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In the last decade, the use of AI in Condensed Matter physics has seen a

steep increase in the number of problems tackled and methods employed.

A number of distinct Machine Learning approaches have been employed in

many di�erent topics; from prediction of material properties to computation

of Density Functional Theory potentials and inter-atomic force fields. In many

cases, the result is a surrogate model which returns promising predictions but

is opaque on the inner mechanisms of its success. On the other hand, the

typical practitioner looks for answers that are explainable and provide a clear

insight into the mechanisms governing a physical phenomena. In this study, we

describe a proposal to use a sophisticated combination of traditional Machine

Learning methods to obtain an explainable model that outputs an explicit

functional formulation for the material property of interest. We demonstrate the

e�ectiveness of our methodology in deriving a new highly accurate expression

for the enthalpy of formation of solid solutions of lanthanide orthophosphates.
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1 Introduction

In recent years, the role of existing Machine Learning (ML) methods has experienced a
tremendous growth inmany scientific computing domains includingMaterials Science and
QuantumChemistry [1–3]. Concurrently, new revolutionarymethods and algorithms have
appeared that expanded the range of applicability of existing state-of-the art techniques
[4, 5]. This trend led to a high interest in general ML applications, which, in turn, left the
scientific community, struggling in reconciling the need of developing refined tools with
the assessment of their usefulness when applied to specific problems [6]. The assessment of
their efficacy is particularly relevant when the target is an explainable learning method [7],
and the domain knowledge is integrated in the final model [8].

In recent years, several machine learning methods have been proposed to predict
enthalpies of formation of several categories of materials [9–11]. Despite their progress,
none of these efforts provide a fully explainable model which outputs a mathematical
expression, building on existing knowledge and improves it by adding additional terms
that are statistically inferred.
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In this article, we propose a three-step approach to use
traditional machine learning tools to arrive at a scientifically
consistent explainable method [7]. At first, we propose the use
of Kernel Ridge Regression [12] methods to first assess which, out
of a number of different kernels, provides the most reliable and
transparent method. Second, we make a post-hoc interpretation
of the model, and we proceed to reverse engineer it so as to
find which coefficients of the model are the most relevant to
recover a fully explainable mathematical expression for the target
property. Finally, we integrate domain-specific knowledge by
forcing scientific consistency through a constraint on how the input
variables could be combined. The end result is a mathematical
expression which relates the target property to the input variables
in a functional dependence that replicates known results and add
further terms, substantially improving the accuracy of the final
expression.

Our methodology is, in part, inspired by the study by
Ghiringhelli et al. [13, 14], which uses the Least Absolute

Shrinkage and Selection Operator (LASSO) [15] together with a
sparsification process they term LASSO+ℓ0, to learn the most
relevant descriptors for a given target property. In this study, we
go beyond their approach by constraining the functional form
of the prior using knowledge coming from both the algorithmic
model (the assessment of best kernel) and integration of domain-
knowledge (to ensure scientific consistency). To demonstrate the
feasibility of our approach, we applied it to the specific problem
of computing the excess enthalpy of formation of solid solution
(enthalpy of mixing) of lanthanide orthophosphates (LnPO4). We
investigate the functional dependence of the mixing enthalpy for
binary solid solutions of two distinct lanthanide cations (Ln), taking
into account two distinct phases thesematerials form:monazite and
xenotime [16].

1.1 Excess enthalpy of solid solution
formation

Monazite is a phosphate mineral that contains rare-earth
elements. Among these, lanthanide phosphates (LnPO4) are the
most widely distributed. These form monazite-type structure
for Ln = La, . . . ,Tb and xenotime-type (zircon) structure for
heavier lanthanides [17–20]. Among other potential applications,
synthetic (monazite-type) ceramic solid matrices are suitable
for the conditioning of long-lived radionuclides, such as minor
actinides (Np, Am, Cm) or Pu in the form of a synrock [21–
23]. However, before these ceramics could be used in nuclear
waste management, their physical and chemical properties and,
most importantly, thermodynamic parameters have to be well-
characterized and understood.

A solid solution is formed when two or more cations are
incorporated into a solid host matrix on the same crystallographic
site. When atoms of the solute solid phase are incorporated into
the solvent solid host phase, the whole process can be interpreted
as a sort of impurity inclusion into the host phase [24, 25].
Here, we consider a combination of two cations within a single
phase, either monazite or xenotime. In reality, however, when
lighter (monazite as stable structure) and heavier (xenotime as

stable structure) lanthanide are mixed, such a solid solution has
a wide miscibility gap, i.e., it is thermodynamically unstable in
a wide solid solution range, with different stable phases of solid
solution endmembers (solute and solvent). In these cases, the
mixing enthalpy of single-phase solid solutions is a key factor for
describing the two-phase cases, such as monazite-xenotime system
[16, 26]. The excess enthalpy is a very important parameter that
allows, for instance, for the estimation of solubility limits in mixed
element systems. Accurate models for the excess enthalpy of mixing
allow for the conversion of the concentrations of different lathanide
elements measured in rocks, containing monazite and xenotime, to
temperature-pressure conditions at which a given rock was formed
[26]. Similar considerations were recently used to understand the
maximum solubility limit of Fe in NiOOH-based electrocatalyst
and the role of Fe in enhancing the oxygen evolution reaction
(OER) activity—a key process considered for mass production of
hydrogen as the fuel of the future green economy [27].

Whether a single phase solution will stay stable or not, the result
is driven by the excess enthalpy of the mixing [24, 28]. The latter is
defined as the difference between the formation enthalpies of the
mixed compounds and those of the solid solution endmembers,
which could bemeasured [29] or accurately computed [30–32]. The
single phase solid solutions, such asmonazite-type, resemble closely
a symmetric solid solutions and are well-described by a simple
model, HE = m(1 −m)W, withW being the Margules interaction
parameter and m the solid solution ratio [28, 33]. With systematic
Density Functional Theory (DFT)-based calculations, it was found
that for the monazite-type solid solutions, the Margules interaction
parameterW is a function of the Young’s modulus, Y , the unit-cell
volume, V , and the unit-cell volume difference between the solid
solution endmembers (solid and solute), 1V , [34, 35]

W ∼
0.154Y

V
1V2 ∼

Y

6V
1V2. (1)

The relationship between the excess formation of mixing and
the physical parameters has been a topic of discussion of various
studies [26, 28, 34]. Among these, the ionic radius R of the mixing
cations is often used as the main discriminant parameter [26].
Such a choice, however, makes the thermodynamic parameters of
the mixing only weakly material dependent. As such, the excess
enthalpy of mixing of monazite-type and xenotime-type solid
solutions is described with very similar relationship as a function
of 1R/R (Figure 6 of [26]).

In Figure 1, we illustrate how existing models describe the
functional dependence on physical parameters of the excess of
enthalpy for the data used in this study. Plot (a) shows the case
of monazite for which the models of [34, 36] reproduce the data
reasonably well. This is in part because both models use the
difference in volumes of the endmembers as a parametric variable,
while the model of the study mentioned in [26] uses the difference
in ionic radii.

The situation is diametrically different in the case of xenotime-
type solid solutions (Figure 1B). Here, the models of [36] and [34]
give predictions that are inconsistent with the ab initio data by
a factor of ∼ 2. This points toward the possibility of another
unaccounted term in the Margules parameter that could be quite
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A B

FIGURE 1

The excess enthalpy of mixing for (A) monazite-type and (B) xenotime-type solid solution computed ab initio and from models of [36], [34], and [26].

relevant in the case of xenotime-type solid solutions but of minor
importance for monazite-type solid solution.

A combination of ab initio and calorimetric studies [37]
has shown that the ab initio data themselves are not enough
to constrain the values of the Margules parameter W, and that
understanding of the dependence of W on the selected physical
parameters is crucial for precise modeling of the stability of solid
solutions. As such, the study of the excess of enthalpy for this type of
solid solutions lends itself perfectly to test the explainable machine
learning methodology we have devised.

2 Methodology and learning
algorithms

In predicting materials’ properties, one needs a set of curated
training data organized in input variables x and target properties
y. The set of input variables has to represented in terms of a
number of independent descriptors that are invariant under known
mathematical and physical symmetries and usually requires a
considerable amount of domain expertise. In this study, the input
variables are represented by properties of the elements constituting
a solid solution (e.g., electron orbitals, nuclear charge, etc.) and the
target property by the solution excess enthalpy of formation.

2.1 Elemental properties and descriptors

As mentioned in [10], a limited number of selected atomistic
properties carry most of the weight in determining the value of
the enthalpy of formation of metal and non-metal compounds
such as Pauli electronegativity, Volume, Ionic radius. In similar
studies [11, 13], properties associated with the electron orbitals and
macroscopic properties, such as the total ground energy, are shown
to contribute the most in determining the value of the enthalpy
of formation. These evidence-based observations seem to suggest a

TABLE 1 List of elemental properties and their physical units.

Name Symbol Unit

Atomic number Z –

Atomic mass M [u]

Ionic radius coordination 8 or 9 R8 or R9 [Å]

Ionization potential +2 IP2+ [eV]

Ionization potential +3 IP3+ [eV]

Pauli electronegativity χ –

Young’s modulus of LnPO4 Y [GPa]

Effective nuclear charge Zeff –

Volume of LnPO4 V [Å3]

universal trend that is common to most of compounds in chemical
space.

Based on the physics of the formation process of the
Lanthanides Orthophosphates solid solution, it is a very plausible
assumption that also in this case, a limited number of microscopic
and macroscopic properties contribute to HE. Moreover, all solid
solutions that are part of our dataset have in common the same
phosphate group (PO4). Consequently, properties of the atomic
elements of such group are not taken into consideration. Based on
the consideration made in the previous section on the first leading
term contributing to the enthalpy and on the experience of domain
practitioners, we have chosen nine basic elemental properties
(elementals) ǫk, as shown in Table 1, that are available for each
and every lanthanide element. Their values for each Lanthanide
are extracted from the online database http://www.knowledgedoor.
com/.

These elementals can be arranged in an abstract vector ǫ =

(ǫ1, ǫ2, . . . )T = (Z,M,R8,9, IP2+, IP3+, . . . )T. For each lanthanide
Li ∈ (La, Ce, Pr . . . ), there is one such vector. We build descriptors
out of elementals. Since we are investigating solid solutions made
of two lanthanides, our descriptors xk[ǫk(Li), ǫk(Lj),mi,mj] are
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TABLE 2 Descriptor types depending on lanthanide pairs (Li , Lj),

elemental ǫk , and mixing ratiom.

Name Descriptor

Weighted mean x
(1)
k = mǫk(Li)+ (1−m)ǫk(Lj)

Quadratically weighted mean x
(2)
k =

m2ǫk(Li)+(1−m)2ǫk(Lj)
m2+(1−m)2

Absolute difference x
(3)
k = |ǫk(Li)− ǫk(Lj)|

functions of elementals from two different lanthanides together
with their mixing ratio mi. The inclusion of mis is necessary
to distinguish between different solution ratios. However, the
descriptor is defined, and it should be invariant to simultaneous
permutation of lanthanide and mixture ratios. Noting that mi +

mj = 1, we can actually use only one mixing ratio m = mi so that
mj = 1−m.

Invariance under permutation can be expressed as follows:

xk[ǫk(Li), ǫk(Lj),m] = xk[ǫk(Lj), ǫk(Li), 1−m]

is important that a descriptor x changes significantly with
the mixing ratio. Additionally, one should include descriptors
capturing certain processes where the enthalpy is strongly
dependent on which lanthanide has the largest abundance. Last
but not least, descriptors have to be homogeneous functions of
elementals and cannot mix elementals with different physical units
(unless conversion constants are involved). For the reasons above,
we selected three types of descriptors x(1), x(2) and x(3), as shown in
Table 2, for every elemental ǫk and every lanthanide pair (Li, Lj).

Notice that the quadratically weighted mean is not quadratic in
the actual values of the elementals ǫk but quadratic in the mixture
ratio m. The descriptor x(2) will lean heavily to the value of the
elementals of the more abundant lanthanide. For each combination
of lanthanide pairs, the nine elementals ǫk are organized in a
descriptor vector xmade of 27 descriptors in total.

x(Li, Lj,m) =



















x
(1)
1 [ǫ1(Li), ǫ1(Lj),m]

x
(2)
1 [ǫ1(Li), ǫ1(Lj),m]

x
(3)
1 [ǫ1(Li), ǫ1(Lj),m]

x
(1)
2 [ǫ2(Li), ǫ2(Lj),m]

...



















Each vector x ∈ X of size d = 27 makes up the input variables
for the learning algorithm. The target value y is the excess enthalpy
of formation HE. For each choice of lanthanide pairs (Li, Lj) and
choice of mixing ratiom, we have a data point (x, y). All data points
together constitute a set holding N data points. We will observe at
the end of this section how this set of points is generated.

2.2 Learning algorithms

Since the data points in our set have both input values
and target value, we use a common type of supervised

learning algorithm: kernel ridge regression (KRR) [12]. Kernel
ridge regression is a non-linear regression algorithm with a

regularization term (from which the name “ridge”) that is
comparable to the well-known Support Vector Machine algorithm.

The simple linear regression algorithm aims at finding the
unknown coefficients β of the function f (z) = 〈β , z〉, z ∈ X

minimizing the error E[f (z) − y] (also known as loss function)
over the entire set of data. To alleviate over fitting of the data,
a regularization term is usually added. In the ridge regression,
the regularization amount to adding a penalty term to the
minimization problem. Choosing the squared error as loss function
leads to the following minimization problem

arg min
β∈Rd

∑

i

(〈β , xi〉 − yi)
2 + λ‖β‖22 (2)

By introducing a function z → φ(z) which maps the input
space X to a feature space H, the use of kernels generalizes the
linear to non-linear regression [see [38] for a didactic introduction].
In this context, a kernel is an inner product in feature space
k(xi, xj) = 〈φ(xi),φ(xj)〉. The advantage of using kernels is that
the function f (z) =

∑

i αik(xi, z) is not expressed anymore as a
sum over dimension d of the input space, instead as a sum over the
number of data N making up the training set. With this set up, the
minimization problem of Equation 2 becomes

arg min
α∈RN

N
∑

i

(f (xi)− yi)
2 + λ‖f ‖2

H
,

with ‖f ‖2
H

=
∑

j

∑

i αjαik(xi, xj). In practice, the kernel
function is expressed as a matrix of inner products between points
of the training data set in feature space k(xi, xj) = Kij. Eventually,
the solution of the minimization problem can be expressed by the
linear equation

α = (K + λ1N)
−1
y, (3)

with α ∈ R
N being the vector that contains the information

learned.
Almost all Machine Learning methods do not work directly

out of the box but have a number of parameters that have to be
fixed. In the case of the KRR, the level of regularization through the
parameter λ is tuned for the dataset at hand and the selected kernel.
Additionally, almost every kernel has some extra parameters that
must also be tuned. The entire set of these adjustable parameters is
called hyperparameters.

Given a kernel, its computation can still be performed in input
space, despite its value describes the inner product in feature space.
In this study, we employed three different kernels with the same set
of data: the polynomial, the Gaussian, and the Laplacian kernels,
which are, respectively, based on the inner product, the ℓ2-norm,
and the ℓ1-norm

k(x, z) = (〈x, z〉 + c)p (4)

k(x, z) = exp

(

−
||x− z||22

2σ 2

)

(5)

k(x, z) = exp

(

−
||x− z||1

σ

)

. (6)

The actual computation of α amounts to solve a positive-
definite numerical linear system Aα = y. Once α is computed, it
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is used to compute predictions for any new data point with ŷ =
∑

i αik(xi, x̂). For validation purpose, the results of such prediction
are typically presented in a scatter plot where the predicted and
computed target values are represented on x and y, respectively (see
plots of Figure 2, for instance).

The Laplacian (Equation 6) and Gaussian (Equation 5) kernels
are by far the most used in KRR because they provide the
most effective map since they use a virtually limitless number of
functions as the prior of our statistical model. On the other hand,
our aim is to employ a set of kernels that use only a finite number of
functions and could be, in theory, inverted. Once (approximately)
inverted, such kernels, which, in this study, are represented by the
polynomial kernels of increasing degree, could return a functional
expression for the coefficients α in terms of the descriptors. Being
able to statistically infer such functional expression would allow us
to go beyond the prediction of target values for new solid solutions
and understand which descriptors aremore relevant and contribute
the most to determine the target values. Moreover, in applying
KKR, we focus on polynomial kernels and use the accuracy of
results coming from Gaussian and Laplacian to monitor how
closely the accuracy of the former come to the latter. In this sense,
the polynomial kernels that will be closest in error to the Gaussian
or Laplacian kernels will provide a hint on the order of polynomial
functions that should be included in our previous study.

With this information, we can manually construct thousands
of candidate functions of the original elementals x

(t)
i that

could faithfully represent the underlying surrogate space. In
our application, we refer to these candidate functions as v =

[v1; v2; · · · ; vM], whereM can range fromO(103) toO(104). Each
vk is a function of one of more x(t)i up to degree p. For example, a

degree 3 function could be x(7)2 (x(3)3 )2.We then apply a sparsification
technique, which amounts to find the most relevant among the vk
by forcing as many coefficients of the statistical model to be zeros.
In Section 3.1, justified by the KRR results, we show how each
distinct vk is constructed from the all possible polynomial functions
of the original descriptors up to degree p.

The objective of sparsification is finding the most relevant
term(s) among vk which contributes the most to the target values.
Moreover, the number of the relevant terms should be also
controllable. A straightforward sparsification technique that one

can employ is the LASSO [15] approach where the ℓ1 is substituted
with an ℓ0 regularization. This combination is able to sparsify the
coefficients of LASSO regression into a small determined number.
The minimization problem to be solved is given as follows:

arg min
γ∈RM

N
∑

i

(〈γ , vi〉 − yi)
2 + λ̂‖γ ‖0. (7)

In this formula, the ℓ0-norm of a coefficient vector γ is defined
as follows:

‖γ ‖0 = #{j : γj 6= 0}, j = 1, . . . ,M

indicating the number of non-zero elements of the γ vector. A
vector γ ∈ R

M is called κ-sparse if ‖γ ‖0 ≤ κ .
While the minimization with the ℓ0 regularization is the exact

problem we want to solve, it has a significant drawback: this
minimization problem is not convex. This leads to an “NP-hard
problem” 1 which is infeasible whenM is large. Therefore, ℓ0 cannot
be directly applied to sparsify the candidate functions in v. To
compromise between the convexity and sparsity of the coefficient
vector, we first utilize a Manhattan ℓ1-norm regularization λ‖γ ‖1

(which is the standard definition of LASSO) to carry out an initial
feature selection, out of which we can achieve the sparsification of v
[14].

arg min
γ∈RM

N
∑

i

(〈γ , vi〉 − yi)
2 + λ̂‖γ ‖1. (8)

This latter optimization problem is convex, which promote also
sparsity. In Equation (8), λ̂ > 0 is the penalty parameter which is
able to control the sparsity of the coefficient vector v: the larger λ̂

is, the smaller the ℓ1-norm ‖γ ‖1 would be, hence higher sparsity is
achieved and more candidate functions are eliminated.

In our application, we start from a very small λ̂, then increase it
with a fixed step. With the increase in λ̂, we observed that a large

1 A NP-hard problem means that the solution cannot be found in

polynomial time with respect to M.

FIGURE 2

Regression for the Gaussian Kernel (left) and the degree 3 polynomial Kernel (right). The scatter plot corresponds to a trained model whose

hyperparameters have been already fitted. Gaussian best fit: λ = 10−13.46, γ = 10−5.90 with an MAE of 1.07× 10−2 kJ/mol. Degree 3 polynomial the

best fit: λ = 104.73, γ = 105.79, c = 100.37 with an MAE of 9.00× 10−3 kJ/mol.
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number of constructed functions in v gets quickly eliminated to
rapidly flatten the curve which stagnates even for much larger λ

values; in other words, the minimization process with the ℓ1-norm
reduces the vector γ to be at most κ-sparse, κ being ∼20 in our
application. In practice, we compressed a very large feature space
spanned by v into a tiny one spanned by v′, in which v′ is a subset
of v whose number of elements is smaller than κ . Due to the low
dimension of feature space selected by LASSO, the Equation (7) can
be solved for v′ in place of v rather effectively with a brute force
approach. More details of numerical results are shown in Section 3.
In the rest of the study, we refer to the use of LASSO together with
the further sparsification using an ℓ0 regularization as LASSO+ℓ0.

This method, combining LASSO with a sparsification of the
coefficient vector, has been developed in the context of compressed

sensing [14], where one is interested in reproducing the gathered
data with as few as possible degrees of freedom. Unlike the article
in the study mentioned in [14], our approach starts with a Kernel
Ridge Regression and maps the descriptors xi to a much larger
but finite dimensional input space, where the new features vk are
made out of a finite number of selected functions of the original
descriptors xi. We additionally integrate domain-knowledge by
modifying the initial selection of descriptors and features to ensure
scientific consistency with the existing knowledge from the physics
of solid solutions. The necessity of tuning of the descriptors and the
features is also confirmed by the inefficiency of the LASSO method
when the original descriptors xi are used.

In the next section, we observed that KRR polynomial kernel
with degree p = 3 returns one of the lowest statistical error. We
capitalize on such a result and make the plausible hypothesis that a
polynomial map of degree at most 3 for LASSO should identify the
most promising functions of the descriptors x(t)

k
. We then show that

the results of feature selection by LASSO suggest the selection of a
modified set of descriptors that guarantees scientific consistency.
Finally, through the ℓo regularization, we determine the desired
functions which map the elemental descriptors to the excess of
enthalpy for both monazite and xenotime.

2.3 Dataset generation

The dataset used by the selected learning methods was
computed with the Quantum-ESPRESSO code using the approach
of [28, 34]. The solid solutions were modeled with special quasi-
random structures constructed using procedure of the study
mentioned in [39]. All the structures were modeled with supercells
containing 192 atoms (32 formula units). We applied the PBEsol
exchange-correlation functional [40], and the f electrons were
included into the pseudopotential core. It has been shown that
this setup results in a very good predictions of structures and
thermodynamic parameters of lanthanide phosphates, including
formation enthalpies [30, 32, 41, 42]. The excess enthalpies of
mixing and Margules interaction parameters were derived from
differences in the total energies of the mixed cation structure and
weighted (according to the solid solution composition) sum of the
end members.

The dataset consists of excess enthalpies of formation among all
15 lanthanides, which leads to 105 possible combinations (

∑14
i=1 i =

TABLE 3 Kernel Ridge Regression results on the Excess Formation

Enthalpy dataset for di�erent Kernel types.

Kernel log λ log γ log c MAE

Poly. 2D −3.68 3.95 −4.47× 10−1
T 0.0098

P 0.0278

Poly. 3D 4.73 5.79 3.68× 10−1
T 0.0090

P 0.0228

Gaussian −1.34× 101 −5.90 -
T 0.0107

P 0.0235

Laplacian −2.00× 101 −2.31 -
T 7.60× 10−14

P 0.1102

The first two rows are polynomial kernels of degree 2 or 3, respectively. The error displayed
is the Mean Absolute Error (MAE). T, training dataset; P, prediction dataset. Units are
(kJ/mol) (MAE). Note that the Laplacian kernel has by far the lowest regularization strength
(λ = 10−20) which leads to a perfect fit on the training data but also to the worst performance
on the testing dataset. This is a strong sign of overfitting.

105). Those 105 combinations were then modeled for five different
mixture ratios m = 0.25, 0.375, 0.50, 0.625, and 0.75, giving
525 data points. Two distinct datasets were generated for the two
lanthanide orthophosphate phases, monazite and xenotime, which
correspond to the two possible coordination numbers, R8 and R9,
of the lanthanides (see Table 1). In the following, we will test our
models on three distinct configurations of these data: monazite
only (525 data points), xenotime only (525 data points), and fused
(1, 050 data points). Not all these points are used to train the
learning model. A subset is reserved for testing and validation
purposes.

All the data and the scripts used to generate the results
presented in this study are publicly available at https://github.com/
SimLabQuantumMaterials/MLESS.

3 Regression, sparsification, and
interpretable formulas

The first step before determining the coefficients α of our KRR
models is to determine the optimal value of the corresponding
hyperparameters. To this aim, the entire given dataset is typically
split in to two parts. The training dataset (xi, yi) ∈ T is used
to compute the actual coefficients α of the regression that appear
in Equation (3). The testing or prediction dataset (x′

i, y′i) ∈ P

is separate and is used to evaluate the quality of a given set of
hyperparameter values for predicting unseen data ŷ = αTK ′,
where K ′

ij = k(xi, x′
j). The optimal set of parameters is selected

when the predictions (i.e., ŷi) are in the best possible agreement
with the known values from the testing dataset (i.e., y′i). Different
error functions are commonly used to quantifying the quality of a
prediction. The most common are the Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Maximum Error (ME). In this
study, we use exclusively the MAE

MAE =
1

N

∑

i

|ŷi(x
′
i)− y′i|,
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TABLE 4 MAE (kJ/mol) of the excess of enthalpy for the cross-validation of polynomial kernel of degree 3 with five di�erent combinations of data points

evenly split between T and P.

Data set Orig. 1 2 3 4 5 Avg. StDev.

T 0.0090 0.0126 0.0130 0.0123 0.0127 0.0120 0.0125 0.0004

P 0.0228 0.0120 0.0108 0.0128 0.0126 0.0139 0.0124 0.0011

For each new regression, we used the same hyperparameters λ, γ and c, as in the original one. The average and the standard deviation are calculated over the evenly-split five combinations.

A B C

FIGURE 3

LASSO results with descriptors used in KRR. (A) Fused. (B) Monazite. (C) Xenotime.

because it is the one giving the most sensible measurement of
error throughout the entire set of solid solutions.

Because possible hyperparameter values may span over
multiple dozens of orders of magnitude, brute force methods that
quickly scan the entire space in a grid-like pattern are preferred
to conventional minimization methods. Once an approximate local
minimum is found, local optimizations are used to refine the values
of the hyperparameters. In the following, we do not report the
hyperparameter search results which is a standard procedure in
the use of ML algorithms. In all the scatter plots and tables, it is
implicitly intended that all hyperparameters have been opportunely
optimized following the procedure just described.

3.1 Predicting excess of enthalpies with
KRR

In the search for optimal hyperparameters, we have split the
total subset of data in to two parts between T andP. The ratio of the
data size between T and P is 4 : 1. Once the hyperparamete search
is completed, we fitted the data of the training set T using all three
distinct kernels for the KRR model. It has to be noted that instead
of the standard polynomial formulation of Equation (4) K(x, y) =
(

xTy+ c
)d
, we have used a slightly modified kernel k(x, y) =

(

γ xTy + c
)d

that produces slightly better results. Additionally, we
unified the notation and used the symbol γ for both multiplicative
factors changed to k(x, y) = exp(−γ · || . . . ||) (the 1

2σ 2 and 1
σ
for

the Gaussian and Laplacian kernels, respectively).
In Table 3, we report the results obtained for all kernels with

MAE for both sets T and P on the fused data set configuration
(similar results are obtained for the other two configurations).
Despite its remarkable low errors on the T set, the Laplacian kernel
does not return a satisfactory result on the set of prediction data P.
In fact, no choice of hyperparameters returns a reliable regression
for unseen data: the search space minimization return a value for

λ numerically indistinguishable from zero. This is a typical sign
that KRR with this kernel is overfitting the data and returning an
in-sample error much smaller of the out-of-sample error. For this
reason, we discarded the learningmodel using the Laplacian kernel.

The low order polynomial and the Gauss kernels return a
much nicer picture in terms of the errors. Already the degree 2
polynomial kernel is able to fit the data quite well. Its MAE differs
only ≈ 1× 10−3 kJ/mol from the error of the degree 3 kernel
and the Gaussian Kernel. Judging from the fact that the degree 3
polynomial kernel returns anMAE as low as≈ 2× 10−2 kJ/mol for
theP set which indicates that the underlying function for the excess
of Enthalpy could be represented by functions of the descriptors
having up to cubic terms. Since the actual values for the excess
enthalpy of the formation for the lanthanide orthophosphates span
a range going from of 0.5 to 1.00× 101 kJ/mol, the relative errors
of our model represent the same level of uncertainty returned by
the DFT simulations. In other words, the prediction provided by the

KRR model with either a degree 3 polynomial or the Gauss kernel are

indistinguishable from the finite accuracy of the in silico simulation

used to generate the data used in both sets T and P (see Figure 2).
What distinguishes the Gaussian and the degree 3 polynomial

kernels are the value of the hyperparameters: the degree 3 kernel
requires a quite large value of λ and γ respect to the Gaussian.
This is not necessarily a negative result but it points out that our
choice of descriptors may not be ideal when the kernel represents
a finite set of prior functions such as in the case of the degree
3 polynomial. When the set of prior functions becomes virtually
infinite (the Gaussian kernel can be observed as an infinite series of
polynomials), the descriptor choice becomes unimportant. We will
observe in the following subsection how the choice of descriptors
becomes significant when one would like to sparsify the vector
of coefficients α starting from a finite set of prior functions of
the descriptors.

To ensure that our KRR models provide a good fit for all data
independently on how they are split between T and P, we have
used cross validation. In practice, we run the KRR models, fitting
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TABLE 5 LASSO+ℓ0 results for fused, monazite, and xenotime with

descriptors used in KRR.

nb. Leading terms MAE (kJ/mol)

(A) Fused

1 (x(3)V )2x(1)V 0.3528

2 (x(3)V )2 , x(3)V x
(3)
Y x

(1)
Y 0.2730

3 (x(3)V )2 , x(3)V x
(2)
V x

(2)
Y , x(3)V x

(3)
Y x

(1)
Y 0.2757

(B) Monazite

1 (x(3)V )2x(1)R 0.2274

2 (x(3)V )2x(1)V , (x(3)V )2x(1)R 0.2201

3 x
(2)
Zeff

, x(2)R x
(2)
Z , (x(3)V )2x(1)χ 0.2076

(C) Xenotime

1 (x(3)V )2x(1)Z 0.3303

2 (x(3)Zeff
)2x(1)χ , (x(3)V )2x(1)Z 0.3247

3 (x(2)Y )3 , x(2)R x
(2)
Z , (x(3)V )2x(1)Z 0.2078

TABLE 6 Two basic descriptors of elemental property ǫk .

Name Descriptor

Absolute difference 1ǫk =
|ǫK (Li)−ǫK (Lj)|

2

Arithmetic mean ǫk =
|ǫk(Li)+ǫk(Lj)|

2

several different choices of training and testing datasets always
keeping the same choices of values for the hyperparameters that
were previously selected. If the results with the original dataset were
truly a product of chance, a fit with an entirely new combination of
data points should show a different performance. Table 4 shows the
results for repeating the KRR with polynomial kernel of degree 3
for five different subsets, some of which even showed slightly better
performance than the original regression. The MAE over the five
different sets ranges between 0.052 and 0.082 kJ/mol, confirming
the quality of the original regression.

3.2 LASSO + ℓ0

In the previous section, we have concluded that KRR with
Gaussian and degree 3 polynomial kernel performs very similarly
with a slight advantage for the latter kernel. In this section, we want
to pursue the road of finding a surrogate model that is explainable:
we aim at formulation of the excess enthalpy of mixing that can
provide the domain scientist with an understandable function of a
small number of descriptors. We are driven to recover this result
by the observation that already polynomial functions of degree 3
provide enough prior to get an accurate KRR model. We achieve
this result through a so-called sparsification process.

3.2.1 Sparsification with descriptors in KRR
A large number of candidate functions have been built from the

polynomial kernel of degree 3 based on the 27 elemental descriptors
introduced in Section 2.1. Denoting the group of 27 elemental

TABLE 7 LASSO+ℓ0 results for fused, monazite, and xenotime with

descriptors defined only by arithmetic means and absolute di�erence.

nb. Leading terms MAE (kJ/mol)

(A) Fused

1 (1VV)2

R
3 0.2798

2 1Y1Z

Zeff
,m2(1−m)2(1V)2 0.0951

3 1Y1Z

Zeff
,m2(1−m)2(1V)2 , (1−m)1Y(1V)2 0.0879

(B) Monazite

1 m(1−m)(1V)2 0.0622

2 m(1−m)(1V)2 ,m2(1−m)2(1V)2 0.0575

3 m(1−m)(1V)2 ,m(1−m)2(1V)2 , (1V
m

)3 0.0516

(C) Xenotime

1 m(1−m)(1V)2 0.1699

2 m(1−m)(1V)2 , (1V)2

(V)4
0.0793

3 m(1−m)(1V)2 , Zeff (1V)2 , (1V)2

(V)4
0.0483

descriptors as D1, a group of candidate functions with polynomial
of degree 2, denoted as D2, can be defined as a commutative
element-wise vector product didj, with di, dj ∈ D1. The number
of descriptors in D2 is 378. The group of candidate functions with
polynomial of degree 3, denoted as D3, can be defined in a similar
way, as a commutative element-wise product of three vectors didjdk
with di, dj, dk ∈ D1. The number of descriptors inD3 is 3.30× 103.
Therefore, all the candidate functions are a union of D1, D2, and
D3, which is denoted asD.D is a dense matrix of size 1, 050×3, 708
for the fused data set and of size 525×3, 708 for both monazite and
xenotime data set configurations.

As described in Section 2.2, a feature selection step has been
performed on D through the LASSO method. Increasing the
penalty parameter λ, the size of feature space is reduced as more
candidate functions are removed. In the numerical experiments, λ
is increased from 1× 10−3 to 9.60× 10−2 in incremental steps of
5× 10−3. We performed the same feature selection step not only
for the fused data but also separately for monazite and xenotime
data configurations. The results are shown in Figure 3, which shows
the variation of the MAE and the size of the reduced feature space.

From Figure 3, we infer that with the increase of λ, the feature
space size can be quickly reduced to <30. This is good news, since
sparsifying a feature space of size∼3.00× 101 through LASSO+ℓ0

into a determined size smaller than 5 is still feasible2. At the same
time, we observed that all the errors increase with the increase of
λ. This behavior is to be expected and is the direct consequence
of the reduction of the feature space size. Unfortunately, the errors
increase too quickly and show an exponential growth that plateaus
already for small values of λ. For example, for fused data, the MAE
increases from ∼ 3× 10−2 to more than 2.50× 10−1 when λ is
only increased from 1× 10−3 to 2.10× 10−2. When increasing λ

from 0.021 to 0.096, the feature space size continues to be reduced
however, the changes of error flatten. Similar trends can also be

2 This is an NP-hard problem which can still be solved by brute-force for

such small size.
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A B C

FIGURE 4

LASSO results with descriptors defined only by arithmetic means and absolute di�erence. (A) Fused. (B) Monazite. (C) Xenotime.

TABLE 8 Fused: all elemental descriptors except Ionic radius

coordination.

# Functions

1 1.15m(1−m)(1V)2 − 5.17× 10−2

2 3.31× 10−1 1Y1Z

Zeff
+ 2.90m2(1−m)2(1V)2 + 2.29× 10−2

3 2.86× 10−1 1Y1Z

Zeff
+ 2.89m2(1−m)2(1V)2 + 9× 10−4(1−m)1Y(1V)2

+6.40× 10−2

4 6.10× 10−3(1−m)1Y1V + 3× 10−4V1Zeff 1Y + 2.54m2(1−m)2(1V)2

+2.50× 102 (1V)2

YIP3+
+ 6.80× 10−3

5 3.75× 10−1 1Zeff 1Y

Zeff
+ 3.231Vχ

IP3+
+ 2.53m2(1−m)2(1V)2

+1.00× 10−3(1−m)(1V)21Y + 1× 10−4 (V)2(1V)2

IP3+
− 6.15× 10−2

Error

Desc. #
1 2 3 4 5

MAE (kJ/mol) 0.3317 0.0951 0.0879 0.0574 0.0550

TABLE 9 Fused: all elemental descriptors except volume.

# Functions

1 7.25× 101 1R1Y

IP2+
+ 3.66× 10−1

2 3.02× 102 1R1Y
Y

+ 1.41× 104m2(1−m)2(1R)2 − 2.71× 10−2

3 2.67× 102 1R1Y
Y

+ 1.38× 104m2(1−m)2(1R)2 + 7.14(1−m)1Y(1R)2

+1.35× 10−2

4 2.29× 101 1R1Y

IP2+
+ 1.31× 104m2(1−m)2(1R)2 + 5.91(1−m)1Y(1R)2

+1.86× 102 (1R)21Y
1M

+ 4.00× 10−3

5 3.20× 10−1m2(1−m)21Y + 1× 10−4IP3+1IP31Y + 3.35× 10−21RIP3+

1Y1.30× 104m2(1−m)2(1R)2 + 7.37(1−m)1Y(1R)2 − 6.03× 10−2

Error

Desc. #
1 2 3 4 5

MAE (kJ/mol) 0.5581 0.1374 0.1249 0.1110 0.1075

observed separately for the monazite and xenotime data. This result
signals that the generated feature space does not capture well the
functional dependence of the excess enthalpy on the descriptors.
In other words, we cannot find a simple functional dependence
of HE and need many hundreds of functions to faithfully predict
the enthalpy.

TABLE 10 Monazite: all elemental descriptors except Ionic radius

coordination.

# Functions

1 9.25× 10−1m(1−m)(1V)2 + 1.73× 10−2

2 8.04× 10−1m(1−m)(1V)2 + 5.30× 10−1m2(1−m)2(1V)2 + 2.20× 10−2

3 8.67× 10−1m(1−m)(1V)2 + 1.63× 10−1m(1−m)2(1V)2

−5× 10−5(1V
m

)3 + 1.08× 10−2

4 2.47× 101 1V

IP3+Zeff
+ 8.38× 10−1m(1−m)(1V)2

+1.71× 10−1m(1−m)2(1V)2 − 5× 10−5(1V
m

)3 − 3.37× 10−2

5 −3× 10−4 1Y
m3 + 4.03× 101 1V

IP3+Zeff
+ 8.02× 10−1m(1−m)(1V)2

+2.11× 10−1m(1−m)2(1V)2 − 3× 10−5(1V
m

)3 − 3.95× 10−2

Error

Desc. #
1 2 3 4 5

MAE (kJ/mol) 0.0622 0.0575 0.0516 0.0500 0.0460

TABLE 11 Monazite: all elemental descriptors except volume.

# Functions

1 2.00× 104m2(1−m)2(1R)2 + 3.82× 10−2

2 1.24× 104m2(1−m)2(1R)2 + 1.14× 102 (1R)21Y
1Zeff

− 2× 10−4

3 1.17× 104m2(1−m)2(1R)2 + 1.16× 102 (1R)21Y
1Zeff

+ 6.85× 103 (1R)21χ

1Y

−2.78× 10−2

4 1.68× 10−1 IP3+χ

IP2+
+ 1.19× 104m2(1−m)2(1R)2 + 1.14× 102 (1R)21Y

1Zeff

+5.59× 103 (1R)21χ

1Y
− 3.90× 10−1

5 6.12× 10−1m2(1−m)21Y + 4.09× 10−11IP3+1χ1IP2+

+3.48× 101 1R1Y

IP2+
+ 9.97× 103m2(1−m)2(1R)2 + 1.76× 105 (1R)3

IP2+1Zeff

−6.42× 10−2

Error

Desc. #
1 2 3 4 5

MAE (kJ/mol) 0.2344 0.0858 0.0837 0.0807 0.0810

To confirm our concerns, we perform a LASSO+ℓ0 step on
the reduced feature space separately for the fused, monazite, and
xenotime dataset configurations. At most, three leading terms
have been selected, which are shown in Table 5, along with
their corresponding MAEs. As expected, the errors of candidate

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2024.1355726
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Di Napoli et al. 10.3389/fams.2024.1355726

TABLE 12 Xenotime: all elemental descriptors except Ionic radius

coordination.

# Functions

1 1.23m(1−m)(1V)2 + 6.30× 10−2

2 6.27× 104 (1V)2

(V)3
+ 2.54m2(1−m)2(1V)2 + 9.40× 10−3

3 5.34× 104 (1V)2

(V)3
+ 2.55m2(1−m)2(1V)2 + 3× 10−4(1−m)Y(1V)2

+1.23× 10−2

4 4.32× 10−2(1−m)(1V)2 + 1.52× 103(1V
V
)2 − 1.38m(1−m)(1V)2

+5.78m2(1−m)2(1V)2 + 4.70× 10−3

5 4.30× 10−2(1−m)(1V)2 + 5.50× 103(1V
V
)2 − 2.00× 105 (1V)2

(V)3

−3.55m(1−m)(1V)2 + 1.08× 101m2(1−m)2(1V)2 + 1.14× 10−2

Error

Desc. #
1 2 3 4 5

MAE (kJ/mol) 0.1699 0.0817 0.0492 0.0396 0.0348

functions selected by LASSO+ℓ0 are more than one of order of
magnitude larger than the ones derived by KRR. What is more
remarkable is the fact that the errors do not seem to decrease much
as we consider more terms. In fact, for the fused data configuration,
the MAE actually increases going from 2 to 3 leading terms. The
errors for the other data configuration seem a bit better but are
still far from what we would like to observe. From these tables
and the plots shown in Figure 3, we conclude that the choice of
prior candidate functions cannot be effectively exploited by the
sparsification process.

3.2.2 Sparsification with descriptors built with
prior knowledge

To overcome the shortcomings of the sparsification process
seemingly caused by the choice of descriptors, we simplify the
form of the descriptors and exploit the existing knowledge from
the application domain. Based on the insight provided by the
simple model with the Margules interaction parameter W and the
expression in Equation (1), we make three additional assumptions:
(i) the polynomial degree ofm and 1−mmay not be in accordance
with each other and the polynomial degree of the elemental
property ǫk, (ii) negative power of the descriptors may appear in
the Margules parameter and, (iii) the volume V , ionic radius R,
and mixing ratio m play a special role than the other elemental
properties and may contribute with monomials of degree higher
than 3.

The direct consequence of (i) is that m and 1 − m have
been decoupled from the elemental descriptors and included as
descriptors on their own. This may seem a strange choice since they
do not depend on the lanthanides but are the same for all. On the
other hand, decoupling themixing ratio allowsmore freedom in the
way it appears in the degree 3 polynomial functions that are part of
D. The indirect consequence is that we do not have anymore three
types of descriptors for each elemental property ǫk but only two: we
drop the weighted quadratic mean, convert the weighted mean to
a simple arithmetic mean, ǫk and keep the absolute difference 1ǫk

(see Table 6).

TABLE 13 Xenotime: all elemental descriptors except volume.

# Functions

1 9.83
1Y1Zeff

Y
− 3.17× 10−2

2 1.83× 104m2(1−m)2(1R)2 + 3.14× 103 (1R)2IP3+

Y
− 1.09× 10−2

3 1.81× 104m2(1−m)2(1R)2 + 2.63× 103 (1R)2IP3+

Y

+9.35× 104(1−m) (1R)3

IP2+
+ 5.77× 10−2

4 3.42× 10−1 1Zeff 1Y

IP2+
+ 1.72× 104m2(1−m)2(1R)2 + 1.27× 107 (1R)3

Y1M

+8.99× 101(1−m)(1R)3IP3+ + 6.60× 10−3

5 3.44× 10−1 1Zeff 1Y

IP2+
+ 6× 10−5IP3+1IP3+1Y

+1.74× 104m2(1−m)2(1R)2 + 1.05× 107 (1R)3

Y1M

+9.18× 101(1−m)(1R)3IP3+ + 5.40× 10−3

Error

Desc. #
1 2 3 4 5

MAE (kJ/mol) 0.3575 0.1547 0.1321 0.0871 0.0813

The second hypothesis implies that the inverse of each
elemental property 1ǫk and ǫk is also included explicitly in the
descriptor. Additionally, due to the third hypothesis, we include as
descriptors monomials of degree higher than one for m, V , and R.
In particular, for m, and 1 − m we include up to quadratic terms
(and their inverse), and for V and R, we include up to cubic terms
(and their inverse).

All these descriptors build up a basic feature spaceD1 of size 58.
Analogously as done for the original descriptors, the groupsD2 and
D3 are built as the element-wise product of two or three features out
ofD1, respectively. Feature spaceD2 is of size 1647 after removing 6
features with standard deviation being 0, such as the element-wise
product of 1

m and m. The size of feature space D3 is 30, 856. The
sum of all candidate functions is collected intoD = D1 ∪D2 ∪D3.
The size of dataD is 1, 050×3, 2561 and 525×32, 561 for fused and
monazite/xenotime data configurations. These choices imply that
terms can have orders higher than degree 3 form,m− 1, V , and R.

For example in Table 7(C), one can have the term (1V)2

(V)3V
which is in

the form didjdk, with di = (1V)2, dj = (V)−3, and dk = (V)−1.
We run the same LASSO as in Section 3.2.1, the results of

which are shown in Figure 4. Compared with the Figure 3, the
results we obtained are quite more promising. For fused data in
Figure 4, the size of reduced feature space drops down quickly
below 40 which is already at very small value of λ. Afterward, with
the increase of λ, the decrease in the size of reduced feature space
slows down, which implies that the reduced feature space contains
always important features for the target problem. Meanwhile, with
the increase of λ, the errors increase moderately and linearly, which
is a second sign that the feature space is reduced into a good choice
of representative functions.

After applying LASSO+ℓ0 on the vector of descriptors
spanning the reduced space, the first three leading terms and
their corresponding errors for fused, monazite and xenotime data
configurations are shown in Table 7. It is important to notice
that while the errors may still be quite high for keeping only the
leading term, they decrease rapidly when we include higher terms.
Moreover, the first leading term for the monazite, and xenotime

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2024.1355726
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Di Napoli et al. 10.3389/fams.2024.1355726

TABLE 14 Monazite: only Volume and Young modulus.

# Functions

1 9.25× 10−1m(1−m)(1V)2 + 1.73× 10−2

2 3.57× 10−1m(1−m)1V + 8.67× 10−1m(1−m)(1V)2 − 6.60× 10−2

3 4× 10−5 (1Y)2

m3 + 8.68× 10−1m(1−m)(1V)2

+1.53× 10−1m(1−m)2(1V)2 + 2.07× 10−2

4 1.03× 10−1m(1−m)1Y − 4× 10−5 (1Y)2

m3 + 8.24× 10−1m(1−m)(1V)2

+1.57× 10−1m(1−m)2(1V)2 − 2.99× 10−2

5 1.20× 10−1m(1−m)1Y − 7× 10−5 (1Y)2

m3 + 9.11× 10−1m(1−m)(1V)2

+2.37× 10−1m(1−m)2(1V)2 − 5.38× 10−1m2(1−m)2(1V)2

−4.13× 10−2

Error

Desc. #
1 2 3 4 5

MAE (kJ/mol) 0.0622 0.0585 0.0546 0.0482 0.0495

data configurations resemble closely the expression of Equation (1).
We will analyze in more details the results and interpret their
physical meaning up to five leading terms in the next section.

4 Numerical results

As shown in Section 1.1, the discrepancies between existing
models and the datamake the computation of the excess of enthalpy
for solid solutions of both monazite and xenotime, a clear cut
example to demonstrate the validity of our statistical approach in
retrieving an explainable expression forHE. We will (1) showwhich
descriptor provides the most reliable leading term for the mixing
enthalpy between ionic radii of the mixing cations and the volumes
of the pure phases, (2) identify the first sub-leading term, which
enhances the accuracy of the HE prediction of xenotime-type solid
solutions.

To address the points (1) and (2), we apply the sparsification
integrated with previous knowledge to a variety of scenarios: (i)
using all modified descriptors illustrated in Section 3.2.2, (ii) using
all modified descriptors excluding the one based on ionic radii
elementals R8 and R9, (iii) using all modified descriptors excluding
the one based on the volume elemental V , and (iv) using only
descriptors based on the volume V , mixing ratio m and Young
modulus Y elementals. In addition, we used three different sets
of data—monazite, xenotime, fused—for each of the four cases
(i)–(iv). In total, we produced 12 separate sparsification scenarios,
each specifying functions up to five leading terms and the relative
errors. In the analysis that follows, we remind the reader that all
the numerical coefficients are not dimensionless and may carry
different SI units. Consequently, we cannot compare coefficients
across terms featuring distinct elemental descriptors.

The (1) statement is inferred from the direct inspection of cases
(ii) and (iii) over the fused data set (see Tables 8, 9). Comparing
the two tables, one can observe that several functions where 1V

appears in Table 8 correspond to similar functions of1R in Table 9.
On the other hand, the MAE is comparatively smaller in Table 8
than Table 9 for any count of descriptor number. This is suggestive

TABLE 15 Xenotime: only Volume and Young modulus.

# Functions

1 1.23m(1−m)(1V)2 + 6.30× 10−2

2 1.00× 10−3Y(1V)2 + 2.58m2(1−m)2(1V)2 + 2.96× 10−2

3 8× 10−4Y(1V)2 + 2.58m2(1−m)2(1V)2 + 3× 10−4(1−m)Y(1V)2

+2.96× 10−2

4 −8× 10−6(Y)2(1V)2 + 2.58m2(1−m)2(1V)2 + 3× 10−4(1−m)Y(1V)2

+1.19× 101 Y(1V)2

(V)2
+ 3.10× 10−3

5 −2× 10−5(Y)2(1V)2 − 5.73× 10−1m(1−m)(1V)2

+3.92m2(1−m)2(1V)2 + 3× 10−4(1−m)Y(1V)2 + 2.32× 101 Y(1V)2

(V)2

−1.54× 10−2

Error

Desc. #
1 2 3 4 5

MAE (kJ/mol) 0.1699 0.0850 0.0547 0.0449 0.0408

TABLE 16 Fused: only Volume and Young modulus.

# Functions

1 1.15m(1−m)(1V)2 − 5.17× 10−2

2 2.95m2(1−m)2(1V)2 + 1.08× 102 1V1Y
(V)2

+ 4.29× 10−2

3 6.60× 10−3m(1−m)2(1Y)2 + 7.96× 10−1m(1−m)(1V)2

+5.44× 101 1Y1V
(V)2

+ 6.40× 10−3

4 4.70× 10−3m(1−m)2(1Y)2 + 4.67× 10−1m(1−m)(1V)2

+1.27m2(1−m)2(1V)2 + 7.09× 101 1V1Y
(V)2

+ 1.95× 10−2

5 5.12× 10−1m(1−m)1V + 1× 10−4(1−m)1V(1Y)2

+2.86× 10−1m(1−m)(1V)2 + 1.64m2(1−m)2(1V)2 + 7.82× 101 1V1Y
(V)2

−7.64× 10−2

Error

Desc. #
1 2 3 4 5

MAE (kJ/mol) 0.3316 0.0997 0.0801 0.0630 0.0594

of the fact that either the ionic radius or the volume should be
included in the list of elemental properties. TP understand which
among these two elemental properties should be eliminated, we
look next to the cases (ii) and (iii) applied separately to monazite
(Tables 10, 11) and xenotime (Tables 12, 13) data sets. Comparing
the MAE, one notices that descriptors without the volume V return
always larger errors than descriptors without the ionic radius R, for
both monazite and xenotime data sets. This is a strong indication
that V should be preferred over R as the elemental property of
choice. This concludes statement (1) and excludes from further
analysis cases (i) and (iii) which include R.

Next, we look at cases (ii) and (iv) applied to all three sets of
data (Tables 10, 14 for monazite, Tables 12, 15 for xenotime, and
Tables 8, 16 for fused). The first observation is that no matter what
dataset or case one looks at, all the one-term functions are of the
form m(1 − m)(1V)2. Unequivocally, this is the first leading term
describing the excess enthalpy,HE. We also notice that sub-leading
terms for monazite and xenotime datasets are dominated by the
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FIGURE 5

Young modulus vs. Volume and MAE for the LASSO + ℓ0 sparsification. (A) The Young’s modulus as a function of volume for monazite (green circles)

and xenotime (blue squares) phases. The lines represent the linear regression fits. (B) The mean absolute error in kJ/mol of the LASSO + ℓ0

sparsification for the monazite, xenotime, and fused cases obtained with the set of 1–5 leading terms.

volume elemental but this dominancemanifests itself differently for
each distinct dataset and with errors that vary from case to case. For
xenotime, the prediction ofHE with only one term returns anMAE
which is twice the one for monazite indicating that additional terms
are needed to get better accuracy. In both data sets, the leading
term is m(1 − m)1V2, but the numerical coefficient for xenotime
is substantially larger than the one obtained for monazite (1.23 vs.
0.94). Although this difference could be possibly explained with on
average larger Young’s moduli of xenotime phases than monazite
[see Equation (1)], this observation also indicates that additional
terms are essential to obtain an equation that consistently described
both structures. When we look at the results for xenotime alone
(Tables 12, 15), there is some discordance between sub-leading
terms usually involving some power of the difference and the
average of the volume and/or the Young’s modulus. We conclude
that only simultaneous fit to monazite and xenotime datasets could
shed light on the functional form of the sub-leading terms.

Looking at the fused data (Tables 8, 16), it becomes clear that
both the volume and the Young modulus Y play a central role in
many of the sub-leading terms: Using descriptors of only V and
Y consistently returns smaller MAEs. Incidentally, Young’s moduli
and volumes/ionic radii are the elemental properties used inmodels
[26] and [34]. To provide some clearer evidence of this statement,
we focus on the leading and sub-leading terms shown in Table 16,
where all elementals apart from m, V , and Y are discarded. The
second leading term contains product of 1V and 1Y . Combining
the two termsm(1−m)1V2 and1Y1V/V̄2, one can satisfactorily
express HE for both sets of data.

This indicates that in addition to difference in volume,
the difference in Young’s modulus plays a significant role in
determining the excess of enthalpy of mixing. To better understand
the role of this second term, we plot in Figure 5A the variation
of Young’s modulus as a function of 1V for the two phases.
For the considered range of elastic moduli and volumes, there is
a clear linear relationship between the two. However, the linear
relationship is much steeper for xenotime than monazite, with the
slope about three times higher in the former case. This makes the
1Y1V/V̄2 term much larger (by a factor ∼ 3) for the xenotime,

putting it on equal footing with the leading term m(1 − m)1V2.
This explains why the absence of this term, in the description of
xenotime-type solid solutions, causes a discrepancy of a factor ∼ 2
between the ab initio data and the previously discussed theoretical
models (see Figure 1).

In general, adding more terms improves the fit only marginally
(see Figure 5B). On the other hand, one can observe from Table 16
that for any choice of number of terms, the factor 1Y1V/V̄2 is
always present, confirming its importance in contributing to the
expression of HE. This concludes the statement (2).

5 Summary and conclusion

In this study, we report on a three-step approach that combines
distinct methods from classical Machine Learning to reach a
scientifically consistent explainable methodology. First, we use a
KRR approach on the generated data and evaluate which kernel
returns the least amount of error. Then, using the results of KRR,
we reverse engineer the model and proceed to sparsify the vector
of coefficients using a so-called LASSO+ℓ0 procedure. Finally,
we integrate domain-specific knowledge to force an a-posteriori
scientific consistency of the reverse model.

To demonstrate the feasibility and potential of this
methodology, we have applied it to the computation of the
excess of enthalpy of formation HE of solid solutions of lanthanide
Orthophosphates. This particular class of materials is present in
nature in two distinct crystal structures—monazite and xenotime—
for which no single formula is capable of describing accurately
HE. Applying our machine learning–based three-step method
to a set of in silico data, we were able to retrieve sub-leading
corrections to known expressions for HE, which represent an
important step in resolving a conflicting description of the excess
of enthalpy for both types of structures. We expect that the
importance of accounting for the gradient of elastic moduli when
estimating the excess enthalpy of mixing will trigger follow-up
theoretical studies, aiming at providing physical interpretation of
the origin of this phenomenon. The successful application of our
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procedure shows the potential of its application to other areas of
Quantum Chemistry and Materials Science, where explainability of
machine learning models is an essential feature. It also shows that
sometimes the inclusion of a large variety of independent variables
(here representing physical properties of the chemical elements) to
form descriptors is not really necessary while it is more important
to allow for a large set of functions depending on a small set of
variables.
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