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methods
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University, Tulu Awuliya, Ethiopia

This paper presents two standard numerical methods for solving second

order initial value problems for ordinary di�erential equations (ODEs). The

Euler and the Runge-Kutta fourth-order methods are applied without any

discretization or restrictive assumptions for solving ODEs. The numerical

solutions obtained by the two methods are in good agreement with the exact

solutions. The convergence and error analysis which are discussed demonstrate

the e�ectiveness of the methods. The results obtained from the two numerical

methods show that the RK4method is appropriate, consistent, convergent, quite

stable, and more accurate than the Euler’s method.
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1 Introduction

Ordinary differential equations (ODEs) are mathematical equations that describe the

relationship between a function and its derivatives. They are widely used in various fields

of science, engineering and mathematics to model physical, biological, and dynamical

systems [1–5]. Solving ODEs analytically can often be challenging or even impossible for

complex differential equations [6–8]. Therefore, numerical methods play a crucial role in

approximating solutions to these equations. The initial value problem (IVP) is a specific

type of ODE problem where the values of the unknown function and its derivative(s) are

specified at a given initial point. Many researchers developed different methods for solving

ordinary differential equations (ODEs) with the initial value problem. Many authors have

attempted to solve initial value problems (IVPs) to obtain high accuracy rapidly by using

different methods such as the spactral method, the, the Euler’s method and Runge Kutta

fourth (RK4) order method and some other methods.

Jhnson and Lee explored the application of spectral methods to solve second-

order IVP ODEs [9]. The authors employed Legendre polynomials as basis

functions and developed spectral schemes to approximate the solution with

high accuracy and rapid convergence rates. The advantages of spectral methods
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in terms of solution accuracy and numerical examples to validate

their approach are discussed. Spectral methods are based on

representing the solution as a series of basis functions, such as

Legendre polynomials, Fourier series or Chebyshev polynomials

[6, 10, 11]. By discretizing the problem on a set of collocation

points, the unknown function can be approximated by a truncated

Legendre polynomial series. These methods provide exponential

convergence and are particularly effective for smooth or periodic

solutions. It is worth noting that spectral methods, such as the

Fourier or Chebyshev methods, have their own advantages for

solving ODEs. They are typically more accurate, rapid convergence

rates and efficient for problems with only smooth and periodic

solutions. Euler’s method is straightforward to implement and

understand, making it a popular choice for beginners in numerical

analysis [5, 11]. It involves only simple arithmetic operations.

Euler’s method requires fewer computations compared to more

complex methods, such as RK4. Hence, it can be computationally

more efficient for simple and low-dimensional problems. Since

Euler’s method only uses information from the previous step to

approximate the next step, it can provide a quick estimate of

the solution, especially when speed is prioritized over accuracy.

RK4 is a higher-order method, which means it provides more

accurate approximations compared to Euler’s method for a given

step size [6, 11, 12]. It achieves this by using multiple evaluations

of the derivative at different points within the step, resulting in a

smaller truncation error. RK4 is a versatile method that can handle

various types of problem, including those with stiff equations and

irregular behavior [9]. It is widely used and considered to be one

of the most accurate and reliable numerical methods for solving

ODEs. Compared to Euler’s method, RK4 exhibits better stability

properties, making it more suitable for problems that require higher

accuracy over longer integration intervals [6, 12]. While there are

more advanced and sophisticated numerical methods available,

Euler’s method and the Runge-Kutta fourth-order method strike

a balance between simplicity, efficiency, accuracy, and stability

when solving second-order IVPs of ODEs. Euler’s method is a

basic, easy-to-implement method, while the Runge-Kutta fourth-

order method provides higher accuracy, numerical stability, and

better control over the solution’s accuracy. The choice between

these methods depends on the specific problem characteristics,

accuracy requirements, available computational resources, and

desired trade-offs between accuracy and computational efficiency.

Euler’s method and Runge-Kutta methods provide a practical and

reliable alternative for general second order IVPs of ODEs but

spectral methods are accurate and efficient for problems with

smooth and periodic solutions. Although extensive research has

been conducted on numerical methods for solving first-order IVPs

of ODEs, there is a noticeable gap in the literature regarding

specialized methods for solving second-order IVPs. Second-order

IVPs are more complex due to their involving second derivatives,

and applying first-order methods may result in inaccurate solutions

or numerical instability. The lack of comprehensive studies on

numerical methods tailored for second-order IVPs highlights the

need to bridge this gap in the literature. It is crucial to develop

and evaluate specialized numerical methods that can reliably and

efficiently solve second-order IVPs of ODEs. The aim of this study

is to investigate and compare the performance of two widely used

numerical methods, namely the Euler method and the Runge-Kutta

fourth-order method, in approximating solutions to second-order

IVP of ODEs. The study of numerical methods for solving second-

order IVP of ODEs with Euler’s method and the Runge-Kutta

fourth-order method holds significant importance in the field of

numerical analysis and scientific computing. Understanding the

strengths and limitations of these methods can help researchers,

engineers, and scientists select the most appropriate approach for

solving ODEs based on specific requirements such as accuracy,

efficiency and stability. This knowledge can also aid in optimizing

computational algorithms to solve ODEs and providing reliable

solutions for real-world problems. In this paper we apply Eulers and

fourth order Runge-Kutta method for solving initial value problem

of second order ordinary differential equation. A more robust

and intricate numerical technique is the Runge-Kutta fourth-

order methods. The Runge-Kutta fourth-order (RK4) method

generally exhibits better convergence properties compared to

Euler’s method when solving second-order initial value problems

(IVPs) of ordinary differential equations (ODEs). We take an

example of a second-order ordinary differential equation to verify

our proposed formulation.

2 Problem formulation

In this section, we consider two numerical methods to find

approximate solutions of the initial value problem (IVP) of the

second-order ordinary differential equation having the following

form [9].

y′′ = f
(

x, y (x) , y′ (x)
)

, y
(

d
)

= α, y′
(

d
)

= β , d ≤ x ≤ e (1)

Where y′′ =
d2y

dx2
, y′ =

dy
dx

and f
(

x, y (x) , y′ (x)
)

is the given

function and y(x) is the solution of Equation (1). To solve the

second-order IVP of ODE by using the Euler and Runge-Kutta

fourth-order methods, the second-order initial value problems of

ODE can be transformed into a system of first-order initial value

problems, which allows the use of standard numerical methods that

are widely employed. This approach is commonly known as the

first-order system approach and it is indeed not new. In the context

of the current study focusing on Euler’s method and the Runge-

Kutta fourth order (RK4) method, the novelty lies in the analysis

and comparison of these specific numerical methods for solving

the first-order system derived from the original second-order initial

value problem. Although the idea of transforming a second-order

initial value problem into a system of first-order problems is

not innovative, the analysis and comparison of specific numerical

methods applied to the derived first-order system can provide

new insights and understanding of their effectiveness, accuracy,

stability, convergence properties, and computational efficiency.

We can transform Equation (1) into a system of two first-order

ODEs that are grouped as

dy

dx
= z = f (x, y, z), (2)

dz

dx
= z′ = f (x, y, z) y

(

d
)

= α, y′ (d) = β , d ≤ x ≤ e.
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TABLE 1 Comparison between Runge–Kutta fourth order and Euler method with exact solution for step size h = 0.1.

Euler method RK4_method Error Euler Error_RK4 Exact solution

xn y(xn) y(xn) er er yn

0 −1 −1 0 0 −1

0.1 −1 −0.988941666666667 0.0110609220088744 2.58867554114861e-06 −0.988939077991126

0.2 −0.98 −0.950987181701389 0.0290191813209306 6.36302231959984e-06 −0.950980818679069

0.3 −0.934 −0.877610537781075 0.0564011852385027 1.17230195781914e-05 −0.877598814761497

0.4 −0.8546 −0.75812765438281 0.0964915332099271 1.91875927370022e-05 −0.758108466790073

0.5 −0.7327 −0.579190140587741 0.153539287058789 2.94276465303556e-05 −0.579160712941211

0.6 −0.557138 −0.324163985933377 0.233017321955529 4.33078889066074e-05 −0.324120678044471

0.7 −0.3142534 0.0276326121855938 0.341947951903721 6.19397181275128e-05 0.0276945519037213

0.8 0.0126393400000001 0.50186381938946 0.489311227410179 8.6748020719174e-05 0.501950567410179

0.9 0.44388497 1.13032168665261 0.686556272099047 0.000119555446434161 1.13044124209905

1 1.0042515022 1.95232975338913 0.948240939812559 0.000162688623432494 1.95249244201256

Thus, instead of solving Equation (1), we can solve Equation (2)

We note that, with y′ = f
(

x, y, z
)

= z, Equation (2)

represents the second-order initial value problem.

y′′ = f
(

x, y, y′
)

: y (x0) = y0, y
′ (x0) = z0

2.1 Euler method

The Euler method is a simple numerical technique for solving

ordinary second-order differential equations. It approximates the

solution by taking small steps along the curve defined by the

differential equation. It is a basic explicit method for the numerical

integration of an ordinary differential equations. Euler proposed

his method for initial value problems (IVP) in 1768 [5, 9, 11]. It is

the first numerical method to solve IVP and serves to illustrate the

concepts involved in advanced methods. It is important to study

this because error analysis is easier to understand.

Now let’s consider a general second-order ODE with initial

value problem (IVP):

y′′ = f
(

x, y (x) , y′ (x)
)

, y
(

d
)

= α, y′
(

d
)

= β (3)

To apply Euler’s method, we first transform Equation (3) in to a

system of two first order ODEs. Transform Equation (3) to systems

of two first order ODE, let y′ = z and z′ = f (x, y, z), then

Equation (3) becomes

y′ = z = f (x, y, z)

z′ = f (x, y, z)

With initial condition, y
(

d
)

= α, y′
(

d
)

= β and z (x) = y′(x).

Now, we can apply the Euler method to this system of first-

order ODEs. The Euler method updates the functions y and z at

each step as follows:

yn+1 = yn + hzn for n = 0, 1, 2, . . . ,

zn+1 = zn + hf (xn, yn, zn)

This is the general formula to solve the second-order ODE with

IVP using the Euler method.

2.2 Runge-Kutta fourth order method

This method was devised by two German mathematicians,

Runge about 1894 and was extended by Kutta a few years later

[6, 11–13]. The Runge-Kutta method is the most popular because

it is quite accurate, stable, and easy to programme. This method is

distinguished by its order in the sense that it agrees with Taylor’s

series solution up to terms of hr where r is the order of the

method. It does not require a prior computational analysis of higher

derivatives of y ( x) as in Taylor’s series method. The Runge-Kutta

fourth-order method (RK4) is widely used for solving second-order

initial value problems (IVP) for an ordinary differential equation

(ODE). Now let’s consider a general second-order ODE with initial

value problem (IVP):

y′′ = f
(

x, y (x) , y′ (x)
)

, y
(

d
)

= α, y′
(

d
)

= β (4)

To apply the Runge-Kutta method, we first transform

Equation (4) into a system of two first-order ODEs. Transform

equation (4) to systems of two first order ODE, let y′ = z and

z′ = f (x, y, z), then Equation (4) becomes

y′ = z = f (x, y, z)
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TABLE 2 Comparison between Runge–Kutta-fourth order and Euler’s method with exact solution for step size h = 0.05.

Euler method RK4_method Error Euler Error_RK4 Exact solution

xn y(xn) y(xn) er er yn

0 −1 −1 0 0 −1

0.05 −1 −0.997371354166667 0.00262872532359948 7.94902661471752e-08 −0.997371274676401

0.1 −0.995 −0.988939254257948 0.00606092200887443 1.76266822582427e-07 −0.988939077991126

0.15 −0.98425 −0.973809970980796 0.010440322119437 2.93100233306198e-07 −0.973809677880563

0.2 −0.9669125 −0.950981251831617 0.0159316813209306 4.33152547607563e-07 −0.950980818679069

0.25 −0.942053125 −0.919330162704315 0.0227235623246453 6.00028960517918e-07 −0.919329562675355

0.3 −0.90863028125 −0.877599612597494 0.0310314664885026 7.9783599693517e-07 −0.877598814761497

0.35 −0.8654837453125 −0.824383420963075 0.0411013555964619 1.03124703665358e-06 −0.824382389716038

0.4 −0.811322077578125 −0.758109772366138 0.0532136107880521 1.30557606525805e-06 −0.758108466790073

0.45 −0.744708740957031 −0.677022886684052 0.0676874811336436 1.62686066473849e-06 −0.677021259823388

0.5 −0.664046793454883 −0.579162714896582 0.084886080513672 2.00195537081171e-06 −0.579160712941211

0.55 −0.567562010122627 −0.462342450425013 0.10522199833427 2.43863665627675e-06 −0.462340011788357

0.6 −0.453284275323258 −0.324123623765422 0.129163597278788 2.94572095160817e-06 −0.324120678044471

0.65 −0.319027070253371 −0.161788523605838 0.157242079844823 3.53319728940704e-06 −0.161784990408548

0.7 −0.162364863046385 0.0276903395273841 0.190059414950106 4.21237633715932e-06 0.0276945519037213

0.75 0.0193918105929166 0.247684041054918 0.228297226519798 4.9960577966357e-06 0.247689037112715

0.8 0.229223809593345 0.501944668691785 0.272726757816834 5.89871839462575e-06 0.501950567410179

0.85 0.470433649390873 0.794646751152289 0.324220038484344 6.93672292828573e-06 0.794653687875218

0.9 0.746678846110064 1.1304331135379 0.383762395988983 8.1285611486237e-06 1.13044124209905

0.95 1.06200865409018 1.51446562853401 0.452466469557398 9.49511357029031e-06 1.5144751236475

1 1.42090453903676 1.95248138206287 0.531587902975799 1.10599496858654e-05 1.95249244201256

z′ = f (x, y, z)

With initial condition, y
(

d
)

= α, y′
(

d
)

= β and

z (x) = y′(x).

Now, we can apply the Runge-Kutta fourth-order method

to this system of first-order ODEs. The Runge-Kutta fourth

order method updates the functions y and z at each step

as follows:

The general formula for the Runge-Kutta

approximation to solve systems of equations is

given by

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

zn+1 = zn +
1

6
(l1 + 2l2 + 2l3 + l4)

Where k1 = hf (xn, yn, zn)

l1 = hf (xn, yn, zn)

k2 = hf (xn +
1

2
h, yn +

1

2
k1, zn +

1

2
l1)

l2 = hf (xn +
1

2
h, yn +

1

2
k1, zn +

1

2
l1)

k3 = hf (xn +
1

2
h, yn +

1

2
k2, zn +

1

2
l2)

l3 = hf (xn +
1

2
h, yn +

1

2
k1, zn +

1

2
l2)

k4 = hf (xn + h, yn + k3, zn + l3)

l4 = hf
(

xn + h, yn + k3, zn + l3
)

for n = 0, 1, 2, 3, . . .

3 Error analysis

Error analysis is an essential component when studying

numerical methods for solving second-order Initial Value Problems

(IVPs) of Ordinary Differential Equations (ODEs) using Euler’s

method and the Runge-Kutta fourth-order (RK4) method [9].

Error analysis allows us to quantify the accuracy of these methods

and understand their convergence properties. In numerical

methods, the truncation error and the global error are commonly
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TABLE 3 Comparison between Runge–Kutta-fourth order and Eulers method with exact solution for step size h = 0.025.

Euler method RK4_method Error Euler Error_RK4 Exact solution

xn y(xn) y(xn) er er yn

0 −1 −1 0 0 −1

0.025 −1 −0.999359147135417 0.000640855327166401 2.4625830263858e-09 −0.999359144672834

0.05 −0.99875 −0.99737127986257 0.00137872532359951 5.18616916078685e-09 −0.997371274676401

0.075 −0.99615625 −0.993934067232134 0.0022221909590201 8.19115364425471e-09 −0.99393405904098

0.1 −0.99211953125 −0.988939089490462 0.0031804532588745 1.1499336483034e-08 −0.988939077991126

0.125 −0.98653486328125 −0.982271504579925 0.00426337383533881 1.51340135978728e-08 −0.982271489445911

0.15 −0.979291195800781 −0.973809697000635 0.00548151792021834 1.91200721921803e-08 −0.973809677880563

0.175 −0.970271084680176 −0.963424908115551 0.00684620004871694 2.34840922264112e-08 −0.963424884631459

0.2 −0.959350351230774 −0.950980846933525 0.00836953255170458 2.82544557750342e-08 −0.950980818679069

0.225 −0.946397723916817 −0.936333280355021 0.0100644770232566 3.34614612684803e-08 −0.93633324689356

0.25 −0.931274461615274 −0.9193296018128 0.0119448989399197 3.91374457286986e-08 −0.919329562675355

0.275 −0.91383395748622 −0.899808377184759 0.0140256256183723 4.53169115566254e-08 −0.899808331867848

0.3 −0.893921322470468 −0.877598866798164 0.0163225077089705 5.20366669753969e-08 −0.877598814761497

0.325 −0.871372947381676 −0.852520522283577 0.0188524844340696 5.93359703593421e-08 −0.852520462947607

0.35 −0.846016042508137 −0.824382456972721 0.0216336527920992 6.72566832227162e-08 −0.824382389716038

0.375 −0.817668153584856 −0.792982888467164 0.024685340961128 7.58434365311089e-08 −0.792982812623728

0.4 −0.786136652939193 −0.758108551933874 0.0280281861491201 8.51438011206795e-08 −0.758108466790073

0.425 −0.751218204553124 −0.719534082609241 0.031684217152358 9.52084749927806e-08 −0.719533987400766

0.45 −0.712698201721927 −0.677021365914865 0.035676941898539 1.06091477158898e-07 −0.677021259823388

0.475 −0.670350175922698 −0.630318853506074 0.0400314402669782 1.17850354142135e-07 −0.630318735655719

0.5 −0.623935175436374 −0.579160843487613 0.0447744624951633 1.30546401910792e-07 −0.579160712941211

0.525 −0.573201112193673 −0.523266722939915 0.049934533498654 1.44244895805556e-07 −0.523266578695019

0.55 −0.517882075238474 −0.462340170803698 0.0555420634501166 1.59015340672752e-07 −0.462340011788357

0.575 −0.457697609121393 −0.396068319070038 0.0616294649830836 1.74931729102212e-07 −0.396068144138309

0.6 −0.392351955451482 −0.324120870117292 0.0682312774070116 1.92072821758593e-07 −0.324120678044471

0.625 −0.321533255744927 −0.246149167925044 0.0753842983423234 2.10522441229655e-07 −0.246148957402603

0.65 −0.244912713616065 −0.161785220778329 0.0831277232075167 2.30369780807038e-07 −0.161784990408548

0.675 −0.162143714257858 −0.070640672952461 0.0915032930151381 2.51709741189154e-07 −0.0706404212427199

0.7 −0.0728608990557651 0.0276942772604496 0.100555450959486 2.74643271638841e-07 0.0276945519037213

0.725 0.023320806929307 0.133652015958094 0.110331508306537 2.99277750415161e-07 0.133652315235844

0.75 0.126807216987079 0.247688711385344 0.120881820125636 3.25727370714679e-07 0.247689037112715

0.775 0.238025956790523 0.370285574110294 0.132259971433334 3.54113563194591e-07 0.370285928223857

0.8 0.357427593057991 0.501950182844749 0.144522974352188 3.84565429834005e-07 0.501950567410179

0.825 0.485486819599531 0.64321787930102 0.157731476921711 4.1722022170454e-07 0.643218296521241

0.85 0.622703703640364 0.794653235651393 0.171949984234854 4.52223824165543e-07 0.794653687875218

0.875 0.76960499545976 0.956851598340245 0.187247092611774 4.89731289077255e-07 0.956852088071534

0.9 0.92674550453606 1.13044071219166 0.203695737562987 5.29907388857609e-07 1.13044124209905

0.925 1.09470954554876 1.31608242895834 0.221373456336778 5.72927200570561e-07 1.31608300188554

0.95 1.27411245775674 1.51447450467084 0.240362665890839 6.1897673542255e-07 1.51447512364758

0.975 1.46560220144838 1.72635249037048 0.260750957175699 6.68253599345192e-07 1.72635315862408

1 1.6698610353447 1.95249172104487 0.282631406667858 7.20967687106722e-07 1.95249244201256
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TABLE 4 Comparison between Runge–Kutta fourth order and Euler’s method with exact solution for step size h = 0.0125.

Euler method RK4_method Error Euler Error_RK4 Exact solution

xn y(xn) y(xn) er er yn

0 −1 −1 0 0 −1

0.0125 −1 −0.999841782633464 0.000158217443160025 7.66235963567397e−11 −0.99984178255684

0.025 −0.9996875 −0.99935914483009 0.000328355327166352 1.57256652144611e−10 −0.999359144672834

0.0375 −0.99905078125 −0.998539843521072 0.000510937970981229 2.42053488364036e−10 −0.998539843279019

0.05 −0.998077783203125 −0.997371275007575 0.000706508526724381 3.31174421219771e−10 −0.997371274676401

0.0625 −0.996756094360352 −0.995840465193677 0.000915629591458744 4.24784540875578e−10 −0.995840464768893

0.075 −0.995072942878723 −0.993934059564035 0.00113888383774308 5.23055265766459e−10 −0.99393405904098

0.0875 −0.993015186937046 −0.991638312899708 0.00137687466350045 6.26162788286422e−10 −0.991638312273545

0.1 −0.990569304852906 −0.988939078725416 0.00163022686178083 7.3429029523453e−10 −0.988939077991126

0.1125 −0.987721384944694 −0.985821798481323 0.00189958731099726 8.47626968614179e−10 −0.985821797633696

0.125 −0.984457115132157 −0.982271490412278 0.00218562568624536 9.66366764387772e−10 −0.982271489445911

0.1375 −0.980761772268854 −0.978272738167235 0.00248903519233112 1.09071252030191e-09 −0.978272737076523

0.15 −0.976620211199699 −0.973809679101436 0.00281053331913594 1.22087295828521e-09 −0.973809677880563

0.1625 −0.972016853536616 −0.968865992273692 0.00315086261998687 1.35706257342605e-09 −0.96886599091663

0.175 −0.966935676145168 −0.963424886130964 0.00351079151370959 1.49950496464157e-09 −0.963424884631459

0.1875 −0.961360199334811 −0.957469085872189 0.00389111511105078 1.64842939298637e-09 −0.95746908422376

0.2 −0.95527347474527 −0.950980820483144 0.00429265606620022 1.80407422334383e-09 −0.950980818679069

0.2125 −0.948658072921328 −0.943941809433876 0.00471626545413761 1.96668470398009e-09 −0.943941807467191

0.225 −0.941496070568132 −0.936333249030075 0.00516282367457144 2.13651463187858e-09 −0.93633324689356

0.2375 −0.933769037478902 −0.928135798409482 0.00563324138324639 2.31382679682923e-09 −0.928135796095656

0.25 −0.925458023126774 −0.919329565174245 0.00612846045141902 2.49889064996012e-09 −0.919329562675355

0.2625 −0.916543542912228 −0.909894090649877 0.00664945495433755 2.69198641156265e-09 −0.909894087957891

0.275 −0.90700556405741 −0.899808334761251 0.00719723218956259 2.89340318371245e-09 −0.899808331867848

0.2875 −0.896823491138377 −0.889050660515806 0.00777283372600968 3.10343872822472e-09 −0.889050657412367

0.3 −0.885976151246112 −0.877598818083899 0.00837733648461425 3.3224019091449e-09 −0.877598814761497

0.3125 −0.874441778766906 −0.865429928465981 0.00901185385153525 3.55061036128035e-09 −0.86542992491537

0.325 −0.862197999772465 −0.852520466735999 0.00967753682485828 3.78839271064635e-09 −0.852520462947607

0.3375 −0.849221816009868 −0.838846244850187 0.010375575195769 4.03608801935462e-09 −0.838846240814099

0.35 −0.835489588481245 −0.824382394010085 0.0111071987652069 4.29404656276944e-09 −0.824382389716038

0.3625 −0.820977020602795 −0.809103346568393 0.0118736785970336 4.56263071768603e-09 −0.809103342005762

0.375 −0.805659140932504 −0.792982817465941 0.012676328308776 4.84221285290687e-09 −0.792982812623728

0.3875 −0.789510285455638 −0.775993785187767 0.013516505401049 5.13317843786609e-09 −0.775993780054589

0.4 −0.772504079416848 −0.758108472225999 0.0143956126267748 5.43592659774106e-09 −0.758108466790073

0.4125 −0.754613418687398 −0.739298325036908 0.0153150994013572 5.75086722687246e-09 −0.739298319286041

0.425 −0.735810450655777 −0.71953399347919 0.0162764632550103 6.07842387534419e-09 −0.719533987400766

0.4375 −0.716066554629629 −0.698785309720203 0.0172812513284611 6.41903497022867e-09 −0.698785303301168

0.45 −0.695352321736672 −0.67702126659654 0.018331061913284 6.77315237229692e-09 −0.677021259823388

0.4625 −0.673637534311906 −0.65420999541498 0.0194275460381675 7.14124126499627e-09 −0.654209988273739

0.475 −0.650891144758169 −0.630318743179503 0.0205724091024501 7.52378404023091e-09 −0.630318735655719

0.4875 −0.627081253866695 −0.60531384922969 0.0217674125582822 7.92127663462594e-09 −0.605313841308413

(Continued)
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TABLE 4 (Continued)

Euler method RK4_method Error Euler Error_RK4 Exact solution

xn y(xn) y(xn) er er yn

0.5 −0.602175088584054 −0.579160721275443 0.0230143756428427 8.33423174917414e-09 −0.579160712941211

0.5125 −0.57613897921148 −0.551823810812613 0.0243151771620446 8.76317751696831e-09 −0.551823802049435

0.525 −0.548938336022252 −0.52326658790368 0.0256717573272326 9.20866050080349e-09 −0.523266578695019

0.5375 −0.520537625282424 −0.49345151530727 0.0270861196463964 9.67124291761934e-09 −0.493451505636028

0.55 −0.490900344659846 −0.462340021939864 0.0285603328714887 1.01515071904146e-08 −0.462340011788357

0.5625 −0.45998899800602 −0.429892475652617 0.0300965330034543 1.06500506191765e-08 −0.429892465002566

0.575 −0.42776506949497 −0.396068155305802 0.031696925356661 1.11674930414196e-08 −0.396068144138309

0.5875 −0.394188997102878 −0.360825222122928 0.0333637866844218 1.17044715031156e-08 −0.360825210418457

0.6 −0.359220145411866 −0.324120690306115 0.0350994673673957 1.22616446995849e-08 −0.324120678044471

0.6125 −0.322816777720846 −0.285910396893872 0.0369063936666661 1.2839691865274e-08 −0.28591038405418

0.625 −0.284936027445972 −0.246148970841916 0.0387870700433691 1.34393123574217e-08 −0.246148957402603

0.6375 −0.245533868792753 −0.204789801307189 0.0407440815467922 1.40612288479502e-08 −0.20478978724596

0.65 −0.20456508668146 −0.161785005114735 0.0427800962729118 1.47061868793763e-08 −0.161784990408548

0.6625 −0.161983245906997 −0.117085393386553 0.0448978678953992 1.53749557252336e-08 −0.117085378011597

0.675 −0.117740659513903 −0.0706404373110469 0.0471002382711829 1.60683270439277e-08 −0.0706404212427199

0.6875 −0.0717883563667219 −0.0223982330311248 0.0493901401227153 1.67871181816492e-08 −0.0223982162440066

0.7 −0.0240760478954237 0.0276945343715484 0.051770599799145 1.7532172907897e-08 0.0276945519037213

0.7125 0.0254479060049128 0.0796926278192158 0.0542447401186637 1.83043606938327e-08 0.0796926461235765

0.725 0.0768365319414793 0.133652296131265 0.0568157832943649 1.91045788910937e-08 0.133652315235844

0.7375 0.13014427888004 0.189631312892295 0.0594870539460066 1.99337518713705e-08 0.189631332826047

0.75 0.185427054912566 0.247689016319883 0.062261982200149 2.07928315953954e-08 0.247689037112715

0.7625 0.242742264959161 0.307886350157565 0.0651441068812088 2.16828046073481e-08 0.30788637184037

0.775 0.302148849427843 0.370285905619175 0.0681370787960134 2.26046822926484e-08 0.370285928223857

0.7875 0.363707323856302 0.434951964411365 0.0712446641145731 2.35595102315855e-08 0.434951987970875

0.8 0.427479819560381 0.501950542861812 0.0744707478497984 2.45483675609393e-08 0.501950567410179

0.8125 0.493530125314658 0.571349437181299 0.0778193374390066 2.55723657804907e-08 0.571349462753664

0.825 0.561923730091108 0.643218269888593 0.0812945664301338 2.66326488640445e-08 0.643218296521241

0.8375 0.632727866882513 0.717628537427769 0.0849006982756543 2.77303989770772e-08 0.717628565158168

0.85 0.706011557637944 0.794653659008383 0.088642130237274 2.88668347003807e-08 0.794653687875218

0.8625 0.781845659338301 0.874369026699666 0.0925233974045763 3.00432116961957e-08 0.874369056742878

0.875 0.860302911240661 0.956852056810713 0.0965491768308727 3.12608208208331e-08 0.956852088071534

0.8875 0.941457983320816 1.04218224258944 0.100724291789624 3.2521000781216e-08 1.04218227511044

0.9 1.02538752594421 1.13044120827392 0.105053716154833 3.38251242570919e-08 1.13044124209905

0.9125 1.1121702207962 1.22171276453059 0.109542578909002 3.51746087812188e-08 1.2217127997052

0.925 1.20188683310328 1.31608296531462 0.114196168782255 3.65709158511862e-08 1.31608300188554

0.9375 1.29462026517788 1.41364016618871 0.119019939026382 3.80155509294156e-08 1.41364020420426

0.95 1.39045561131993 1.51447508413751 0.124019512327651 3.95100665517845e-08 1.51447512364758

0.9625 1.48948021410943 1.61868085891571 0.129200685862344 4.10560634378498e-08 1.61868089997178

0.975 1.59178372212501 1.72635311596889 0.13456943649907 4.2655188714491e-08 1.72635315862408

0.9875 1.69745814912426 1.83759003096718 0.140131926152066 4.43091430213372e-08 1.83759007527633

1 1.80659793472282 1.95249239599288 0.145894507289739 4.60196762919196e-08 1.95249244201256
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FIGURE 1

Exact and approximate numerical Solutions for h = 0.1, (A) graph of the approximate solution for Eulers and Runge-Kutta fourth order, (B) graph of

the approximate solution of Exact and Runge-Kutta fourth order, (C) graph of the approximate solution for Eulers and Exact, and (D) graph of

approximate solutions for Euler, Runge-Kutta forth order methods and exact solution.

evaluated. The truncation error in Euler’s method arises from the

linear approximation of the derivative [14, 15]. It is proportional

to the step size h, used in the numerical scheme. Specifically, the

truncation error is of orderO(h)2, meaning that by halving the step

size, the error typically decreases by a factor of four. The truncation

error in RK4 arises from the approximation of the derivative at

various internal points within the step. It is proportional to the

step size h, increased to the power of five. Therefore, the truncation

error of RK4 is of order O(h)5, which is significantly smaller than

Euler’s method [16]. The global error in Euler’s method is the

cumulative effect of the truncation error at each step throughout

the integration interval [17]. As the number of steps increases,

the global error accumulates, resulting in a larger discrepancy

between the numerical solution and the exact solution. The global

error in RK4 is significantly smaller compared to Euler’s method

[15]. Due to its higher order of accuracy, the cumulative effect

of the truncation error is reduced, resulting in a more accurate

approximation of the exact solution. It is important to note that

while RK4 has a smaller truncation error and is typically more

accurate than Euler’s method, the step size h, also plays a role. The

accuracy of the solution will depend on how small we make the

step size h [18]. If
∣

∣y(xn)−yn
∣

∣ = 0, then a numerical technique is

considered as convergent. Where the exact solution is denoted by

yn and the approximate solution by y(xn).

Using a smaller step size can improve the accuracy of both

methods; however, it can also increase computational cost [19]. In

error analysis, it is common to compare the numerical solutions

obtained using Euler’s method and RK4 to an analytically available

exact solution or a solution obtained using a more accurate method

(such as a higher-order Runge-Kutta method). By comparing the

errors, we can assess the convergence properties of themethods and

determine their suitability for a specific problem. In order to verify

the accuracy of the suggested methods, we examine first-order

initial value problem ODE in this study. MATLAB software is used

to obtain the approximate solution for the two numerical methods

that are proposed, at different step sizes. The formula for calculating

the maximum error is defined by er = max0≤x≤steps (
∣

∣y(xn)−yn
∣

∣).

3.1 Numerical example

This section examines a numerical example to verify which

numerical techniques converge to an analytical solution more

quickly. Errors and numerical solutions are calculated.

Example 1:We consider the initial value problem y′′−3y′+2y =

0 , y (0) = −1 , y′ (0) = 0 on the interval 0 ≤ x ≤ 1 with

h = 0.1. Then the exact solution to the given problem is given by

y (x) = e2x − 2ex.

The approximate results andmaximum errors are obtained and

shown in Tables 1–4 and the graphs of the numerical solutions are

shown as follows in Figures 1–6 from (a)-(r).

4 Discussion of results

In this work the obtained results are shown in the Tables 1–

4 and graphically representations are show in the Figures 1–7.

The Tables 1–4 shows that the comparison of the two desired

methods Euler’s and Runge-Kutta fourth order method with the

exact solution and also the Figures 1–4 shows that the graph of
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FIGURE 2

Exact and approximate numerical solutions for h = 0.05, (A) graph of the approximate solution for Eulers and Runge-Kutta fourth order, (B) graph of

the approximate solution of Exact and Runge-Kutta fourth order, (C) graph of the approximate solution for Eulers and Exact, and (D) graph of

approximate solutions for Euler, Runge-Kutta forth order methods and exact solution.

FIGURE 3

Exact and approximate numerical solutions for h = 0.025, (A) graph of the approximate solution for Euler’s and Runge-Kutta fourth order, (B) graph of

the approximate solution of Exact and Runge-Kutta fourth order, (C) graph of the approximate solution for Euler’s and Exact, and (D) graph of

approximate solutions for Euler, Runge-Kutta forth order methods and exact solution.

the approximate solution for Euler and Runge-Kutta methods

for each step size h. The approximated numerical solution is

calculated with the step size h = 0.1, 0.05, 0.025, 0.125.

The approximate solution of Euler’s and Runge-Kutta fourth order

methods have different values for the same step size h for each

iteration for example when we compared the accuracy of the Euler
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FIGURE 4

Exact and approximate numerical Solutions for h = 0.0125, (A) graph of the approximate solution for Euler’s and Runge-Kutta fourth order, (B) graph

of the approximate solution of Exact and Runge-Kutta fourth order, (C) graph of the approximate solution for Eulers and Exact, and (D) graph of

approximate solutions for Euler, Runge-Kutta forth order methods and exact solution.

FIGURE 5

Approximate value for Runge-Kutta fourth order method for each step size.

and Runge-Kutta fourth order method with sizes h = 0.1

and h = 0.05, then approximated solution with the step size

h = 0.1 has less accurate then the approximated solution with

the step size h = 0.05 because the error of approximate values

for h = 0.1 is greater than the error for h = 0.05 in each

iterations. This shows that the Euler’s method with h = 0.1 and

h = 0.05 does not converges to the exact solution. Similarly for

the step sizes h = 0.025 and h = 0.0125, then approximate

solution with the step size h = 0.025 has less accurate than the

approximate the solution with the step size h = 0.0125 because of
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FIGURE 6

Approximate value for each step size in Euler method.

FIGURE 7

The approximated error for Euler and Runge-Kutta fourth order for di�erent step size.

the approximate solution with the step size h = 0.0125 has less

absolute error then the approximated solution for h = 0.025.

This shows that the Euler’s method with h = 0.1 and h = 0.05

does not converges to the exact solution but for h = 0.025 and

h = 0.0125 Converges slowly to exact solution. The Runge-Kutta

fourth order method with the same step size also the approximate

solution obtained for h = 0.1 and h = 0.05 converges gradually

to exact solution but the approximate for h= 0.025 and h= 0.0125

converges fatly to exact solution. This shows that as the step size

decreases the accuracy the approximate solution also increases.

The Figures 5, 6 shows that the approximate solution of Euler

and Runge-Kutta fourth order method with the same step size
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respectively. According to Figure 5 the graph of the approximate

solution for Runge-Kutta fourth order method are approximately

all are overlapped because of little difference between approximate

solutions of Runge-Kutta methods with Exact solution (i.e., error)

for each h values. From the Figure 6 also the graph of approximated

solutions for Euler’s method has the gap between two consecutives

step sizes this shows that Euler’s method has maximum absolute

error compared to Runge-Kutta fourth order for same step size.

Graph of approximated solutions for h = 0.0125 is above the

graph of approximated value for h = 0.1, 0.05, 0.025 this means

that the graph of approximated solution approach’s to the graph of

exact solution as step size decreases but the graph for approximated

solution for h = 0.1 is under the graph of approximated solution

for h = 0.05, 0.025, 0.0125 this means that it away from the

graph of exact solution and it has maximum error for h = 0.1.

In the Figure 7 the graph of maximum absolute error for Euler

and Runge-Kutta fourth order for each step size are plotted. The

graph of error for Euler’s method in Figure 7 for h = 0.1 is above

h = 0.05, 0.025, and 0.0125 this shows the approximate solution

for h=0.1 has maximum error then all approximated solution for

h = 0.05, 0.025, 0.0125 but for h = 0.0125 the error graph is

below h = 0.05, 0.025, and 0.1 this shows that the absolute

error for h = 0.0125 is less then all other approximated solution for

h = 0.05, 0.025, and 0.1 for every iteration. Additionally, error

analysis for Runge-Kutta method in Figure 7 the graph of error

for each step size resembles overlapped to x-axis that means the

error for Runge-Kutta is almost tends to zero. From the Figure 7 we

observed that Runge-Kutta fourth order converges fastly then the

Euler’s method with the same step size. The absolute error for each

step size h of Euler and Runge-Kutta fourth order methods tends

to zero as the step size tends to zero. Although the fourth order

Runge-Kutta method is more accurate than the Euler’s approach,

which only requires one-fourth the step size, it is arduous and takes

four evaluations per step size. Finally, we noticed that, as the tables

and figures show, the fourth order Runge-Kutta method is the most

effective approach for solving second order initial value problem

for ordinary differential equations, and that it is converging more

quickly than the Euler method.

5 Conclusion

In this work, we have discussed Euler’s and fourth order Runge-

Kutta method for solving second order initial value problems that

provides efficient solutions. To achieve the desired accuracy of the

numerical solution it is necessary to take step size small. From the

tables and figures, we can see that accuracy of the method obtained

for decreasing the step size h. The numerical solutions obtained by

the two methods are in good agreement with the exact solutions.

However, by comparing the results of the two methods, we state

that the RK4 Method is appropriate, consistent, convergent, quite

stable, and more accurate than the Euler’s method and it is widely

used in numerical solutions of second order initial value problems

in ordinary differential equations. Our research will be helpful in

many scientific areas where numerical computations are needed.
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