) + nM0
(n−1)M1M0,m

(ω), (30)

B0 (M,N) = (M0N0)m
(ω),

and

B1 (M,N) = (M0N1 +M1N0)m
(ω),

as well as

B2 (M,N) = (M0N1 +M1N0)m
(ω),

B2 (M,N) = (M1N1 +M0N2 +M2N0)m
(ω),

and

C0 (M) = N0
nN0,m

(ω),

as well as

C1 (N) = N0
nN1,m

(ω) + nN0
(n−1)N1N0,m

(ω),

and so on. According to Equations (21–30).

The first terms of solutions of Equation (13) are as follows:

M0 (m, τ) = sinω
(

mω
)

,

and

M1 (m, τ) =
(

−sinωm
ω + 2 sinnω m

ω .cosωm
ω − 2sinωm

ω .cosωm
ω
)

τω
∣

∣1+ ω

as well as

M2 (m, τ) =





















sinωmω + 2n (n− 1) sinn−2
ω mω .cosω3mω

−4nsinωnmω .cosωmω

−2 (n+ 1) sinωnmω .cosωmω

−4nsinωnmω .cosω2mω

−4cosω2mωsinωnmω

+4 (n+ 1) sinωnmω .cosω2mω

+8sinωmω .cosωmω





















τ 2ω
∣

∣1+ 2ω
.

and so on. Same the manner

N0 (m, τ) = sinω
(

mω
)

,

and

N1 (m, τ) =
(

−sinωm
ω + 2 sinnω m

ω .cosωm
ω − 2sinωm

ω .cosωm
ω
)

τω
∣

∣1+ ω
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FIGURE 1

Graphical representation of M defined in Equation (13) for ω = 0.8.

FIGURE 2

Graphical representation of M defined in Equation (13) for ω = 1.

also

N2 (m, τ) =























sinωmω + 2n (n− 1) sinn−2
ω mω .cosω3mω

−4nsinωnmω .cosωmω

−2 (n+ 1) sinωnmω .cosωmω

−4nsinωnmω .cosω2mω

−4cosω2mωsinωnmω

+4 (n+ 1) sinωnmω .cosω2mω

+8sinωmω .cosωmω























τ 2ω
∣

∣1+ 2ω

and so forth.

As a result, the local fractional series solution of M (m, τ) and

N (m, τ).

M (m, τ) =
∞
∑

r=0
Mr (m, τ) ,

N (m, τ) =
∞
∑

r=0
Nr (m, τ) .

Particular case: If we consider n = 1 in our defined model

given in Equations (13, 14). The model reduces to a well-known

model. And our obtained results reduce to known results:
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FIGURE 3

Graphical representation of N defined in Equation (14) for ω = 0.8.

FIGURE 4

Graphical representation of N defined in Equation (14) for ω = 1.

M = sinωmω .Eω (−τ)

N = sinωm
ω .Eω (−τ)

We plot the numerical outcomes of Equations (13) and (14) for

different values ω = 0.8 and 1.0, see Figures 1–4.

6 Conclusions

In this study, a strategy that combines the Elzaki-transform

and Adomian-decomposition approaches is used. We made an

effort to show the effectiveness of the recommended strategy. The

objective of this study is to resolve the coupled Burger equation.

The illustration depicts the proposed method’s applicability. Visual

representations of the solution show how the method applies to

generalized non-linear equations. Plots with various values of ω are

used to illustrate the solutions that were found during the inquiry.

Elzaki decomposition is a powerful, quick, and effective approach

to solving the local fractional non-linear coupled Burger equation,

as we have discovered.
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