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Mathematical modeling is a powerful method to understand how biological

systems work. By creating a mathematical model of a given phenomenon

one can investigate which model assumptions are needed to explain the

phenomenon and which assumptions can be omitted. Creating an appropriate

mathematical model (or a set of models) for a given biological system is

an art, and classical textbooks on mathematical modeling in biology go

into great detail in discussing how mathematical models can be understood

via analytical and numerical analyses. In the last few decades mathematical

modeling in biology has grown in size and complexity, and along with this

growth new tools for the analysis of mathematical models and/or comparing

models to data have been proposed. Examples of tools include methods

of sensitivity analyses, methods for comparing alternative models to data

(based on AIC/BIC/etc.), and mixed-e�ect-based fitting of models to data. I

argue that the use of many of these “toolbox” approaches for the analysis of

mathematical models has negatively impacted the basic philosophical principle

of the modeling—to understand what the model does and why it does what

it does. I provide several examples of limitations of these toolbox-based

approaches and how they hamper generation of insights about the system

in question. I also argue that while we should learn new ways to automate

mathematical modeling-based analyses of biological phenomena, we should

aim beyond a mechanical use of such methods and bring back intuitive insights

into model functioning, by remembering that after all, modeling is an art and not

simply engineering.

“Getting something for nothing is impossible; there is always a price to

pay.” Louis Gross.

“There is not such a thing as a free lunch.”
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1 Classical mathematical modeling in
biology

Mathematical modeling in biology is a process in which one

constructs a mathematical equivalent (a.k.a., a model) of a given

biological system/process [1]. As different artists would look at the

same landscape and come up with different ways to represent it

in a painting, different scientists would come up with different

mathematical models for the same biological system/process. In

that respect, mathematical modeling is as much an art as it is

a technique [1]. The purpose of making a mathematical model

may vary with the system, specific questions being asked, and

scientists constructing the model. Models can be constructed to

estimate biologically interesting parameters, for example, the rates

at which T lymphocytes divide or die in response to a viral infection

[2–4]. Or, as I have recently proposed, mathematical models

can be used to rigorously determine which of several alternative

hypotheses about specific biological system are consistent and

which are not consistent with the data (so-called “strong inference

in mathematical modeling,” [5]). Mathematical models can also

be used to make predictions of how various interventions such

as vaccination may impact dynamics of infectious diseases [6].

Mathematical models can also illustrate what types of outcomes

one could expect from sometimes simple assumptions, e.g., how

mathematical models with just one parameter can exhibit simple

and complex behaviors [7]. Finally, the process of making a

mathematical model (or a set of alternative models) in itself may

in some cases be useful because in such a process one must outline

basic details of the biological system that need to be incorporated in

the model; and thus, such an exercise may identify areas where the

understanding of biological processes is sufficient and where there

is a need for additional experiments/measurements.

Given such a wide range of how mathematical modeling can

be used, how does one learn to do mathematical modeling? While

some may be lucky to start learning about mathematical modeling

in high school, my experience was different, and perhaps as for

many, my exposure to mathematical modeling, based primarily

on differential equations, started in college, at Krasnoyarsk State

University in Krasnoyarsk, Russia (now rebranded as Siberian

Federal University). We first learned how to solve analytically

different types of differential equations (ordinary and partial),

and how autonomous systems of differential equations can be

rigorously analyzed and their dynamics understood. A course

in biophysics introduced how ODE-based mathematical models

of various biological processes can be built and analyzed [8].

Because most such models were non-linear, understanding their

behavior required different analytical techniques than finding the

model’s analytical solution. One of the memorable techniques

I learned then was a separation of timescales in the model,

driven by a relative difference in the model parameters [8,

chapter 1]. For example, by modeling the dynamics of a substrate,

enzyme, and a product, experimentally measured values of kinetic

constants suggested that dynamics of the complex of substrate

and enzyme is much more rapid compared to other components

in the model allowing to derive the classical Michaelis–Menten

relationship between speed of reaction and substrate concentration

[8, chapter 2]. A very lucid description of time scales and the

quasi-stability idea as it relates to enzyme kinetics has been also

discussed by Segel [9, chapter 4]. While we also learned about

numerical methods to solve ODE-based models we nearly never

applied those in practice, and understanding of the dynamics of

these models had to be done using pencil and paper. Such an

approach allowed to rigorously understand mathematical models

in question.

During my graduate studies at Emory University (Atlanta,

USA) we learned many similar mathematical models in biology

including classical ecological models (e.g., Lotka-Volterra

models, [10]). Exposure to mathematical models of infectious

disease dynamics, both within-host and epidemiological,

from the classical textbook by Anderson and May [11],

determined my career path for years to come. Many of the

analyses including those by Anderson and May [11] were

done using computers; however, many analytical techniques

allowing to understand model behaviors were introduced and

reinforced. Anderson and May [11] also introduced me to

the world of how models can be compared to experimental

data although in many instances this was done using only

qualitative comparisons.

Interestingly, my first experiences in teaching mathematical

modeling followed examples from my undergraduate and graduate

years. As a post-doc at Utrecht University (Utrecht, Netherlands)

I helped with teaching mathematical models to 1st year

undergraduate students using an in house textbook [12]. In

that course students learned basic mathematical models in

various fields of biology and learned how these models can be

analyzed using different analytical techniques such as finding

steady states, determining their stability, etc. As a faculty

member at the University of Tennessee, Knoxville we taught

1st year undergraduate students how to build analytical models

to predict species dynamics or accumulation of interest in the

retirement account along with methods for basic data analysis [13].

Graduate students in Mathematics department learned basics of

mathematical modeling including ODE- and PDE-based models,

again, using a variety of analytical techniques [14]. In these

classes students typically learned so-called “forward” modeling

whereby for a given biological system, one develops a mathematical

model and uses the model dynamics/properties/predictions to

understand the biological system in question. Solving an “inverse”

problem whereby one attempts to identify the correct model

given a set of data is typically more challenging. While there

have been useful textbooks that focus on comparing models

with experimental data [15], I evolved my own set of lectures

on “inverse” modeling in biology. Inverse modeling typically

involves computer programming since fitting the models to

data cannot be easily done analytically; however, understanding

behavior of the proposed mathematical models (to be fitted

to data) has still been a critical component of my classes

on mathematical modeling in biology. Overall, during my

years of learning basics of mathematical modeling and my

experience at teaching mathematical models to others, the key

component has been to rigorously understand the developed

mathematical models. Following such analyses it was relatively

easy to answer the “why” question—why does the model do

what it does?
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2 Recent changes in mathematical
modeling in biology

In the last few decades mathematical modeling in biology

changed from what one could view as traditional approaches in

modeling exemplified in classical textbooks [10, 11, 14]. Don’t

get me wrong—there are plenty of papers that use standard

approaches of mathematical model analysis, e.g., positiveness of

model solutions, number and stability of steady states, bifurcation

analyses, etc. But in my area of expertise of within-host dynamics

of infectious diseases and immunology, many if not most papers

published in higher tier journals rarely focus on basic properties

of mathematical models. Rather such models are compared to

experimental data and are often large in size with tens to

hundreds of variables and/or parameters. In fact, comparing

models to data by using various fitting methods (e.g., least

squares) has allowed mathematical modeling to be recognized

as a valuable tool by experimentalists, e.g., in cancer biology

[16]. Using mathematical modeling to discriminate between

alternative mechanisms (i.e., strong inference [5, 17]) by using

model comparison metrics such as Akaike Information Criterion

(AIC), Bayesian Information Criterion (BIC) or similar can also

help determine which directions research should take next [18–

21]. Larger datasets involving longitudinal measurements, for

example, virus concentration in the blood allows using advanced

statistical methods such as non-linear mixed-effect modeling that

can help estimate variability in model parameters between different

individuals [22].

These novel developments in mathematical modeling in

biology (large models, model comparisons, and non-linear mixed-

effects modeling), while useful, generated a major problem:

a blind, somewhat mechanical use of various tools that help

researchers with these tasks. Indeed, because traditional training

in mathematical modeling in biology typically deals with relatively

small models and rarely with data, toolboxes that help with

analyses of larger models or with comparisons of models to

data may be desirable. And the number of various toolboxes for

mathematical modeling in biology has increased dramatically in

recent years [23]. The issue that I would like to highlight is when

such toolboxes are used blindly, in a mechanical manner, i.e.,

without thorough understanding of the results of such analyses.

Let me elaborate this point using three specific methodologies

used in mathematical modeling in biology: (1) model sensitivity

analyses, (2) model selection based on AIC, and (3) non-linear

mixed-effect modeling.

2.1 Sensitivity analysis tools

From reviewing and reading recently published papers my

impression is that in recent decades the average complexity

of mathematical models in infectious disease biology and

immunology (defined as average number of state variables and

interactions) has gone up. This, however, makes intuitive sense—

the amount of quantitative data on pathogen and immune

response dynamics have increased and such an increase in data

size naturally results in mathematical models that have more

variables and parameters. In addition, our understanding of

biological systems has also improved over time necessitating

including more such details in the models. Such models often

focus on transient dynamics and not steady states and are typically

solved numerically. Many of the standard analytical tools for

the analysis of such mathematical models taught in college are

becoming relatively useless. Luckily, there have been development

of many methods/tools that help with determining how various

model parameters impact behavior of the mathematical model

in question; these are sensitivity analysis tools. The methods

may include local and global sensitivity analyses, may involve

analytical or numerical methods based on Sobol indices, partial

rank correlation coefficients, and other metics [24–28]. Papers

presenting such methods in a systematic manner accrue many

citations, and there are now multiple online tools or R libraries

such as DAISY, sensobol, sensitivity, sensemakr allowing to

automatically perform various sensitivity analyses [26, 29–31].

For example, Marino et al. [27] described how by using latin

hypercube sampling and by calculating partial rank correlation

coefficients one can evaluate the contribution of each model

parameter to a specific output of the model (e.g., extracellular

bacterial load); popularity of this methodology is exemplified

by many citations (1590 on www.webofscience.com as of

Dec 5, 2023; on average, a paper in PNAS is cited about

10 times/year).

While these methods can deliver ranking of model parameters

in terms of their impact on various aspects of model dynamics,

it is typically unclear why one parameter is more important than

another. For example, Marino et al. [27] performed sensitivity

analysis of the predator-prey models using several different

methods and found that predator consumption rate of the prey

β is more important than prey’s growth rate α. However, why

β is more important than α for the model dynamics was not

explained. What is worse, a typical mathematical modeling paper

using some of these toolbox-based sensitivity analyses does not

even discuss whether estimated parameter sensitivities make sense

and whether changing the relevant model output will influence

ranking of themodel parameters in terms of their impact on output.

After submitting a mathematical modeling paper to a journal

for a review I sometimes get feedback from reviewers that “you

need to perform sensitivity analyses”—but do we? At the end,

sensitivity analysis whatever way performed is supposed to clarify

how the model outputs depend on model parameters, and as I

described earlier, decades ago we used to do that with pencil and

paper; now such analyses can be also done using numerically by

simulating model outputs for different parameter values. Applying

standard routines that spill out answers without explaining why a

given model parameter has that specific influence on model output

degrades the value of mathematical modeling.

A similar argument can be applied to a related area of

parameter identifiability—a procedure that allows to determine

which model parameters can be estimated from a particular

type of data and which parameters cannot [32]. There are

standard approaches proposed to address the question of parameter

identifiability but the same argument of a mechanical application of

toolbox approaches applies—determining that some parameters are

identifiable and some are not requires an explanation of why that is

the case. However, this is not typically done.
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2.2 Model selection tools

Another interesting development in mathematical modeling in

biology is availability of experimental data and the use of data

to determine which mathematical models fit experimental data

with better quality than some other models. There are different

metrics of quality of model fit to the data but in the area of

mathematical modeling in immunology and infectious disease

dynamics AIC has been used commonly [18]. Due to a simple

interpretation (“distance” from a true model), ability to rank

models based on their AIC values, and availability of many tools

calculating AIC (e.g., it is standard for many routines in R), use of

model comparison tools such AIC is sometimes even required in

publications. But here comes an issue—some studies including in

both ecology and immunology compare from tens to hundreds of

mathematical models and select the best (with lowest AIC value)

without a deeper understanding why a given model is chosen as

the best fit model [33, 34]. For example, one study looked at the

distribution of sizes of cysts formed by the parasite Toxoplasma

gondii in murine brains [33]. The authors considered how growth

and death of cells in these cysts depends on the cyst’s size and

by testing 24 alternative models authors found that a model with

a constant growth and removal rates fitted the data with nearly

best quality. However, differences in many of the tested models

were minor, with small changes in the terms for growth and/or

removal, and why some of these alternative models fitted the

data with nearly similar quality was not explained. Another study

looked at differentiation of CD8 T cells during an infection with

bacteria Listeria monocytogenes [34]. By tracking differentiation

of individual naive CD8 T cells in vivo authors could document

expression of several cell surface markers such as CD62L and

CD27. By generating hundreds of alternative models of how CD8

T cells may differentiate during the infection and comparing

model predictions with the data, the authors proposed that linear

differentiation pathway (from naive cells to memory to effectors)

was most consistent with the data [34]. However, why the best fit

model was actually the best fit and why alternative models could

not fit the data well was not explained.

The approach of generating a large number of alternative

models that differ in minuscule elements and then of routinely

comparing these models to data to find the best one is a common

approach in ecology; this approach has been previously criticized

as lacking an intelligent approach to modeling [35]. Ver Hoef and

Boveng [35] even proposed that rather than testing alternative

models, one should focus on a single model and by iterating

the model, one may better understand if the model can fit the

data well and why. Iterating or tinkering with the models is an

extremely useful exercise—in someways, it is the sensitivity analysis

of the model (this can be also defined as an uncertainty analysis).

However, focus on a single model is logically flawed because a

single proposed model is likely to focus on a single underlying

mechanism and there may be alternative mechanisms at play [36].

Rather, focusing on several alternative keymechanisms and testing

these via comparing models with data—so-called strong inference

in mathematical modeling [5], is clearly a more rigorous approach.

Fitting different models to data and comparing quality of their fit is

important but explaining why a given model fits well but another

one fails to fit well is critical for mathematical modeling in the

twenty-first century (e.g., [37]).

2.3 Non-linear mixed-e�ect modeling
tools

There are now more studies in infectious diseases and

immunology that are done in non-human primates and humans

than decades ago. In such experiments it is typical to follow burden

of different infections or immune responses over time in the same

individual; for example, it is possible to track shedding of influenza

virus or SARS-CoV-2 in nose/throat or antibodies against HIV

in the blood in individual humans over time. In contrast with

inbred strains of mice that may present very similar dynamics

of an infection and/or immune response, monkeys and humans

may display much greater variability in measurements, precluding

sometimes using averages as a rigorous metric of the infection

dynamics [38]. Recent advances, borrowed from pharmacokinetic

studies of drugs in humans, involve using non-linear mixed-

effect modeling to account for variability in different model

parameters between individuals [39]. Fitting non-linear, ODE-

based mathematical models to longitudinal data from multiple

individuals has been dramatically assisted with the release of free-

for-academics (but yet proprietary) programMonolix with a simple

and intuitive interface and powerful computational methods to

ensure fit convergence (https://monolix.lixoft.com/). There is a

surge in papers that build relatively complex mathematical models

that often cannot be fit to data from a single individual but by

using the power of mixed-effect modeling approach (and Monolix)

sometimes adequate fits of the model to data can be generated

[40, 41]. However, (blind) usage of this tool can also result

in conclusions that are not well-explained. For example, when

fitting the models to data using mixed-effect modeling approach

one must decide on which parameters should be fixed between

individuals (fixed effects) and which should vary (random effects),

what is the distribution of random effects (normal, lognormal,

bimodal, etc.), and what are potential interactions between these

parameters. Whether all parameters are identifiable when using

mixed-effects modeling approach and how selecting the best model

depends on the choice of fixed vs. random effects has not typically

been rigorously evaluated. For example, Néant et al. [40] fitted

a mathematical model of SARS-CoV-2 dynamics to data from

patients with COVID19 sampled longitudinally. Even though the

model fitted the data, the model included initial viral load and

eclipse phase parameters that clearly could not be identified from

the data because no initial viral loads were available (and that

different eclipse phase durations are likely to be consistent with the

data). Another study used better viral load measurements but could

conclude how various elements of immunity contribute to the viral

shedding pattern even though no immunological information was

available in the patients [41]. Using a toolbox approach allows

to get answers (“model fits the data”) but whether these answers

make sense and why the model is able to fit the data is typically

not discussed.
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3 Bringing the “why” question back to
mathematical modeling

In this Perspective I highlighted issues with a blind, mechanical

use of several toolbox-based approaches to mathematical modeling

in biology. While examples I cited came from immunology and

infectious disease biology, I suspect that the use of toolbox

approaches “without understanding why they give the answers they

do,” probably occurs in other areas of biology.

But don’t misinterpret my point—there is nothing wrong with

using toolbox approaches per se. For example, years ago I used to

code different numerical methods in Pascal or C to solve systems of

ODEs but now we have plenty of well-designed routines to solve

different types of equations. We often use ODE solvers without

thinking as many libraries utilize very efficient numerical methods

adequately. We rarely if ever check if our ODE solver gives us

the correct solution of the model (e.g., by changing the method

of solving the ODE numerically or by changing tolerance or other

parameters of the solver) unless we get a warning (or an error)

message that the produced numerical solution may be inaccurate.

However, the numerical methods to solve ODEs matured over

many decades, and the tools I discussed here do not have such a

rich history and are likely to lead us astray unless we generate an

understanding of why the results are what they are.

If sensitivity analysis tells us that one of the parameters is

more important than another, a good approach would be to ask

“Why is that the case? If I propose an explanation, how do I know

this explanation is the correct one? What are other ways I can

investigate if this parameter is truly important in themodel?”When

fitting alternative models to data and comparing them using AIC,

we should ask “Why did the best fit model actually fit the data

best? What is so special about that model? Why did the alternative

model fail to fit the data? What did it miss? And how do I know

that this was an important feature the model was missing?” Finally,

when the model was fitted to data using mixed-effect modeling

approach and fitted the data well, we should definitely ask “Did we

have enough data to estimate all the model parameters? How do we

know? Which features in the model, e.g., fixed vs. random effects,

are critical in model fits of the data?”

When using such toolbox-based approaches wemay be “getting

something for nothing” (phrase coined to me by Louis Gross)

which is probably impossible, there is always a price to pay. And

the price may be that with using the tools we miss understanding

of our model’s behavior. Because of that there is a risk that

insights generated by toolbox-based approaches are incorrect. So,

in moving forward, let us all bring back the “why” question to

the mathematical modeling in biology. Aiming beyond a blind,

mechanical use of toolbox-based approaches in mathematical

modeling in biology, let us bring back intuitive insights into model

functioning. Let us remember that modeling is an art and not

simply engineering [1].
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