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The core and the Shapley value stand out as the most renowned solutions for

addressing sharing problems in cooperative game theory. These concepts are

widely acknowledged for their e�ectiveness in tackling negotiation, resource

allocation, and power dynamics. The present study aims to extend various

notions of cooperative games from the standard set N to a new class of

cooperative games defined on the cartesian product N × N′ (utilizing the

specific coalition A ∗ B). This extension encompasses fundamental concepts

such as rationality, core, and Shapley value. The findings presented in this study

demonstrate that the core concept as a solution yields a set of imputations

without favoring any specific point within the set, in contrast to the Shapley

value, which o�ers a singular solution. Moreover, the results confirm that the

Shapley value satisfies the conditions defining the core of a game. Through both

theoretical analysis and numerical findings, employing a practical example, it

becomes evident that the Shapley value o�ers a more distinct solution to the

sharing problem compared with the core solution.

KEYWORDS
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1 Introduction

Mathematical modeling plays a crucial role in solving real-life problems across various

fields such as engineering [1, 2], biology [3, 4], economics [5, 6], and many others. In

this study, the example of an agreement between a company and three adjacent villages

to provide electricity and water services will be predominantly utilized. To simplify the

calculations, it is assumed that the project would cost 50 million for water and 50 million

for electricity if the company was undertaken these services separately. For geographical

reasons, the project manager proposes reduced costs of (80;80), (85;85), and (90;90),

respectively, for common contracts between the first village and the second, the first village

and the third, and the second village and the third. Furthermore, there is a comprehensive

contract that includes all three villages, and its total cost is (80;80;80). The question that

arises is the following. How do we choose the best collaboration?

When addressing such scenarios, individuals often arrive at various conclusions. Some

may contend that a multitude of potential agreements exist, while others may argue that

no stable agreement is possible. Alternatively, some emphasize the potential for a unique

cooperative solution in fairly general contexts. Cooperative game theory provides solution

concepts for this type of problem, such as the core and the Shapley value. These concepts

address issues related to the distribution of costs or gains, decision-making power, and
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more. They are grounded in criteria that encompass rationality and

equity considerations [7–11]. Game theory has garnered significant

attention in numerous scholarly articles and publications [12–15],

and in the past few years, many researchers have extended the

concept of cooperative games. To illustrate, in 2000, a new class

of cooperative games was introduced by Bilbao et al. [16] known

as bi-cooperative games. The authors introduced this notion as

the generalization of cooperative games, which refers to situations

in which each player can participate positively, negatively, or not

at all. That is the coalition function is defined over the pairs

(S,T) of disjoint coalitions, where the members of S are positive

contributors and members of T are negative contributors.

In 2008, Bilbao et al. [17] provided an axiomatic

characterization of the Shapley value in the context of bi-

cooperative games. Since then, this theory has garnered

considerable attention within scholarly circles, which is evidenced

by numerous publications such as the study conducted by Wu

et al. [18]. Their study delved into unique characterizations for

bi-cooperative games, with a particular emphasis on the Shapley

value, introducing distinct properties and exploring alternative

axiomatizations. Notably, they proposed a one-point solution

concept, alongside fundamental axioms such as linearity and

efficiency. Furthermore, Abbas [19] contributed significantly to

this field by extending the co-Möbius transform of cooperative

games to bi-cooperative games, thereby introducing the concept

of the bipolar co-Möbius transform. This extension enriches the

theoretical framework, opening avenues for deeper analysis and

understanding. Additional pertinent references include the studies

mentioned in the references Bilbao et al. [20], Borkotokey et al.

[21], and Doménech et al. [22]. Concurrently, Puerto et al. [23]

introduced another class of cooperative games whose characteristic

function ranges on any linear space. In this study, the authors

extended the nature of the payoffs rather than imposing conditions

on the argument of the characteristic function. This approach

facilitated subsequent research endeavors by various scholars, with

notable contributions cited in references such as Branzei et al.

[24] Gök et al. [25], Branzei et al. [26], and Nan et al. [27], among

others.

To summarize, Puerto et al. introduced partially ordered

cooperative games utilizing functions defined from 2N ∪ {∅} to

ℵ, while Bilbao et al. introduced bi-cooperative games employing

functions defined from 3N to R. Although both approaches

employ a single game, it might be more advantageous to adopt

a high-dimensional approach depending on the nature of the

problem, as this approach could better express and reflect

the complexities of the problem beyond a one-dimensional

representation. Consequently, our analysis takes a distinct route

by exploring cooperative scenarios where players make choices on

the cartesian product N × N′. Our functions are defined from

2N×N′
to R, aiming to offer a fresh perspective to game theory

by leveraging the cartesian product of two sets. Figure 1 visually

depicts the evolution from cooperative games to bi-cooperative

games within a single set, partially ordered games, and to bi-

dimensional cooperative games across the cartesian product of two

sets.

In this enriched framework, a coalition is a list of pairs of

actions, one pair for each player of this coalition. As usual, a player’s

payoff in a game is a real number that represents what that player

can expect when he agrees to participate in the game. Within this

framework, the notion of rationality in the cartesian product of two

sets N and N′ (individual rationality and coalitional rationality) is

employed, rather than rationality solely in N to define the set of

imputations and the core which is the set of acceptable arbitration.

It is important to mention that while this set offers valuable

insights into the sharing problem, it might not invariably yield a

conclusive solution, as highlighted in remark 2.3.3. Therefore, the

Shapley value is introduced as another essential solution concept.

By incorporating this concept and applying it to the illustrative

example mentioned earlier, a unique and definitive solution has

been successfully identified.

This study is organized as follows. In the next section, some

materials and methods of cooperative game in N × N′ are given.

In Section 3, an axiomatic characterization of the Shapley value in

terms of efficiency, symmetry, null player, and additivity is provided

using the coalition A ∗ B. Moreover, the last section concludes the

article.

2 Materials and methods

2.1 Cooperative game in N × N
′

In this paragraph, the classical notions of cooperative game in

N × N′ that will be used in this study are defined.

Definition 2.1.1. A coalition A×B is defined as a subset ofN×N′,

and the set of all coalitions is the set 2N×N′
of cardinal 2nm. With

|N| = n and |N′| = m.

By convention, the empty set can also be designated as a coalition,

referred to as the empty coalition. The setN×N′ is also a coalition,

known as the grand coalition.

Definition 2.1.2. A cooperative game on N × N′ is defined by a

finite set of pairs of players

N × N′ = {(ai; bj), ai ∈ N, bj ∈ N′ and (i; j) ∈ {1; 2; ...; n} ×
{1; 2; ...;m}}, and a real-valued v, defined on all subsets of N × N′,

(with v(∅) = 0).

Remark 2.1.1. Drawing an analogy to von Neumann and

Morgenstern’s work in Roth’s book [28], we stipulate that v must

be superadditive, i.e., if A × A′ and B × B′ are two disjoint subsets

of N × N′, v[(A × A′) ⊔ (B × B′)] ≥ v(A × A′) + v(B × B′),
where (A × A′) ⊔ (B × B′) designates the disjoint reunion of

(A × A′) and (B × B′). This implies that the value of the coalition

(A × A′) ⊔ (B × B′) is no less than the aggregate value of its

individual parts acting independently.

Definition 2.1.3. A dual game in N ×N′ of the cooperative game v
is the function denoted by v× defined by,

v× : 2N×N′
−→ R+

(A× A′) 7−→ v(N × N′)− v[(A× A′)c]

Corollary 2.1.1. Let v be a cooperative game in N × N′. The

following properties are observed:

1. v is an increasing function on 2N×N′
.

2. v× is an increasing function on 2N×N′
.
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FIGURE 1

Evolution of cooperative games.

Proof:

Let (A× A′) and (B× B′) be two elements of 2N×N′
.

1. If A×A′ ⊂ B× B′, then, B× B′ = (A×A′) ⊔ (B× B′ \A×A′)

and (A× A′) ∩ (B× B′ \ A× A′) = ∅, [29, 30], therefore,

v(B× B′) = v[(A× A′) ⊔ (B× B′ \ A× A′)]

≥ v(A× A′)+ v(B× B′ \ A× A′)

≥ v(A× A′).

Since we have

A× A′ ⊂ B× B′ H⇒ v(A× A′) ≤ v(B× B′),

v is an increasing function.

2. We suppose that A× A′ ⊂ B× B′, then

v×(A× A′) = v(N × N′)− v[(A× A′)c]

≤ v(N × N′)− v[(B× B′)c]

≤ v×(B× B′).

Hence, v× is an increasing function.

Definition 2.1.4. The particular coalitionA∗B is defined as follows:

A ∗ B = {(ai; bi), ai ∈ A, bi ∈ B and i ∈ {1; 2; ...; p}}.

The coalition N ∗ N′ will be defined as follows:

N ∗ N′ = {(ai; bi), ai ∈ N, bi ∈ N′ and i ∈ {1; 2; ...; n}}.

Notations:

1. The worth for a player i will be denoted by v(ai; bi).
2. The worth of the coalition A ∗ B will be denoted by v(A ∗ B).
3. The payoff that each player i receives will be denoted by xi.
4. The vector x = (x1; x2; ...; xp) is called allocation or payoff rule

of game.

Remark 2.1.2. The focus will be on the A ∗ B coalitions. Assuming

that p players convene simultaneously in two games, A and B,
under the leadership of a representative who offers each player i
a weighted share of the payoff denoted by xi. Consequently, the
cardinality of A ∗ B will be p if the coalition comprises p players.
For unanimous agreement, it is imperative that xi ≥ v(ai; bi) holds

true for all i in 1; 2; ...; p. This ensures that player i cannot be
incentivized to join a coalition by offering them less than what they

would earn individually.

Example:

The “cost allocation” problem discussed in the introduction can

be clarified through a cooperative game involving three players

within the framework of N × N′. The first game represents the

electricity component, denoted as (E), while the second pertains to

the water component, designated as (W). The worth of a coalition

is determined by the total cost saving between water and electricity.

Hence, we have v(E1 ∗W1) = 0, v(E2 ∗W2) = 0, v(E3 ∗W3) = 0,

v(E1 ∗ W1 ⊔ E2 ∗ W2) = 40, v(E1 ∗ W1 ⊔ E3 ∗ W3) = 30,

v(E2 ∗W2 ⊔ E3 ∗W3) = 20, and v(E ∗W) = 60.

In this game, it is observed that the sum of the worths of

two disjoint coalitions is always less than or equal to the worth

resulting from their cooperation. Therefore, this game is necessarily

cooperative.

Proposition 2.1.1. Let x be a payoff rule of cooperative game v,
then, ∀i ∈ {1; 2; ...; n}, xi ≥ 0. (i.e., the payoffs of all players are

non-negative).

Proof:

Suppose that v is a cooperative game, v is monotonic increasing

function.

We know that v(∅) = 0 and since ∅ ⊂ A ∗ B for all subset A ∗ B of

N ∗ N′, then v(A ∗ B) ≥ 0 for all A ∗ B, (i.e. v ≥ 0).

Since xi ≥ v for all i ∈ {1; 2; ...; p}, then xi ≥ 0 for all i.

Definition 2.1.5. A game is called efficiency if, v(N ∗ N′) =

n
∑

i=1

xi.

(i.e., the worth of the grand coalition is completely shared among

all players).

Definition 2.1.6. Let v be a cooperative game, and let

(ai; bi), (aj; bj) /∈ A ∗ B.
Two players i and j are symmetric if v(A ∗ B ⊔ {(ai; bi)}) =

v(A ∗ B ⊔ {(aj; bj)}). (i.e., i and j both contribute equally to every

coalition that does not include them).

Proposition 2.1.2. Let i and j be two symmetric players. Then, xi =
xj. (i.e., their payoffs coincide).
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Proof:

If i and j are symmetric players, the worth ofA∗B⊔{(ai; bi)} and the
worth of A∗B⊔{(aj; bj)} are the same, with (ai; bi), (aj; bj) /∈ A∗B.
Therefore, the worth for player i is equal to the worth for player j
(i.e., v({(ai; bi)}) = v({(aj; bj)})).
Since the share of the payoffs is weighted, xi = xj.

Definition 2.1.7. Let v be a cooperative game, and let (ai; bi) /∈

A ∗ B.
Player i is called dummy player if, v(A ∗ B ⊔ {(ai; bi)}) = v(A ∗

B) + v({(ai; bi)}). (i.e., i only contributes its own worth to every

coalition).

Proposition 2.1.3. If i be a dummy player, v({(ai; bi)}) = xi (i.e.,
the worth and the payoff of player i coincides).

Proof:

Let v be a cooperative game and suppose that (ai; bi) /∈ A ∗ B.
v(A∗B⊔{(ai; bi)}) = v(A∗B)+v({(ai; bi)}) mean that the gain that

player i receives with the coalition A ∗ B is the same when player i
plays alone, we necessarily have xi = v({(ai; bi)}).

Definition 2.1.8. Let v be a cooperative game.

The player i is called a null player if v(A ∗ B⊔ {(ai; bi)}) = v(A ∗B),
with (ai; bi) /∈ A ∗ B, (i.e., its presence or deletion has no effect on

the worth of every coalition).

Proposition 2.1.4. If i is a null player, xi = 0 (i.e. its payoff is zero).

Proof:

This is a particular case of dummy player property.

Proposition 2.1.5. Let v and w be two cooperative games. Let x be

a payoff rule. Then, we have xi(v+w) = xi(v)+ xi(w) for all i. (i.e.,
the individual payoff of a game defined as the sum of two games

coincides with the addition of the individual payoffs of these two

games).

2.2 Marginal contribution–convex game

In this paragraph, the marginal contribution and convex games

in N ∗ N′ will be defined. (Some references used [31–35]).

Definition 2.2.1. Let v be a cooperative game. The marginal

contribution of player i to the coalition A ∗ B being defined by

ci(A ∗ B) = v(A ∗ B ⊔ {(ai; bi)})− v(A ∗ B), with (ai; bi) /∈ A ∗ B.

In other words,

the value ci(A ∗ B) is the amount from which player i cannot be
prevented from when the complement A ∗ B receives v(A ∗ B).

Example:

The worth of v× (the dual game) can be interpreted as indicating

the marginal contribution of coalition A ∗B to the coalition N ∗N′.

Proposition 2.2.1. Let v be a cooperative game.

1. If i and j are symmetric, ci(A∗B) = cj(A∗B) (i.e., their marginal

contributions coincide).

2. If i is a dummy player, ci(A ∗ B) = v({(ai; bi)}) (i.e., its marginal

contribution equals its worth).

3. If i is a null player, ci(A ∗ B) = 0 (i.e., its marginal contribution

is null).

Proof:

1. Suppose that i and j are symmetric.

If (ai; bi), (aj; bj) /∈ A∗B, v(A∗B⊔{(ai; bi)}) = v(A∗B⊔{(aj; bj)}).
Hence, ci(A ∗ B) = cj(A ∗ B).

2. Suppose that i is a dummy player, v(A ∗ B ⊔ {(ai; bi)}) = v(A ∗

B) + v({(ai; bi)}); therefore, v(A ∗ B ⊔ {(ai; bi)}) − v(A ∗ B) =
v({(ai; bi)}). Hence, ci(A ∗ B) = v({(ai; bi)}).

3. Suppose that i is a null player, v(A ∗ B ⊔ {(ai; bi)}) = v(A ∗ B);
therefore, v(A∗B⊔{(ai; bi)})−v(A∗B) = 0. Hence, ci(A∗B) = 0.

Definition 2.2.2. A cooperative game v is convex if for all parts

A ∗ A′ and B ∗ B′ in N ∗ N′, we have

v(A∗A′)+ v(B∗B′) ≤ v[(A∗A′)∪ (B∗B′)]+ v[(A∗A′)∩ (B∗B′)].

Remark 2.2.1. It is clear that a convex game is cooperative. Because

in a cooperative game, we suppose that (A ∗ A′) ∩ (B ∗ B′) = ∅.

Proposition 2.2.2. Suppose thatA∗B ⊂ A′∗B′ and (ai; bi) /∈ A′∗B′.
A game v is convex if v(A ∗ B ⊔ {(ai; bi)})− v(A ∗ B) ≤ v(A′ ∗ B′ ⊔
{(ai; bi)})− v(A′ ∗ B′).

In other words,

the game v is convex if ci(A ∗ B) ≤ ci(A′ ∗ B′), with A ∗ B ⊂ A′ ∗ B′

(i.e., themarginal contribution of a player i is increasing in the sense
of inclusion).

Proof:

LetA∗B andA′∗B′ be two subsets ofN∗N′ such thatA∗B ⊂ A′∗B′

and (ai; bi) /∈ A′ ∗ B′, then
(A ∗ B ⊔ {(ai; bi)}) ∩ (A′ ∗ B′) = A ∗ B.
v is convex
⇐⇒ v(A∗B⊔ {(ai; bi)})+ v(A′ ∗B′) ≤ v[(A∗B⊔ {(ai; bi)})∪ (A′ ∗

B′)]+ v[(A ∗ B ⊔ {(ai; bi)}) ∩ (A′ ∗ B′)]
⇐⇒ v(A∗B⊔{(ai; bi)})+v(A′∗B′) ≤ v(A′∗B′⊔{(ai; bi)})+v(A∗B)
⇐⇒ v(A∗B⊔{(ai; bi)})−v(A∗B) ≤ v(A′∗B′⊔{(ai; bi)})−v(A′∗B′)
⇐⇒ ci(A ∗ B) ≤ ci(A′ ∗ B′).

Remark 2.2.2. Convex games appear in several applications of

game theory. For example, Monopoly Firm, Trading Game, and

Aircraft Landing Fee Game [36].

2.3 Rationality–imputation–core

Definition 2.3.1. Let x be a payoff rule of the cooperative game v.
We say that players’ thinking is rational if ∀i ∈ {1; 2; ...; n}, xi ≥

v(ai; bi) (i.e., the payoff of every player has to be at least its worth).

Definition 2.3.2. Let v be a cooperative game.

The set of imputations of v is the set of individually rational utilities
attainable for the grand coalition

I = {x ∈ Rn,

n
∑

i=1

xi = v(N∗N′) and ∀i ∈ {1; 2; ...; n}, xi ≥ v(ai; bi)}.
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Remark 2.3.1. Notice that superadditive games have a non-

empty set of imputations. The n players acting together can win

exactly v(N ∗ N′), and sharing such as

n
∑

i=1

xi < v(N ∗ N′) will

therefore not be accepted, as this amounts to wasting the quantity

v(N ∗ N′)−

n
∑

i=1

xi.

The first criterion for acceptable arbitration remains insufficient;

hence, introducing a second criterion becomes necessary.

The concept is to replace individual rationality with coalition

rationality, a more stringent condition. This transition brings forth

the subsequent definition.

Definition 2.3.3. Let x be a payoff rule of the cooperative game v.
The reasoning of players within the coalition A ∗ B is deemed

rational if

p
∑

i=1

xi ≥ v(A ∗ B), with A ∗ B ⊂ N ∗ N′ and |A ∗ B| = p

(i.e., the payoff that the coalition A ∗ B obtains has to be at least its

worth).

Remark 2.3.2. Notice that

p
∑

i=1

xi ≥ v(A ∗ B) implies that for all

i ∈ {1; 2; ...; p}, xi ≥ v(ai; bi), with (ai; bi) ∈ A ∗ B and |A ∗ B| = p.

Indeed, if there exists i ∈ {1; 2; ...; p} such that xi ≤ v(ai; bi),
player i would not agree to join this coalition.

Definition 2.3.4. Let A ∗ B be a coalition containing p players.
An imputation x ∈ Rp is considered blocked by the coalition

A ∗ B if there exists a vector represented by xA∗B in Rp such that,

∀i ∈ {1; 2; ...; p}, xA∗Bi ≥ xi and

p
∑

i=1

xA∗Bi = v(A ∗ B).

Example:

In our game “cost allocation,” if the imputation x = (15; 15; 30) is

proposed, i.e., if the three villages pay respectively 85, 85, and 70,

the coalition E1 ∗ W1 ⊔ E2 ∗ W2 may oppose this sharing because

x1 + x2 = 30 while v(E1 ∗ W1 ⊔ E2 ∗ W2) = 40. Otherwise, we

can propose the imputation x = (20; 20; 20), which is better for

each of its members because x1 + x2 = 40 = v(E1 ∗W1 ⊔ E2 ∗W2),

x1+x3 = 40 ≥ 30 = v(E1∗W1⊔E3∗W3), and x2+x3 = 40 ≥ 20 =

v(E2 ∗W2 ⊔ E3 ∗W3). It is also achievable because x1 + x2 + x3 =
60 = v(E ∗ W). It is then asserted that E1 ∗ W1 ⊔ E2 ∗ W2 prefers

(20; 20; 20) to (15; 15; 30). Therefore, the imputation (15; 15; 30)

is dominated because it is blocked by E1 ∗W1 ⊔ E2 ∗W2.

Eliminating all dominated imputations effectively eradicates

any potential for group disputes and establishes the core of the

game, which is defined as the collection of imputations that are not

dominated.

Definition 2.3.5. The core of the game is defined as the set of

imputations that are not blocked by any coalition. Therefore, the

core of v corresponds to the payoff rule x given as follows:

C =

{

x ∈ Rn,

n
∑

i=1

xi = v(N ∗ N′)

and

|A∗B|
∑

i=1

xi ≥ v(A ∗ B); A ∗ B ⊂ N ∗ N′







.

In other words,

the core of the game is the set of acceptable arbitration. If the

arbiter proposes an imputation x which is not in the core, the

players of A ∗ B will refuse it.

Example:

For the “cost allocation” example, an allocation (x1; x2; x3)
is therefore in the core if x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

x1 + x2 ≥ v(E1 ∗ W1 ⊔ E2 ∗ W2) = 40, x1 + x3 ≥

v(E1 ∗W1 ⊔ E3 ∗W3) = 30, x2 + x3 ≥ v(E2 ∗W2 ⊔ E3 ∗W3) = 20,

and x1 + x2 + x3 = v(E ∗W) = 60.

Remark 2.3.3. Noticeably, several sharing proposals satisfy these

conditions, including (20; 20; 20), (40; 20; 0), (30; 30; 0), or

(40; 0; 20). Thus, a unique solution is not provided. The core can

be infinite or empty or reduced to a single point. In other words,

this set does not always provide a definitive solution to the sharing

problem, and if it is empty, it does not offer any help to players in

knowing their respective payoffs.

The results like those of Bondareva [31] and Shapley [32] have
identified other classes of games where the core is never empty. One

of these classes is the case of convex games.

3 The Shapley value in N ∗ N
′

As discussed in paragraph 2.3, under remark 2.3.3, it became

evident that the concept of a core does not offer (in general) a

singular resolution to sharing problems. In light of this, we now

introduce the Shapley value that assigns a distinct payoff vector to

each game. In this paragraph, the existence and uniqueness of the

Shapley value in N ∗ N′ will be proven.

3.1 The Shapley axioms

The value of player i in the cooperative game v is denoted by

φi(v).
A value function φ = (φ1(v);φ2(v); ...;φn(v)) is a function that

assigns to each possible characteristic function of an n-person

game.

The ith component of the n-tuple may be considered as a power

of the ith player in the game, and the value vector can be

considered as an arbitration result of the game decided by a fair

arbiter.

The Shapley value is introduced axiomatically, following the

same principles as the classical Shapley value in N [28, 37–

42]. The four Shapley axioms in N ∗ N′ can be described as

follows:

1. Efficiency: v(N ∗ N′) =

n
∑

i=1

φi(v), (i.e., the solution should

distribute the maximal total payoff).
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2. Symmetry: If v(A ∗ B ⊔ {(ai; bi)}) = v(A ∗ B ⊔

{(aj; bj)}), with (ai; bi), (aj; bj) /∈ A ∗ B, then φi(v) = φj(v) (i.e.,
any two players who contribute the same input should obtain

the same payoff).

3. Null player: If v(A∗B⊔{(ai; bi)}) = v(A∗B), with (ai; bi) /∈ A∗B,
φi(v) = 0 (i.e., any player who contributes nothing to any

coalition should obtain nothing).

4. Additivity: φ(v+w) = φ(v)+ φ(w) (i.e., adding the solution of

two games together solves the sum of these games).

Theorem 3.1.1. There exists a unique function φ satisfying the

Shapley axioms.

Proof:

Existence:

Let A ∗ B be a non-empty subset of N ∗N′. LetWA∗B defined for all

A′ ∗ B′ in 2N×N′
by

WA∗B(A
′ ∗ B′) =

{

1 if A ∗ B ⊂ A′ ∗ B′

0 otherwise.
(1)

We haveWA∗B(N ∗N′) = 1; so, from axiom 1,

n
∑

i=1

φi(WA∗B) =

WA∗B(N ∗ N′) = 1, then,

(∀(ai; bi) ∈ A ∗ B), φi(WA∗B) =
1

|A ∗ B|
. (2)

From axiom 2, if both (ai; bi) and (aj; bj) are in A ∗ B, then,
φi(WA∗B) = φj(WA∗B).

Moreover, from axiom 3, if (ai; bi) /∈ A∗B, then φi(WA∗B) = 0.

Now, let K be an arbitrary number. According to Equation 2,

we have

φi(KWA∗B) =







K

|A ∗ B|
for (ai; bi) ∈ A ∗ B

0 for (ai; bi) /∈ A ∗ B.
(3)

We define v as a weighted sum of characteristic functions, then

v =
∑

A∗B⊂N∗N′

KA∗BWA∗B,

with KA′∗B′ = v(A′ ∗ B′) −
∑

A∗B(A′∗B′

KA∗B, where A ∗ B ( A′ ∗ B′

and K∅ = 0.

Indeed, since Equation 1, for all A′ ∗ B′ ⊂ N ∗ N′, we have:

∑

A∗B⊂N∗N′

KA∗BWA∗B(A
′ ∗ B′) =

∑

A∗B⊂A′∗B′

KA∗BWA∗B(A
′ ∗ B′)

= KA′∗B′ +
∑

A∗B(A′∗B′

KA∗B

= v(A′ ∗ B′)

Hence, v =
∑

A∗B⊂N∗N′

KA∗BWA∗B.

Finally, from Equation 3 and according to the 4th axiom, φi will

be defined by, φi(v) =
∑

A∗B⊂N∗N′

(ai;bi)∈A∗B

KA∗B

|A ∗ B|
.

Hence, the existence of the function is proved.

Remark 3.1.1. If some of the KA∗B are negatives, since axiom 4,

we have also φ(v − w) = φ(v) − φ(w). (We need just write

v = (v− w)+ w).

Uniqueness:

To show uniqueness, we must show that KA∗B is unique.

Suppose there are two sets of constants, KA∗B and K ′
A∗B, such that

for all A′ ∗ B′ ∈ 2N×N′

v(A′ ∗ B′) =
∑

A∗B⊂N∗N′

KA∗BWA∗B(A
′ ∗ B′)

=
∑

A∗B⊂N∗N′

K ′
A∗BWA∗B(A

′ ∗ B′).

First, we suppose that A′ ∗ B′ = {(ai; bi)}, then K{(ai;bi)} =

K ′
{(ai;bi)}

for all i.
Now, let A′′ ∗B′′ be an arbitrary coalition, and suppose that KA∗B =

K ′
A∗B for all A ∗ B ( A′′ ∗ B′′.

From (1), allWA∗B(A′′ ∗ B′′) vanish, except for A ∗ B ⊂ A′′ ∗ B′′,

then,
∑

A∗B⊂A′′∗B′′

KA∗B =
∑

A∗B⊂A′′∗B′′

K ′
A∗B. Moreover, since KA∗B =

K ′
A∗B for all A ∗ B ( A′′ ∗ B′′, then, all terms cancel, except for the

term with A∗B = A′′ ∗B′′; therefore, KA′′∗B′′ = K ′
A′′∗B′′ . Hence, the

uniqueness of the function is proved.

Remark 3.1.2. The summation in the previous formula is a

weighted sum over all the coalitions A ∗ B that contain the player i,

and since KA′∗B′ = v(A′ ∗B′)−
∑

A∗B(A′∗B′

KA∗B, the constant KA′∗B′

depends on all the constantsKA∗B, withA∗B ( A′∗B′. Thus, to find
φi(v), an equivalent formula will be utilized. Practically, the value of

the marginal contribution of player i will be calculated, multiplied

by |A ∗ B|!(|N ∗ N′| − |A ∗ B| − 1)!/|N ∗ N′|!, and then summed.

Therefore, the Shapley value can be interpreted as the arithmetic

mean of player i’s marginal contributions when players arrive in

any order.

Corollary 3.1.1. The Shapley value φi(v) on v is given as follows:

φi(v) =
∑

A∗B⊂N∗N′

(ai;bi)/∈A∗B

|A ∗ B|!(|N ∗ N′| − |A ∗ B| − 1)!

|N ∗ N′|!
ci(A ∗ B).

with ci(A ∗ B) = v(A ∗ B ⊔ {(ai; bi)})− v(A ∗ B).

Note that the term
|A ∗ B|!(|N ∗ N′| − |A ∗ B| − 1)!

|N ∗ N′|!
is the

probability for player i to incorporate exactly into A ∗ B. The
denominator is the total number of permutations. The numerator

is the number of these permutations in which the |A ∗ B|members

ofA∗B come first, then player i, and then the remaining (|N ∗N′|−

|A ∗ B| − 1) players.

3.2 Numerical results

Continuing with the same example of “cost allocation,” let us

proceed to compute φ1(v).
We have v(∅) = 0, v(E1 ∗W1) = 0, v(E2 ∗W2) = 0, v(E3 ∗W3) = 0,

v(E1 ∗ W1 ⊔ E2 ∗ W2) = 40, v(E1 ∗ W1 ⊔ E3 ∗ W3) = 30,
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v(E2 ∗W2 ⊔ E3 ∗W3) = 20, and v(E ∗W) = 60.

The probability that player 1 enters first is
0!2!

3!
=

1

3
and his

marginal contribution is

v(E1 ∗W1)− v(∅) = 0− 0 = 0.

The probability that player 1 enters second and finds player 2 is
1!1!

3!
=

1

6
, and his marginal contribution is v(E1 ∗W1 ⊔E2 ∗W2)−

v(E2 ∗W2) = 40− 0 = 40.

The probability that player 1 enters second and finds player 3 is
1!1!

3!
=

1

6
, and his marginal contribution is v(E1 ∗W1 ⊔E3 ∗W3)−

v(E3 ∗W3) = 30− 0 = 30.

Finally, the probability that player 1 enters last is
2!0!

3!
=

1

3
, and his

payoff is v(E ∗W)− v(E2 ∗W2 ⊔ E3 ∗W3) = 60− 20 = 40.

Therefore, φ1(v) =
1

3
×0+

1

6
×40+

1

6
×30+

1

3
×40 =

150

6
= 25.

In the same way, we obtain, φ2(v) =
1

3
× 0+

1

6
× 40+

1

6
× 20+

1

3
× 30 =

120

6
= 20

and φ3(v) =
1

3
× 0+

1

6
× 30+

1

6
× 20+

1

3
× 20 =

90

6
= 15.

Hence, the Shapley value of the game v is equal to φ(v) =

(25; 20; 15). This implies that the total payment required from the

three players amounts to 240million because v(E∗W) = 60. Players

1, 2, and 3 will individually contribute to 75, 80, and 85 million,

respectively.

Remark 3.2.1. It is worth pointing out that this solution satisfies

the conditions of the core. Indeed, 25 ≥ 0, 20 ≥ 0, 15 ≥ 0,

25 + 20 ≥ v(E1 ∗ W1 ⊔ E2 ∗ W2) = 40, 25 + 15 ≥ v(E1 ∗ W1 ⊔

E3 ∗ W3) = 30, 20 + 15 ≥ v(E2 ∗ W2 ⊔ E3 ∗ W3) = 20, and

25+ 20+ 15 = v(E ∗W) = 60.

4 Conclusion

In this study, the focus has been on exploring various concepts

of cooperative games within the framework ofN×N′ rather thanN.

The primary interest centered around coalitions denoted as A ∗ B,
as mentioned in remark 2.1.2. This implies the consideration of

scenarios, where p players jointly participate in two separate games.

As a result, both the existence and uniqueness of the Shapley value

within the context of N ∗ N′ are successfully established.

Theoretical scrutiny and practical experiments, utilizing the

example of “cost allocation,” have underscored the Shapley value’s

superiority over the core in offering a singular solution to

the sharing predicament. This demonstrated that superiority

emphasizes the relevance of the findings in addressing real-world

sharing predicaments.

As scholars and practitioners navigate the evolving landscape of

game theory, the insights presented here offer a valuable foundation

for further exploration. The established theoretical framework

and empirical evidence not only advance the understanding of

cooperative games but also guide future researchers, seeking

innovative solutions and perspectives in this dynamic field. For

instance, future research could extend partially ordered cooperative

games using functions defined from 2N×N′
∪ ∅ to ℵ or explore

bi-cooperative games using functions defined from 3N×N′
to

R.
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