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The Circular Economy of the Automotive Industry’s Sustainable Supply Chain in 
the Case of Lithium-Ion Batteries is pioneering in environmental protection and 
ecological resource utilization. In addition to solving environmental problems, this 
method provides economic benefits by reducing the need for raw materials and 
lowering manufacturing costs. However, introducing a circular economy approach 
in the lithium-ion battery supply chain has numerous risks and challenges. This 
study addresses these challenges by crafting a framework that encapsulates the 
risks involved. It identifies the risks that evolving circular economy strategies 
might bring to the lithium-ion battery supply chain through an integrated Gray 
Delphi–DEMATEL–ANP method. Furthermore, this work introduces the Gray Degree 
of Possibility to unveil worst-case scenarios in risk analysis and extends it into 
zero-sum Game Theory. The study then formulates an improved zero-sum game 
model to determine optimal strategies for mitigating these risks. The numerical 
analysis reveals that, according to the proposed methodology, Environmental 
Pollution Risk emerges as the most critical, with a definite weight of 0.1525. This 
is followed by the Support Program Deficiency Risk at 0.1452 and the Improper 
Waste Management Risk at 0.1372.
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1 Introduction

The sustainable supply chain in the lithium-ion battery circular economy within the 
automotive industry has numerous environmental and economic benefits (1, 2). By 
encouraging re-use, repackaging, and re-cycling of batteries, it reduces continuous extraction 
of raw materials like lithium, cobalt, and nickel used in the manufacture of these batteries, 
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which not only are finite but are also associated with environmental 
degradation (3). Such a decrease in dependence on raw materials will, 
in turn, reduce the carbon footprint of battery production, besides 
reducing the environmental impact from mining and processing 
activities according to other scholars. Apart from the above, the 
circular economy promotes the extended life and resource efficiency 
of batteries, thus supporting the broad sustainability goals of the 
automotive industry. The circular economy will help in sustaining a 
competitive supply chain, not only reducing the impact on the 
environment. It will help companies in handling pertinent risks with 
the disruption in supply and surge in pricing volatility in international 
markets through lowering the dependency on new raw materials. Such 
critical materials can be made more stable and predictable in the 
supply by engaging in the recycling and reusing of batteries, which is 
plainly crucial in the ever-increasing demand of electric vehicles. It 
further enhances innovation in the design of batteries and recycling 
technologies to spur more innovation in the sector. Supply chain 
sustainability in a circular economy is not only good for the 
environment, its benefits also tie into business strategic purposes and 
resources management in an efficient and cost-effective manner. There 
has been important research in the context of the lithium-ion battery 
circular economy in the automotive industry on the sustainable supply 
chain over the past years. It is worth noting that the importance of 
circular strategies in preventing the environmental and social risks 
related to the supply chain of lithium-ion batteries has been further 
underlined in these studies (4–6). For example, in comparing circular 
economy strategies for the U.S. and Australia, Collis et al. (7). They 
established that there was a need for recycling infrastructures to 
be strong enough to handle end-of-life lithium-ion batteries from 
various electric vehicles and emphasized the strong role of policy 
interventions in establishing circular economy practices (7). In 
another report, Madrid noted that companies operating in automotive 
manufacturing chains that have adopted circular economy practices 
released reports of impressive rates of carbon emissions and waste 
production reductions, proving perfect applicability of the automotive 
industry circular economy (8). These studies point out that, for 
ensuring supply chain sustainability in lithium-ion batteries for the 
automotive industry, the underpinning has to be provided by the 
strategies of a circular economy. Similarly, Baars et al. (9) point out 
that while new technologies will likely reduce just how much cobalt is 
needed within EV batteries, it may very well shift that resource burden 
away from cobalt and on to another, such as nickel; thus, mixes of 
technological improvement and recycling systems should 
be developed. Islam and Iyer-Raniga (10) describe various ways that 
spent LIBs can be recycled and elaborate on the need for circular 
business models and stakeholder engagement in order to create a 
sustainable supply chain. Kurz et al. (11) applied life cycle assessment 
methodology to demonstrate that substantial LIB recycling-driven 
environmental benefits are very technology- and process route-
specific, such that bad legislation on the design of circular strategies 
but could be counterproductive. Cordisco et al. (12) propose a model 
of a sustainable circular economy by embedding the reuse of LIBs into 
the concept of a circular economy with social inclusion, therefore 
promoting both environmental sustainability and social equity. 
Albertsen et  al. (13) investigate the adoption of circular business 
models by European vehicle manufacturers and call for extended 
cooperation and initiation of policies on repair, refurbishment, and 
repurposing of LIBs. Alessia et al. (14) provide an overview of the 

lithium supply chain and show that a decentralized recycling strategy 
may more appropriately fit the circular economy principles, thereby 
making them more sustainable and efficient by extension. Meanwhile, 
Lahane and Kant (15, 16) set out to identify risks in the implementation 
of circular supply chains and propose a hybrid framework to help 
decision-makers develop sustainable strategies. Heath et  al. (17) 
through a critical review, found that in many practices concerning the 
Circular Economy for LIBs, there are important lacunae in present 
research, and the necessity for an expanded focus on more than 
recycling technology, to include the economic, environmental, and 
policy considerations at play. If there is a huge benefit to the sustainable 
supply chain of the lithium-ion battery circular economy that prevails 
in the automotive industry, various risks include the potential 
disruption of the supply chain due to scarcity in some critical raw 
materials and the complexity of recycling processes, challenges 
resulting from ensuring effective traceability across the supply chain. 
Risk assessment of sustainable supply chains for the lithium-ion 
battery circular economy is important, given the increasing 
dependence developing on vehicles from the automotive industry. 
Mitigating such risks is very important to the sustainability and 
reliability of the supply chain so as to assure attaining the 
environmental goals of the automotive industry and maintaining 
market competitiveness. Baars et al. (9) underline the fact that, while 
a circular economy strategy could reduce cobalt dependency for LIBs 
used in EVs, it would further increase the demand for other materials 
like nickel and an integrated recycling system. Sopha et  al. (18) 
identify major barriers: poor effectiveness of policies, lack of safety 
standards, and high recycling costs, proposing a framework for 
optimizing the EV battery circular supply chain. Doose et al. (19) 
underline how new generations of batteries will require advanced 
recycling processes and closed material cycles to both manage spent 
batteries and secure raw material supplies. Azadnia et al. (20) provide 
insight into the European context through the identification of market, 
social, and regulatory barriers to the implementation of effective 
reverse logistics for end-of-life LIBs. Bag et al. (21) discuss issues in 
adopting digital manufacturing for automotive parts in the context of 
a circular economy, with particular attention to data security risks. 
Kayikci et al. (22) identify, by means of the fuzzy DEMATEL method, 
barriers to the implementation of SSCE comprising a lack of 
governmental support, integration problems, and complex product 
design. Albertsen et al. (13) contribute circular business models for 
LIBs in relation to challenges in policy development and 
operationalization within the automotive industry. Hua et al. (61) 
propose a 5R principle: reduce, redesign, remanufacture, repurpose, 
and recycle to cope with challenges related to managing retired LIB 
sustainable value chains, pointing out the need for advanced 
technologies and regulations.

Several advances were made pertaining to the field of multi-
criteria decision making, including fuzzy logic and its extensions (15, 
16, 23–26), and gray numbers (27). While the publications provide a 
good amount of insight into the risks and challenges associated with 
circular economy strategies in the lithium-ion battery supply chain, at 
this point, no comprehensive model that considers risk assessment 
and countermeasure evaluation exists. In this regard, G-MCDM has 
been used to evaluate and rank the identified risks within a structured 
approach for understanding their relative severity and impact on the 
supply chain. A zero-sum game theory approach was followed to 
further explore the worst-case scenario and develop effective strategies 
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to mitigate these risks. In this research, the risks were modeled as a 
player and the strategies against those risks also as a player. This 
provided an orderly review of interactions between the risks and 
mitigation strategies to ensure the picked countermeasures are robust 
and effective in attending to the most critical vulnerabilities within a 
supply chain. The contribution of the paper is as follows:

 1. Development of the theory of zero-sum games based on the 
Gray Degree of Possibility to identify the worst case of 
risk occurrence.

 2. Identifying the optimal strategy for dealing with risks and 
challenges associated with implementing circular economy 
strategies in the lithium-ion battery supply chain using 
improved zero-sum games based on the Gray Degree 
of Possibility.

 3. Classification of risks associated with implementing circular 
economy strategies in the lithium-ion battery supply chain in 
a sustainable supply chain using integrated Gray 
Delphi-DEMATEL-ANP.

2 Literature review

2.1 MCDM in risk assessment

Recent studies have employed advanced decision-making 
frameworks such as Game Theory and Decision-Making to some real 
problem (28–31). Lahane and Kant (15, 16) have suggested a hybrid 
model based on Pythagorean fuzzy AHP (PF-AHP) integrated with 
Pythagorean fuzzy VIKOR (PF-VIKOR) to rank the solutions for 
mitigating risks in circular supply chains. It identifies and ranks the 
risks involved in the implementation of circular economy strategies, 
hence providing the decision-maker with a structured way to focus 
efforts on effective solutions. According to Lahane and Kant (15, 16), 
the approach identifies and ranks the risk involved in the 
implementation of the circular economy strategy, hence providing 
the structured way to the decision-maker to concentrate efforts on 
effective solutions. (22), discuss the barriers of adopting smart and 
sustainable circular economy in the automotive industry. This study 
applied the fuzzy DEMATEL method to analyze the barriers related 
to technology, producers, consumers, and policy. It identifies the key 
barriers to SSCE implementation as a lack of governmental support, 
integration issues amongst supply chain partners, and complex 
product designs. Chhimwal et  al. (32) use a Bayesian Network 
methodology for risk propagation analysis in a circular supply chain 
network. The approach detects and measures the risks affecting 
supply chain performance and provides valuable insights into the 
relationships of interdependent factors in the network. Chhimwal 
et al. (32) apply the DEMATEL method to evaluate the relationship 
between SSCF-targeted and CE-targeted performance. It identifies 
the major measures of SSCF related to the enhancement of the 
CE-targeted outcomes, where it points out the flexibility issue in the 
sustainable supply chains. Kazemian et al. (33) introduce a hybrid 
DEMATEL-ANP approach to evaluating network-level supply chain 
resilience. This tool is capable of quantifying the interdependencies 
between the factors and strategies for resilience in a very robust 
framework towards improving supply chain resilience against risks. 

Kazemian et al. (33) developed a framework using Game Theory 
models for risk management in supply chain networks. Applications 
over the validated framework prove its effective in analyzing strategic 
interactions among entities in the supply chain in identifying optimal 
strategies for risk mitigation (34). The sustainability associated with 
waste management is when evaluated based on circular economy 
strategies through this fuzzy three-stage group multi-criteria 
decision-making approach that integrates fuzzy DEMATEL, fuzzy 
ANP, and fuzzy MULTIMOORA (35). This makes provisions for the 
determination of sustainability indices and the optimal selection of 
circular economy strategies in a comprehensive manner by Fetanat 
et al. (35). The authors of this paper proposed another novel extension 
of the DEMATEL approach, that is, the Pythagorean fuzzy 
DEMATEL, for the probabilistic safety analysis of processes. This new 
method is capable of effective prioritization of critical events and 
corrective actions under consideration of various influencing factors, 
making it highly effective in the prioritization of complex systems 
(36). The application of the game theoretical models underpinning a 
dual-channel green supply chain has been brought out by Alizadeh-
Basban and Taleizadeh (37). Here, the incorporation of pricing 
strategies with remanufacturing process arrangements and marketing 
efforts turns out to be an area where game theory can find huge 
effectiveness in maximizing the attainment of circular economy 
outcomes. Optimum in practical issues (38–40) show improved 
sustainability and efficiency of the supply chain achieved through 
minimizing the environmental risk and maximizing the resources 
used (41).

2.2 Circular economy in lithium-ion 
batteries

The circular economy, in the context of lithium-ion batteries, 
forms part of the sustainable supply chain for the automotive industry 
through an end-of-life recovery strategy of reducing environmental 
impacts and enhancing resource efficiency. In particular, increasing 
recycling, material reuse, and material recovery aim at waste 
minimization and promotion of closed-loop systems to extend 
product life cycles. This approach contributes to the prevention of 
environmental problems and has economic advantages by reducing 
raw material usage and decreasing the production cost (15, 16, 42, 43). 
Notwithstanding, setting up circular economy strategies for the 
lithium-ion battery supply chain is accompanied by significant risks 
resulting from process complexity, regulatory barriers, market, and 
technological uncertainties. According to Baars et  al. (9), circular 
economy strategies could help reduce EV batteries’ dependence on 
primary raw materials, such as cobalt. This study has inferred that new 
technologies, though efficient in reducing cobalt demand, merely 
transfer the pressure to other metals like nickel. Hence, supply chain 
risks can only be reduced by proper integration between technological 
improvement and effective recycling systems. The focus of the research 
by Islam and Iyer-Raniga (10) is on the spent LIB recycling process, 
with an emphasis on how the circular business model and stakeholder 
engagement need to go hand in hand toward creating a sustainable 
supply chain. Indications by the authors are that greater efforts are 
needed in policy development, material tracking, and in recycling 
techniques, notably the relatively new DPR process that seems very 
promising but requires further investigation.
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Kurz et al. (11) applied LCA to establish the environmental impact 
of LIB recycling. Their result points out that the ecological benefit 
arising from the recycling process strongly depends on the kind of cell 
technology and the chosen recycling process. According to Kurz et al. 
(11), poorly designed and applied circular strategies can turn out to 
be  very negative in terms of environmental impact, so careful 
implementation is needed. Cordisco et al. (12) provide a new direction 
that links reusability with social inclusion for disadvantaged people. 
Their research proposed a model of a circular economy in which not 
only the environmental but also the associated social equity issues 
would be  attended to by giving an opportunity to involve 
disadvantaged groups in the recovery and reuse of the generated waste 
LIBs. Albertsen et  al. (13) examine the trends in the adoption of 
circular business models by vehicle manufacturers in Europe, with an 
emphasis on repair, refurbishment, and repurposing LIBs. This paper 
calls for collaboration among stakeholders and policy development 
processes in support of circular economy strategies within the 
automotive industry. Alessia et al. (14) delivered an in-depth review 
of the lithium supply chain, outlining the difficulties of integrating 
primary and secondary production to contribute to reducing 
environmental impacts. The research showed that a more sustainable 
and efficient way to recycle might be by decentralized recycling, closer 
to the markets and aligned with the principles of the circular economy. 
Lahane and Kant (15, 16) comment on the risk factors associated with 
the implementation of circular supply chains. They propose a hybrid 
framework to rank solutions, which mitigates the risk and could be of 
help to a decision maker in developing efficient strategies for 
sustainable supply chain management.

Heath et al. (17) have done some critical review to garner key 
research gaps and future opportunities in relation to the LIBs circular 
economy. The recommendations have been that the focus, instead, 
shifts away from just recycling technology to other broader aspects: 
economic, environmental, and policy—these will give a comprehensive 
approach toward implementing the concept of a circular economy. 
Literature indicates that, even when quite promising, circular economy 
strategies for both the reduction of environmental and resource-
related risk of LIBs do call for a holistic approach: technological 
innovation, effective recycling processes, social inclusion, and robust 
policy frameworks. The lithium-ion battery supply chain is long, and 
its critical raw materials are lithium, cobalt, and nickel, generally 
regarded as key metals associated with environmental and social risks. 
The circular economy can help reduce these risks through value-chain 
actions targeted at reusing, recycling, and re-purposing batteries to 
reduce significantly dependency on virgin materials. The challenges 
for deploying circular strategies lie in the area of effective material 
traceability, next to developing robust recycling infrastructure, and 
addressing possible supply chain disruptions in view of evolving 
regulatory frameworks and market demand. Influence on the 
sustainability of the lithium-ion battery supply chain is also exerted by 
the geographic distribution of raw material sources, often from high 
social and environmental risk regions related to child labor and 
occupational hazards. All these factors put together can help make a 
comprehensive risk assessment while integrating the dimensions of 
social, environmental, and economic concerns into a resilient supply 
chain. A transition to a circular economy would not only reduce 
environmental footprints but also improve security of supply chains 
due to reduced dependence on critical materials associated with 
efficient processes for recycling and recovery.

With increased popularity of electric vehicles, dependence on 
LIBs has also increased. Transition to EVs presents many challenges 
and risks, especially within practices of circular economy and 
sustainable supply chains. This literature review identifies key risks, 
challenges, and barriers outlined in recent research looking into the 
circular economy and the management of the LIB supply chain 
within the automotive industry. Baars et al. (9) present the risks 
associated with growing demand for raw materials necessary in 
LIBs of EVs, such as cobalt. The paper shows how, even though 
circular economy strategies decrease dependency on primary raw 
materials, they might create new challenges connected with 
enhanced demand for other metals like nickel. The authors argue 
that a holistic recycling system is key to combating such risks. 
Sopha et  al. (18) discuss in detail the barriers to strategy 
implementation for EVBs within the context of the circular 
economy. In this study, the top three barriers are inefficient 
government policy, a lack of safety standards, and high recycling 
costs. These barriers are not independent and therefore call for 
concurrent strategies. The authors have developed a conceptual 
framework for addressing these challenges and optimizing the 
circular supply chain system.

According to Doose et al. (19), high recovery rates for metals 
during LIB recycling are within reach now that the next generations 
of batteries are soon to hit the market. As this paper will reveal, the 
degree of advanced recycling processes and the related dangers in 
dismantling of batteries result in a call for closed material cycles 
concerning the availability of raw materials and to make the 
production of batteries sustainable. Azadnia et al. (20), in their quest 
to identify hurdles facing the effective implementation of reverse 
logistics for EV LIBs, find out that the “market and social” and 
“policy and regulations” are the leading identified barriers. “These 
identified barriers were found to seriously influence EoL LIB 
effective management; therefore, working on such barriers is crucial 
to attain circular economy goals,” states Azadnia et al. (20). Bag et al. 
(21) examine the barriers in the adoption of digital manufacturing 
under a circular economy for automotive parts. According to this 
study, technological challenges, more specifically risks pertaining to 
data security, are critical to consider. The study thus implies that 
challenges like these have to be  tackled if sustainability in the 
automotive supply chain is to be actualized. Albertsen et al. (13) 
study how circular business models for LIBs could be applied to the 
automotive industry and major applications by European car 
manufacturers. Among the findings were several identified 
challenges linked to policy development and the operationalization 
towards circular strategies that improved policy for increased uptake 
of circular economy practices. Hua et al. (61) provide a detailed 
discussion of the issues associated with the sustainable value chain 
management of the end-of-life LIBs. It proposes that 5R, viz. reduce, 
redesign, remanufacture, repurpose, and recycle can be  the key 
tenets for addressing the same. The paper also points towards the 
need for higher technology and better regulation as preconditions if 
the value chain of LIB has to be sustainable. Advanced game theory 
and gray set methods are used to find the best strategies for reducing 
potential obstacles and challenges during the implementation of 
circular economy principles in this critical field. In general, the main 
and secondary obstacles for the implementation of the circular 
economy in the sustainable supply chain in lithium batteries are 
shown in Table 1.
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3 Research methodology

Gray System Theory was first proposed by Deng in the context of 
Gray. It gives a framework for handling system complexity with 
incomplete information. Completely white information represents 
clarity, while black represents unknown information. On the other 
hand, a lot of information in most systems is not completely known or 
completely unknown but is partially in the state of knowledge referred 
to as gray information. Gray systems are therefore characterized by 
completely known and completely unknown information. Their main 
characteristic is that they hold incomplete information. One of the 
central ideas in this theory is that of a “gray number,” which is an 
uncertain quantity whose values lie between a certain range, bounded 
by some known lower and upper limit. Such an interval-based 
representation of uncertainty is applicable in situations where it is not 
possible to describe the system fully using the traditional probability 
density or membership functions. Gray Relational Analysis is a 
component of Gray System Theory, which has the objective of tackling 
uncertainty through the focus on vague or imprecise problems needing 
processing, particularly discrete data and incomplete information. In 
its work, GRA utilizes traditional deterministic numbers to handle 
uncertain problems; hence, it provides a means of enhancing the 
expression of system uncertainties where the availability of complete 
information is not guaranteed (62).

The subject has been investigated to assess and prioritize the 
alternatives. The evaluation of options involves the use of gray-scale 
numbers ranging from 1 to 10 for each criterion (62).

The Likert scale (Table  2) along with the descriptive terms 
provided by the experts have been used for evaluation. Gray numbers 
are used in this context for the evaluation process.

3.1 Sum of gray numbers

The sum of two gray numbers G1 = [G1,min,G1,max] and 
G2 = [G2,min,G2,max] is defined as another gray number. The sum is 
computed by adding the corresponding lower and upper bounds of 
the gray numbers in Equation 1.

 
G1 G2 G , G , ,G , G ,+ = + + 1 2 1 2min min max max

 
(1)

3.2 Difference of gray numbers

The difference between two gray numbers G1 = [G1,min,G1,max] 
and G2 = [G2,min,G2,max] is defined by subtracting the 
corresponding bounds in Equation 2.

 
G1 G2 G , G , ,G , G ,− = − − 1 2 1 2min min max max

 
(2)

3.3 Multiplication of gray numbers

The multiplication of two gray numbers G1 = [G1,min,G1,max] 
and G2 = [G2,min,G2,max] is defined by considering the product of 
all combinations of the bounds, with the resulting gray number being 
the interval from the minimum to the maximum of these products in 
Equation 3.
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3.4 Division of gray numbers

The division of two gray numbers G1 = [G1,min,G1,max] and 
G2 = [G2,min,G2,max] (assuming G2 does not include zero) is 
computed by dividing all combinations of the bounds, with the 
resulting gray number being the interval from the minimum to the 
maximum of these quotients as Equation 4.
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TABLE 1 Barriers to implementing circular economy in sustainable supply 
chain in lithium battery (48–51, 55).

Risk Code

Environmental Pollution Risk in Lithium Battery Production R1

Supply Chain Design Risk R2

Supply Chain Disruption Risk R3

Recycled Product Quality Risk R4

Technology and Infrastructure Deficiency Risk R5

Consumer and Supplier Awareness Deficiency Risk R6

Collaboration and Leadership Deficiency Risk in Companies R7

Training and Skill Deficiency Risk R8

Unsustainable Energy Use in Extraction Risk R9

Improper Waste Management Risk R10

Dependency on Specific Mineral Resources Risk R11

Support Program Deficiency Risk R12

Policy and Standard System Deficiency Risk R13

Risk of excessive bureaucracy R14

Risk of lack of organizational culture R15

Consumer and Supplier Participation Deficiency Risk R16

Business Model Scalability Risk R17

Specialized Human Resources Deficiency Risk R18

Lack of Government Financial Support Risk R19

Lack of Profitability and High Cost Risk R20

Incorrect Waste Cost Estimation Risk R21
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3.5 Scalar multiplication of gray numbers

The multiplication of a gray number G = [Gmin,Gmax] by a scalar 
k is straightforward and involves multiplying both bounds by k in 
Equation 5.

 
k G

k Gmin k Gmax if k
k Gmax k Gmin if k

× =
× ×  ≥
× ×  <

,
,

0
0

,
.

 
(5)

3.6 Inverse of a gray number

The inverse of a gray number G = [Gmin,Gmax] (assuming 0 ∉ G) 
is defined as another gray number that is the interval formed by the 
inverses of the bounds in Equation 6.

 
G

G G
− =
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

1 1 1

max min
,

 
(6)

These operations provide a mathematical foundation for 
performing calculations with gray numbers, making them a powerful 
tool for handling uncertainty in mathematical models.

3.7 Gray degree of possibility

The Gray Degree of Possibility is a concept within gray system 
theory used to quantify the degree to which a certain event or value is 
possible within the framework of gray numbers. It is a measure that 
compares the overlap between a given interval (gray number) and a 
specific target interval or value, expressing the likelihood that the true 
value lies within the target interval.

Given two gray numbers G1 = [G1,min,G1,max] and 
G2 = [G2,min,G2,max], the Gray Degree of Possibility γ(G1,G2) is 
calculated as in Equation 7:

 
γ G G

Lenght of G and G
Lenght of G

1 2 1 2

2
,

 overlap between
 

( ) =
 

(7)

Where:
Length of the overlap between G1 and G2 is defined as Overlap 

(G1,G2) = max(0,min(G1,max,G2,max) − max(G1,min,G2,min)) and 
Length of G2 is defined as Length(G2) = G2,max − G2,min. Thus, the 
full formula for the Gray Degree of Possibility becomes in Equation 8:
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G G G G
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1 2 1 2

2
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(8)

3.8 Interpretation

The Gray Degree of Possibility γ(G1,G2) yields a value between 
0 and 1:

 • A value of 1 indicates that G1 is fully contained  
within G2.

 • A value of 0 indicates that there is no overlap between 
G1 and G2.

 • Intermediate values indicate partial overlap, reflecting the 
degree to which the values of G1 are possible within the 
interval G2.

This concept is particularly useful in decision-making and analysis 
under uncertainty, as it allows for the quantification of how likely one 
uncertain range is to fall within another.

3.9 DEMATEL method under gray numbers

The DEMATEL method is a popular MCDM approach used to 
model and analyze complex causal relationships among factors in 
a system (58). When combined with gray numbers, DEMATEL can 
handle the uncertainty and imprecision inherent in real-world data 
more effectively. Below is a step-by-step explanation of the Gray 
DEMATEL method, including the relevant formulas (15, 16, 
30, 44).

Step 1: Define the problem and identify criteria.
Define the decision-making problem and identify the set of 

criteria (factors) C1,C2,…,Cn that will be analyzed.
Step  2: Construct the direct-influence matrix using 

gray numbers.
Collect expert opinions to evaluate the direct influence of one 

criterion on another using gray numbers.
Gray Direct-Influence Matrix G: Each element Gij in the matrix G 

represents the influence of criterion Ci on criterion Cj and is expressed 
as a gray number as Equation 9:
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(9)

Step 3: Normalize the direct-influence matrix.
Normalize the gray direct-influence matrix to ensure that the 

sums of the rows and columns are within the interval [0, 1] in 
Equation 10.

TABLE 2 Scale for assessment of options.

Very weak Weak
Somehow 

weak
Mediocre

Somehow 
good

Good Very good Indicator

VP

[0,1]

P

[1,2]

MP

[3,4]

M

[4,6]

MG

[6,7]

G

[7,9]

VG

[9,10]
G⊗
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 N G=α .  (10)
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normalized gray direct-influence matrix.
Step 4: Compute the total-influence matrix.
Compute the total influence (direct and indirect) that each 

criterion has on others.
Total-Influence Matrix T is in Equation 11.

 
T N N N N I N= + + + = −( )−2 3 1
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(11)

Here, I is the identity matrix, and (I − N)−1 is the inverse matrix 
of (I − N).

Step 5: Extract the gray total-influence matrix.
Extract the total-influence matrix while maintaining the gray 

number format.
Gray Total-Influence Matrix T is in Equation 12.
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(12)

where each element Tij = [Tij
min,Tij

max] represents the total influence of 
criterion Ci on Cj.

Step 6: Calculate the sum of rows and columns.
Calculate the sum of rows (denoted as Di) and columns (denoted 

as Rj) in the total-influence matrix is in Equation 13.
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Here, Di represents the total influence given by criterion Ci, and Rj 
represents the total influence received by criterion Cj.

Step 7: Determine the impact-relation map.
Visualize the causal relationships between the criteria.
Prominence Pi: The prominence of each criterion is calculated as 

Pi = Di + Ri.
Relation Ni: The net effect (relation) of each criterion is calculated 

as Ni = Di − Ri.
Interpretation: Positive Ni values indicate that the criterion is a net 

cause, while negative values indicate it is a net effect.
Step 8: Analyze the results and make decisions.
Analyze the impact-relation map to understand the causal 

relationships and make informed decisions.

The criteria with high prominence and positive relation are 
typically key drivers in the system and should be  prioritized in 

decision making. The DEMATEL method under gray numbers 
extends the traditional DEMATEL approach by incorporating gray 
numbers to handle uncertainty and imprecision in the data. This 
enables more robust and reliable analysis of complex systems where 
information may be incomplete or ambiguous.

3.10 Gray ANP

The (ANP) is a generalization of the (AHP) and is used to solve 
complex decision-making problems that involve interdependencies 
among criteria and alternatives. When combined with gray numbers, 
ANP can effectively handle uncertainty and imprecision in the data. 
Below is a step-by-step explanation of the ANP method under gray 
numbers, including the relevant formulas.

Step 1: Define the problem and construct the network model.
Objective: Define the decision-making problem and construct a 

network model that includes clusters, criteria, and alternatives. Unlike 
AHP, which uses a hierarchical structure, ANP allows for the 
interrelationship among elements within and between clusters.

Step  2: Construct pairwise comparison matrices using 
gray numbers.

Objective: Use expert opinions to evaluate the relative importance 
of elements within each cluster, as well as the influence of elements 
across different clusters.

Gray Pairwise Comparison Matrix G: Each element Gij in the 
matrix G represents the relative importance or influence of element i 
over element j and is expressed as a gray number as Equation 14:
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(14)

where Gij = [Gminij,Gmaxij].
Step 3: Normalize the pairwise comparison matrices.
Objective: Normalize the gray pairwise comparison matrices to 

ensure the sums of the columns are equal to 1, which is required for 
the calculation of the supermatrix.

For each element Gij in the matrix in Equation 15:

 

G
G

G
ij

ij

i

n

ij

normalized =

=
∑

1  

(15)

After normalization, each column in the matrix should sum to 1.
Step 4: Construct the initial supermatrix.
Objective: Formulate the initial supermatrix by organizing the 

normalized gray pairwise comparison matrices into a single matrix 
that represents the entire network’s structure.

Supermatrix W: The supermatrix is a block matrix where each 
block represents the influence of a set of elements in one cluster on 
another set of elements in a different (or the same) cluster in 
Equation 16.
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(16)

Each block Wkl is a submatrix corresponding to the relationships 
between elements in cluster k and cluster l.

Step 5: Construct the weighted supermatrix.
Adjust the initial supermatrix to reflect the relative importance of 

each cluster within the network. This is done by multiplying each 
block in the supermatrix by the corresponding cluster’s priority. 
Weighted Supermatrix W ′ is as W w Wkl k kl

′ = × where wk is the weight 
(priority) of cluster k, and Wkl is the block from the initial supermatrix 
corresponding to the relationship between cluster k and cluster l.

Step 6: Calculate the limit supermatrix.
Compute the limit supermatrix by raising the weighted 

supermatrix to sufficiently high powers until it converges to a stable 
matrix where all columns are identical. This limit matrix reflects the 
long-term influence of each element on others. Limit Supermatrix W″ 
is as ′′ ′= ( )

→∞
W W

p

plim . This operation is typically done by matrix 
multiplication until the super matrix stabilizes (converges).

Step 7: Extract the priorities.
Extract the priorities (weights) of the decision alternatives from 

the limit supermatrix. The final priorities of the alternatives can 
be found in the corresponding rows of the limit supermatrix. The 
priority of each alternative is given by the corresponding entry in the 
limit supermatrix. For decision-making, these priorities can be used 
to rank the alternatives.

Step 8: Sensitivity analysis.

Perform a sensitivity analysis to assess the stability of the 
results under different scenarios or variations in the input data. 
Change the input data (e.g., the gray numbers in the pairwise 
comparisons) slightly and observe how the final priorities change. 
This helps to ensure that the decision-making process is robust 
under uncertainty.

3.11 Zero-sum game theory expanded 
based on gray degree of possibility

In a zero-sum game under gray numbers, we  account for 
uncertainty and imprecision in the payoffs using gray numbers. 
We also include nonlinear programming constraints to further refine 
the decision-making process. Below is the step-by-step method, 
including the formulation of constraints.

Step 1: Calculate the gray degree of possibility.
Gray Degree of Possibility between the gray payoffs of different 

strategies to quantify the likelihood of one strategy outperforming 
another under uncertainty. Given two gray numbers 
G1 = [G1,min,G1,max] and G2 = [G2,min,G2,max], the Gray Degree of 
Possibility γ(G1,G2) is defined as Equation 17:
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Step 2: Construct the gray decision matrix.
Formulate the gray decision matrix that represents the gray 

payoffs for each strategy pair between two players.
Gray Decision Matrix M: The decision matrix is defined by the 

gray payoffs, where each element Mij is a gray number representing the 
payoff to Player 1 when Player 1 chooses strategy i and Player 2 
chooses strategy j in Equation 18.
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(18)

where each element Mij = [Mij
min,Mij

max] is a gray number.
Step 3: Formulate the objective function based on gray degree 

of possibility.
Define the objective function for Player 1 based on maximizing 

the Gray Degree of Possibility.
Objective Function for Player 1: Player 1 aims to maximize the 

minimum Gray Degree of Possibility between the payoff of their 
chosen strategy and the payoffs of the other strategies.

For each strategy i of Player 1, the objective function can 
be expressed as:

 
Maximize M M k i

j
ij kjmin ,γ , for all( ) ≠

where γ(Mij,Mkj) is the Gray Degree of Possibility that the payoff Mij is 
at least as large as Mkj for each strategy k of Player 1, given the strategy 
j chosen by Player 2.

Step 4: Formulate the nonlinear programming constraints.
In the context of a zero-sum game, the inclusion of nonlinear 

programming constraints adds a layer of complexity that may 
be  necessary to model real world decision-making scenarios. 
These constraints can take various forms, including but not 
limited to:

 1. Budget Constraints: Limits on the total resources available to 

each player is
i

m

i ic x B
=
∑ ≤

1
where ci is the cost associated with 

strategy i and B is the total budget available.
 2. Probability Constraints: Ensures that the probabilities assigned 

to strategies sum to 1 and 
i

m

i ip p
=
∑ = ≤ ≤

1
1 0 1and  where pi 

represents the probability of choosing strategy i.
 3. Risk Constraints: Limits the maximum allowable risk or 

uncertainty is as 
i

m

i ir x R
=
∑ ≤

1
, where ri is the risk associated with 

strategy i and R is the maximum allowable risk.
 4. Equality/Non-Equality Constraints: Enforces specific 

requirements or relationships among variables in Equation 19.
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(19)
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where f(x1,x2,…,xm) is a nonlinear function representing the 
relationship between the strategies.

Step 5: Identify the optimal strategy for Player 1.
Determine the strategy i∗ that maximizes Player 1’s minimum 

Gray Degree of Possibility while satisfying all nonlinear constraints.
Optimal Strategy: The optimal strategy i∗ for Player 1 is the one 

that maximizes the minimum Gray Degree of Possibility across all 
possible strategies of Player 2, subject to the nonlinear constraints as 
i∗ = argmaxi minj γ(Mij,Mkj) for all k ≠ i subject to constraints.

Step 6: Formulate the problem for Player 2 (dual problem).
Similarly, Player 2’s objective is to minimize the maximum Gray 

Degree of Possibility that Player 1’s strategy outperforms their strategy, 
subject to the nonlinear constraints.

For each strategy j of Player 2, the objective function can 
be  expressed as Minimize maxi γ(Mij,Mik), for all k  ≠  j subject 
to constraints.

Step 7: Identify the optimal strategy for Player 2.
Determine the strategy j∗ that minimizes Player 2’s maximum 

Gray Degree of Possibility while satisfying all nonlinear constraints.
Optimal Strategy: The optimal strategy j∗ for Player 2 is the one 

that minimizes the maximum Gray Degree of Possibility across all 
possible strategies of Player 1, subject to the nonlinear constraints in 
Equation 20.

 
j M M k jij ik
∗ = ( ) ≠argmin , for all subject to constraintsj imax γ

 (20)

Step 8: Calculate the game value.
Compute the value of the game, which represents the expected 

outcome when both players adopt their optimal strategies.
Game Value: The value of the game is the gray number 

corresponding to the payoff at the optimal strategies i∗ and j∗ the Game 
Value = Mi∗j∗.

The zero-sum game theory model under gray numbers, with an 
objective function based on the Gray Degree of Possibility and 
additional nonlinear programming constraints, offers a comprehensive 
framework for decision making in uncertain and complex 
environments. By incorporating gray numbers and nonlinear 
constraints, this model allows for more realistic and flexible solutions 
that can better accommodate real-world limitations and uncertainties.

4 Finding

4.1 Demographic information

The experts have been selected by the researchers to answer with 
purposeful judgmental sampling Demographic information is in 
Table 3.

4.2 Finding of MCDM

In this section, the results of the collected data analysis are 
presented. First, the obstacles in the circular economy of lithium-ion 
battery in the sustainable supply chain in the automotive industry 
have been identified using the Gray Delphi method. The Gray ANP 

method has been used to rank the circular economy implementation 
sub-criteria. Gray DEMATEL technique Gray DEMATEL has been 
used to determine the relationships between the main obstacles. Excel 
software and python were used to analyze the obtained data.

In the primary stage, risks were determined and chosen from the 
circular economy of lithium-ion batteries in the sustainable supply 
chain in the automotive industry. For validation and reliability, gray 
Delphi Technique was employed. To perform this gray Delphi 
Technique, a questionnaire with desired criteria is sent separately on 
individual basis to all group members and done secretly. The gray 
Delphi method was carried out in three stages, and Kendall’s 
coefficient of agreement for the first, second and third rounds of the 
gray Delphi sub-criterion was 0.711, 0.752 and 0.768, respectively, 
which shows the convergence of the respondents’ opinions and the 
congruence of their opinions, and therefore gray Delphi confirmed 
and it stopped. Considering that all the critical values are greater than 
0.5, all the risks were accepted.

Stage 1: Initial identification of risk.
Identification of Criteria: Initially, 21 criteria were identified as 

potential sub-risks related to the Environmental Pollution Risk in 
Lithium Battery Production. These criteria spanned various domains 
including supply chain design, recycled product quality, technology 
and infrastructure, consumer awareness, and organizational culture, 
among others. First Round of Expert Evaluation: In the first round, 
experts were asked to assess these 21 criteria. They provided their 
assessments, and two criteria were deemed less significant and thus 
eliminated from further consideration. The remaining 19 criteria were 
retained for further evaluation. Refinement of Criteria: Based on the 
feedback and evaluation from experts, the list of criteria was refined, 
resulting in a shorter list of 19 criteria. The two eliminated criteria 
were “Excessive Bureaucracy Risk” and “Organizational Culture 
Deficiency Risk.”

Stage 2: Interval-based evaluation.
The remaining 19 criteria were then subjected to a more detailed 

assessment. In this round, experts were asked to provide interval-
based evaluations, which considered both the mean value and the 
interval average for each criterion. The data from this round was 
analyzed to determine the confirmatory status of each criterion. This 
involved calculating both the mean and the interval averages, allowing 
for a more nuanced understanding of the risks associated with each 

TABLE 3 Information of experts.

Category Number of respondents

Gender Male: 24

Female: 8

Work experience 0–5: 4

5–10: 11

10–15: 9

Up to 15: 8

Education Bachelor: 6

Master: 16

PhD: 10

Field Mechanical engineering: 9

Automotive engineering: 4

Industrial engineering: 14

Industrial management: 5
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criterion. All 19 criteria were confirmed based on their interval-based 
evaluations. These criteria were found to be relevant and were thus 
included in the final stage of the Delphi process.

Stage 3: Final confirmation and reporting.
Final Expert Consensus: In the final stage showed in Table 4, 

experts reviewed the results of the interval-based evaluations. The 
consensus was reached that all 19 criteria should be retained as they 
were found to be significant in the context of Environmental Pollution 
Risk in Lithium Battery Production.

Kendall’s coefficient of agreement for the first, second and third 
rounds of Delphi sub-criteria was 0.711, 0.752 and 0.768, respectively, 
which shows the convergence of the respondents’ opinions and the 
agreement of their opinions, and therefore Delphi was approved 
and stopped.

4.2.1 Gray ANP
The researchers have adopted the (GANP) to the procedure of 

giving importance to the inputs into the model. The figure below 
informs the GANP model to settle the model pattern for the criterion 
and a set of sub-criteria. This research applied the Gray ANP show in 
Figure 1 to determine the relative importance of the indicators and 
criteria model.

4.2.1.1 Determining the priority of the main criteria based 
on the goal

To make the initial network analysis, the major criteria have been 
compared in pairs systematically, as per the objective. Pair-wise 
comparison is simply a process of comparing every element within a 
cluster with each of its other members. Thus, the number of 
comparisons made in a cluster containing ‘n’ components is: 

(n(n−1))/2. Since there are 19 risks involved, the number of 
comparisons made is 171. Therefore, 171 comparisons have been 
made by a panel of experts. Gray scale is used by experts for 
quantifying their point of view. The third chapter defines the gray scale 
used in the gray network analysis procedure. Gray spectrum was 
initially used in collecting the experts’ opinions. The Gray ANP 
technique has utilized the geometric mean approach for integration 
of opinions by experts. After the construction of the matrix of pairwise 
comparisons, the eigenvector has been calculated. First, the geometric 
mean of each line is calculated as Equation 21.

 
∏ = ∏( ) ∏( )( )G l u,

 
(21)

The cumulative total of the items in the preferences column is 
computed as Equation 22.
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Next, step is to sum up all the preferences column items. The sum 
of all preferences column items is divided by that criteria’s values sum, 
to normalize those preferences for that criterion. Since values are gray 
scale; we can simply multiply the sum of all the grayscale lines with 
their reciprocal. Finding the inverse of total is an essential step. Results 
of data normalization procedure will be presented in Table 5.

The results of calculating the weights of the main research criteria 
are presented in Table 6.

Each obtained gray weight and normalized values are related to 
the main criteria. At last, grey numbers have been whitened (definite) 

TABLE 4 Summary of the results of the final round of the gray Delphi technique.

Risk Sub-risk Interval average Mean Result

Risk of Supply chain (RSC) R1 [0.49985228, 0.52617148] 0.56301 Confirm

R2 [0.69498731, 0.69111702] 0.69305 Confirm

R3 [0.69916309, 0.7273084] 0.69305 Confirm

R4 [0.48838245, 0.89261357] 0.71324 Confirm

Technology and Infrastructure 

Risk (TIR)

R5 [0.6509169, 0.92623478] 0.71324 Confirm

R6 [0.63776918, 0.74265659] 0.69050 Confirm

R7 [0.68912349, 0.84332914] 0.69050 Confirm

R8 [0.50329593, 0.76198963] 0.78858 Confirm

Environment Risk (ENR) R9 [0.47349689, 0.72355946] 0.78858 Confirm

R10 [0.59360286, 0.79385017] 0.69021 Confirm

R11 [0.60894234, 0.84242351] 0.69021 Confirm

Risk of Government (ROG) R12 [0.4729445, 0.70221209] 0.76623 Confirm

R13 [0.44803554, 0.80111812] 0.76623 Confirm

Risk of Organizational and 

Human Resources (OHR)

R14 [0.53773961, 0.61001658] 0.63264 Confirm

R15 [0.47991529, 0.8283344] 0.63264 Confirm

R16 [0.64195557, 0.92473835] 0.59853 Confirm

Economic and financial risk 

(EFC)

R17 [0.58387092, 0.58225793] 0.59853 Confirm

R18 [0.62768254, 0.77125424] 0.69373 Confirm

R19 [0.62111433, 0.68658158] 0.69373 Confirm
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calculating the average value of the limits. Based on the special vector 
obtained Criterion TIR with a weight of 0.16718 is the most important 
and Criterion EFC with a weight of 0.16482 is the last priority. The 
comparison rate discrepancy was established at 0.036, less than 0.1; 
hence the comparisons made are reliable.

4.2.1.2 Final priority of indicators with gray DANP 
technique

4.2.1.2.1 Calculation of unbalanced supermatrix, balanced 
supermatrix and limit supermatrix

The final weight is obtained by displaying the outcome of the 
comparison of the main criteria, based on the objective and internal 
correlations between the criteria, in a super matrix. In this case, the 
super matrix will be known as the major or imbalanced super matrix. 
To obtain the overall priority of the indicators with interdependencies, 
the internally prioritized vectors, that is, computed w are entered in 
the respective columns of a matrix. Using the identified inter linkages 
in the present research, the above super matrix-I of this study will 
be of the following nature in Equation 23:

 

W W W
W I

=
















0 0 0
0

0
21 22

32  

(23)

The super matrix embeds the vector W21, which expresses the 
relative importance of each of the main criteria with respect to the 
goal. In this study, the vector W22 measures the pairwise evaluation 
of the interrelationships between the main criteria derived from the 
output produced by applying the Gray DEMATEL method. The W32 
vector presents the importance of each sub-criterion within its 
respective cluster. A coefficient value of zero would indicate that the 
components have no influence on each other where the rows and 
columns intersect. In the second round of the Gray ANP method, 
pairwise comparison of the sub-criteria under each criterion has been 
presented in Table 7 and Figure 2.

The three most critical risks in lithium battery production, based 
on their weights, are Environmental Pollution Risk (0.1525), Improper 
Waste Management Risk (0.1372), and Support Program Deficiency 

Risk (0.1452). These risks underscore the significant environmental 
challenges in the industry, highlighting the urgent need for sustainable 
practices to manage pollution and waste effectively. The high weight 
of the Support Program Deficiency Risk also indicates the necessity 
for robust support systems, including training and regulatory 
compliance, to address these challenges and ensure the industry’s 
long-term viability. Prioritizing these areas is essential for minimizing 
environmental impact and maintaining sustainable 
production processes.

4.2.2 Gray DEMATEL
Step 1: Define the risks and evaluation criteria.
The criteria are based on grey linguistic terms, which have been 

mapped to grey intervals:
Step 2: Construct the grey direct influence matrix.
The direct influence matrix A is populated using grey intervals. 

Each element aij is represented as an interval [aL
ij,aU

ij], where aL
ij is the 

lower bound and aU
ij is the upper bound of the grey interval.

Step 3: Normalize the grey direct influence matrix.
The grey direct influence matrix A is normalized by ensuring that 

each interval is divided by the maximum sum of the intervals in any 
row as Equation 24.
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Step 4: Compute the grey total influence matrix T.
The grey total influence matrix T is calculated using the following 

in Equation 25:

 
T I A I= −( ) −′ −1

 
(25)

Step 5: Calculate grey D and R values show in Table 8.
In the Gray DEMATEL method analysis (see Figure 3), the results 

are categorized based on the values of D + R and D − R. For the risks 
where both D + R and D − R values are positive, they are positioned in 
the upper right quadrant of the positive section of the diagram. The 

FIGURE 1

Sensitivity analysis heatmap of different weight ranges on 19 identified risks.
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chart is divided into four quadrants by the red dashed lines at D + R = 0 
and D − R = 0. Each quadrant represents a different characteristic of 
the risks:

 1. Top-Right Quadrant (Positive D + R, Positive D − R):
Risks in this quadrant, such as R7, R8, R12, R15, R17, and R18, are 

both influential and have a strong impact on other factors in the 
system. These risks not only influence others but are also relatively 
independent of being influenced by other risks. They are the driving 
factors in the system and play a crucial role in shaping the overall 
risk environment.

 2. Top-Left Quadrant (Positive D + R, Negative D − R):
No risks are located in this quadrant in the current plot. If there 

were any, they would represent risks that are strongly influenced by 
other factors but also have a moderate impact on other risks. These are 
somewhat balanced in terms of influence and being influenced.

 3. Bottom-Right Quadrant (Negative D + R, Positive D − R):
Risks in this quadrant, such as R4, are influential but also highly 

dependent on the influence of other risks. These risks have a significant 
impact on the system but are also susceptible to changes and influences 
from other factors. They play a dual role in the system, both as 
influencers and influenced elements.

 4. Bottom-Left Quadrant (Negative D + R, Negative D − R):
Risks located here, such as R1, R2, R3, R9, R10, R16, and R19, 

are not only influenced by other factors but also have a lower impact 
on the system. These risks are more passive, being predominantly on 
the receiving end of influences within the system. They are 
considered less critical in terms of their ability to drive or alter the 
overall risk profile.

These risks exert an influence on other risks, meaning they are 
influential factors. For example, R7, R8, R12, R15, R17, and R18 fall 
into this category, indicating they have a significant impact on the 
system under consideration. On the other hand, risks where both 
D + R and D − R values are negative are located in the lower left 
quadrant of the negative section. These risks are considered to 
be influenced by other factors rather than being influential themselves. 
This includes R1, R2, R3, R9, R10, R16, and R19, indicating that these 
risks are more dependent on other factors within the system.

4.3 Game theory finding

Step 1: Define the players and strategies.

 • Player 1: The risks (19 risks, R1,R2,…, R19)
 • Player 2: The strategies to counter these risks (6 strategies, 

S1,S2,…,S6)

To deal with these risks, the following solutions can be used (see 
Table 9).

Step 2: Construct the gray decision matrix.
We will create a decision matrix where the elements represent the 

payoffs (impact or loss) of Player 1 (risks) against Player 2’s strategies. 
Each element is a gray interval.

Step 3: Calculate the gray degree of possibility.
For each element in the decision matrix, we’ll calculate the Gray 

Degree of Possibility that the payoff from one strategy is at least as 
large as the payoff from another strategy showed in Tables 10, 11.

Step 4: Formulate the objective function.T
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The objective function for Player 1 is to minimize the impact 
(loss), while for Player 2, it’s to maximize the impact (or minimize the 
efficiency of Player 1’s chosen risk strategy). The players will use the 
Gray Degree of Possibility as part of their strategy formulation.

Step 5: Apply nonlinear programming constraints.
These constraints include budget limits, probability constraints, 

risk limits, and any other relevant non-linear relationships.

 
0 359993734 0 32778474 0 330350181
0 32002924

. . .

.
× + × + × +
× +

S1 S2 S3
S4 00 274147173 0 351287942. . .× + ×S5 S6

 0 2 0 142857143 0 25 19. . . .× + × +…+ ×R1 R2 R

To mathematically analyze the probability of the worst-case 
scenario occurring, we consider the intervals provided for each risk as 

representing possible values the risks could take. For each risk Ri, the 
interval [Li,Ui] where Li is the lower bound and Ui is the upper bound, 
can be interpreted as a uniform distribution of potential risk values 
within this range. The uniform distribution assumption implies that 
any value within the interval is equally likely, leading to a constant 
probability density function for the interval.

The probability of the worst-case scenario, denoted Pworst, is then 
the probability that the actual risk value is close to the lower bound Li. 
Since the PDF for a uniform distribution is 1

Ui Li−
across the 

interval, the narrowness of the interval (Ui − Li) plays a crucial role. A 
narrower interval indicates less variability in the possible outcomes, 
which implies a higher concentration of probability near the lower 
bound. Specifically, if we define a small ϵ such that Li ≤ x ≤ Li + ϵ, the 
probability that the risk Ri falls within this small range near the lower 
bound is given by Equation 26:

TABLE 6 Final pairwise comparison matrix of research criteria.

Normal Geometric mean Final weight

RSC 0.1245 0.32475 0.9695 1.5405 0.16688

TIR 0.1327 0.35225 1.0285 1.6705 0.16718

ENR 0.1099 0.29775 0.8505 1.4125 0.1669

ROG 0.1111 0.29725 0.8545 1.4085 0.1668

OHR 0.1133 0.31175 0.8805 1.4765 0.16632

EFC 0.0855 0.22625 0.6665 1.0685 0.16482

TABLE 7 Result of grey ANP.

Risk Risk Lower bound weight Upper bound weight Definite weight

R1
Environmental Pollution Risk in Lithium Battery 

Production
3.14128 1.764546436 0.152519385

R2 Supply Chain Design Risk 9.27313 4.203801371 0.036335751

R3 Supply Chain Disruption Risk 7.99488 4.121750051 0.035626537

R4 Recycled Product Quality Risk 8.95713 4.652965173 0.040218119

R5 Technology and Infrastructure Deficiency Risk 8.74363 4.45124871 0.038474574

R6 Consumer and Supplier Awareness Deficiency Risk 9.45235 4.395849841 0.037995731

R7
Collaboration and Leadership Deficiency Risk in 

Companies
9.21472 4.291194414 0.037091137

R8 Training and Skill Deficiency Risk 8.87554 4.265862778 0.036872182

R9 Unsustainable Energy Use in Extraction Risk 8.28159 4.24976128 0.036733008

R10 Improper Waste Management Risk 2.92843 1.587431605 0.137210383

R11 Dependency on Specific Mineral Resources Risk 9.49524 4.163664609 0.035988827

R12 Support Program Deficiency Risk 3.06367 1.680018494 0.145213174

R13 Policy and Standard System Deficiency Risk 8.59458 4.086818018 0.0353246

R14 Consumer and Supplier Participation Deficiency Risk 7.92584 3.900303837 0.033712456

R15 Business Model Scalability Risk 8.8665 3.871578763 0.03346417

R16 Specialized Human Resources Deficiency Risk 7.46232 3.868306338 0.033435884

R17 Lack of Government Financial Support Risk 8.2379 3.718255464 0.032138913

R18 Lack of Profitability and High Cost Risk 8.60696 3.676152059 0.03177499

R19 Incorrect Waste Cost Estimation Risk 7.94318 3.455778435 0.02987018
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This shows that the probability Pworst increases as the interval 
(Ui − Li) decreases, making the worst-case scenario more probable for 

risks with smaller ranges. Conversely, larger intervals suggest greater 
uncertainty and a lower probability that the actual risk is close to Li.

Moreover, considering the cumulative distribution function 
(CDF) of the uniform distribution, the CDF at the lower bound Li is 
0, and it gradually increases to 1 as we approach the upper bound Ui. 
Therefore, the CDF’s steepness, which is inversely proportional to the 
interval’s length, further supports that narrower intervals lead to a 
higher likelihood that the risk remains near the lower bound.

In conclusion, mathematically, the probability of the worst-case 
scenario is inversely related to the width of the risk intervals. The 
narrower the interval, the more concentrated the probability near the 
lower bound, and thus, the higher the likelihood of encountering the 
worst-case scenario. This insight provides a quantitative foundation 
for prioritizing risks with smaller intervals in risk management 
strategies, as they are statistically more likely to realize their worst-
case outcomes.

Step 6: Solve for optimal strategies.
We will determine the optimal solution for strategies for both 

players using the Gray Degree of Possibility and constraints show in 
Tables 12, 13.

In the analysis of zero-sum game theory, optimal solutions are 
typically selected based on the criteria of lower bounds and upper 
bounds. These criteria represent the worst and best possible outcomes 
when facing risks, respectively. Specifically, the lower bound indicates 
the minimum value that a strategy can yield, while the upper bound 
represents the maximum possible value for that strategy.

The optimal strategy in this context is one that minimizes 
potential losses in the worst-case scenario (i.e., has a higher lower 
bound) while also maximizing potential gains in the best-case 
scenario (i.e., has a higher upper bound). Based on this, Strategy S3, 
with a lower bound of −0.6667 and an upper bound of −0.2222, 
appears to be the most optimal choice. This strategy offers the least 
loss in the worst case and the highest gain in the best case compared 
to the others. On the other hand, Strategies S4 and S6, with lower 
bounds of −1.0000, pose a higher risk in the worst scenarios, and thus, 

FIGURE 2

Weight of risks.

TABLE 8 D and R values.

Risk D R D  +  R D  −  R

R1 −0.68789 −0.46131 −1.1492 −0.22658

R2 −0.48072 −0.47999 −0.96071 −0.00072

R3 −0.56559 −0.5479 −1.11349 −0.0177

R4 −0.24153 −0.51967 −0.7612 0.278143

R5 −0.41525 −0.49874 −0.91398 0.083491

R6 −0.50163 −0.49255 −0.99418 −0.00908

R7 −0.47202 −0.4781 0.95013 0.006081

R8 −0.53281 −0.47838 1.01119 0.05444

R9 −0.50912 −0.46099 −0.97012 −0.04813

R10 −0.63357 −0.57262 −1.20619 −0.06096

R11 −0.38818 −0.47546 −0.86364 0.087288

R12 −0.48616 −0.49514 0.9813 0.008975

R13 −0.4669 −0.50018 −0.96708 0.033272

R14 −0.34816 −0.41302 −0.76118 0.064858

R15 −0.4713 −0.57631 1.04761 0.105013

R16 −0.49222 −0.46653 −0.95875 −0.02568

R17 −0.51352 −0.57399 1.08751 0.060473

R18 −0.40438 −0.4989 0.90328 0.094524

R19 −0.81332 −0.43449 −1.2478 −0.37883
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should generally be avoided if possible. Selecting Strategy S3 seems 
prudent due to its relative balance between the lower and upper 
bounds, making it a more robust choice. This strategy demonstrates 
stability in the worst-case scenarios and has the potential to achieve 
better outcomes, making it a suitable solution for managing risks, 
particularly when optimizing results across a range of possible 
scenarios is essential.

Based on the given output data for the risk intervals, we  can 
perform a detailed analysis to identify which risks are more likely to 
exhibit their worst-case scenarios and which risks have a broader 
range of possible outcomes, indicating greater uncertainty.

R7 and R14 have identical intervals, [−0.8889, −0.6667], 
suggesting a high probability that the actual risk value will be close to 
the lower bound of −0.8889. Similarly, R11, with an interval of 

[−0.5556, −0.1111], also indicates a higher likelihood that the actual 
risk will be  nearer to −0.5556. These risks have relatively narrow 
intervals, meaning there is less variability in the possible outcomes.

R9 has a wide interval of [−1, −0.3333], which means the actual 
risk could range significantly, making it less likely that the worst-case 
scenario (−1) will occur. R15, with an interval extending into positive 
values [−0.6667, 0.3333], shows even greater variability, further 
reducing the probability that the risk will hit its worst-case value. Such 
risks, while potentially less likely to reach their worst outcomes, 
require strategies that account for their wider range of possible impacts.

R4, R6, R17, R12 risks include the extreme lower bound of −1, 
which could represent the most severe potential outcomes. While R4 
and R6 share the same interval [−1, −0.7778], indicating some 
probability concentration near the lower bound, R17, with the 

FIGURE 3

Gray DEMATEL finding.

TABLE 9 Strategy to deal with the risk (48, 49, 52–54, 56, 57, 59, 60).

Strategy 
code

Strategy Strategy definition

S1 Implement continuous monitoring systems. Establishing a continuous monitoring system to identify and control effective and influential risks.

S2 Develop and execute training programs. Developing and implementing educational programs to increase people’s awareness and preparedness against 

risks.

S3 Establish and strengthen crisis management 

protocols.

Creating and strengthening crisis management protocols for quick and effective response to identified risks.

S4 Utilize modeling and simulation tools. Using modeling and simulation tools to predict and analyze the possible effects of risks and design different 

scenarios.

S5 Enhance interdepartmental communication 

and coordination.

Strengthen communication and coordination between departments to increase cooperation and reduce the 

mutual effects of risks.

S6 Conduct periodic risk assessments and 

updates.

Conduct periodic risk assessment and continuously update risk response plans based on new data and analysis.
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narrower interval of [−1, −0.8889], suggests an even higher 
likelihood that the risk will indeed be close to −1. R12, although 
broader, still has the potential to reach −1, highlighting the 
importance of considering these extreme cases in risk assessments. 
These risks should be carefully monitored because their worst-case 
outcomes are more probable. These risks have broader intervals, 
indicating a higher degree of uncertainty regarding the actual 
risk value.

The analysis of the output data reveals that risks with narrower 
intervals, such as R7, R14, and R11, have a higher probability of 
realizing their worst-case outcomes, and therefore, these should 
be prioritized in risk mitigation strategies. On the other hand, risks 
with broader intervals, like R9 and R15, suggest higher uncertainty, 
which may require different management approaches to address the 
wider range of potential impacts. Finally, risks with intervals including 
the extreme value of −1 demand special attention due to their 
potential severity, despite the varying probabilities of these outcomes.

Step 7: Determine the optimal game value.
The value of the game represents the expected outcome when both 

players play optimally.
Amount is 0.7778.

4.4 Sensitive analysis

The sensitivity analysis heatmap (Figure 1) illustrates the impact 
of different weight ranges on 19 identified risks (R1 to R19). Each 
weight range corresponds to a scenario where one weight is given 
more emphasis, and the others are adjusted accordingly. This allows 
us to observe how sensitive each risk is to changes in the weight 
distribution. The color gradient, from red (higher values) to blue 

(lower values), visually represents the impact of each weighting 
scenario on the risks.

From the heatmap, it is evident that certain risks exhibit significant 
sensitivity under specific weight scenarios. For example, risks like R4, 
R5, R6, and R16 show noticeable variations in their values across the 
different weight ranges, indicating that these risks are highly sensitive 
to changes in weight distribution. These risks might require more 
attention in scenarios where certain risk factors are prioritized, as their 

TABLE 10 Gray degree of possibility for risks.

Gray degree of possibility

R1 0.2

R2 0.142857143

R3 0.4

R4 0

R5 0.125

R6 0.125

R7 0.25

R8 0.142857143

R9 0.333333333

R10 0.166666667

R11 0.333333333

R12 0.25

R13 0.5

R14 0

R15 0.6

R16 0.142857143

R17 0.25

R18 0.4

R19 0.25

TABLE 11 Gray degree of possibility for strategy.

Strategy Gray degree of possibility

S1 0.359993734

S2 0.32778474

S3 0.330350181

S4 0.32002924

S5 0.274147173

S6 0.351287942

TABLE 12 Optimal solution for strategies.

Lower bounds Upper bounds

S1 −0.8889 −0.5556

S2 −0.8889 −0.3333

S3 −0.6667 −0.2222

S4 −1.0000 −0.7778

S5 −0.8889 −0.5556

S6 −1.0000 −0.7778

TABLE 13 Optimal solution for risks.

Lower bounds Upper bounds

R1 −0.8889 −0.5556

R2 −0.8889 −0.3333

R3 −0.6667 −0.2222

R4 −1 −0.7778

R5 −0.8889 −0.5556

R6 −1 −0.7778

R7 −0.8889 −0.6667

R8 −0.8889 −0.5556

R9 −1 −0.3333

R10 −1 −0.4444

R11 −0.5556 −0.1111

R12 −1 −0.6667

R13 −0.7778 −0.2222

R14 −0.8889 −0.6667

R15 −0.6667 0.3333

R16 −0.6667 −0.2222

R17 −1 −0.8889

R18 −1 −0.4444

R19 −0.8889 −0.4444
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outcomes could vary greatly depending on the specific conditions. On 
the other hand, risks like R1, R2, and R3 appear less sensitive, with 
their values remaining relatively stable across the different weight 
ranges. This stability suggests that these risks are more robust to 
changes in weight distribution. Overall, this analysis helps identify 
which risks are more likely to be influenced by prioritization changes 
and which remain stable regardless of the weighting. Decision-makers 
can use this information to allocate resources more effectively, 
focusing on the risks that are most sensitive to the prioritized factors. 
This approach allows for a more targeted risk management strategy, 
ensuring that the most volatile risks are closely monitored and 
mitigated under different scenarios.

The sensitivity analysis heatmap (Figure 4) presented shows the 
impact of different weight scenarios on six risk mitigation strategies 
(S1 to S6). Each weight scenario corresponds to a situation where one 
of the weights is given an 80% emphasis, while the remaining 20% is 
equally distributed among the other weight factors. This approach 
simulates the influence of prioritizing one risk mitigation strategy over 
the others, allowing us to observe how each strategy responds when it 
is more heavily weighted. From the heatmap, we  can see varying 
degrees of sensitivity across the different strategies. Strategies that 
show higher values under certain weight scenarios are more influenced 
when that particular weight is prioritized. For example, if S1 displays 
a higher value under the W1 scenario, it suggests that this strategy is 
most effective when W1 is emphasized. Conversely, strategies with 
lower values under specific weight scenarios indicate less sensitivity to 
those conditions, implying that these strategies are more robust or less 
dependent on that particular emphasis. This analysis helps in 
identifying which risk mitigation strategies are most effective under 
different prioritization conditions and can guide decision-makers in 
selecting the appropriate strategy based on the relative importance of 
different risk factors.

5 Discussion

The three highest-risk factors identified in the Gray ANP method 
for lithium battery production are the Environmental Pollution Risk, 
Support Program Deficiency Risk, and Improper Waste Management 
Risk. The Environmental Pollution Risk carries the highest definite 
weight of 0.152519385, indicating its critical importance. This risk is 
paramount due to the significant potential for environmental 

degradation during lithium battery production, involving hazardous 
materials that can cause long-term ecological harm if not properly 
managed. The substantial difference in weight between this risk and 
others underscores its dominance and the pressing need for effective 
mitigation strategies to safeguard environmental health. The 
environmental pollution risks associated with lithium battery 
production present significant challenges to the sustainable supply 
chain within the lithium-ion battery circular economy, particularly in 
the automotive industry. The critical concern lies in the environmental 
and social impacts resulting from the extraction, processing, and 
disposal of materials used in lithium-ion batteries, including lithium, 
cobalt, and nickel. These impacts threaten the long-term sustainability 
of supply chains as the demand for electric vehicles continues to surge. 
For instance, studies have highlighted the substantial environmental 
burdens of large-scale lithium-ion battery production, emphasizing 
that scaling up production could exacerbate these issues unless supply 
chains are optimized for sustainability. Moreover, the integration of 
circular economy principles, such as recycling and reuse, is vital to 
mitigating these environmental risks. These principles not only aim to 
reduce the environmental footprint but also to secure material supply 
by recovering valuable metals from spent batteries (59, 63). 
Furthermore, research emphasizes the importance of robust regulatory 
frameworks and circular business models to ensure the sustainable 
recycling of lithium-ion batteries. The European Union’s Battery 
Regulation, for example, aims to ensure the sustainability of batteries 
through stringent recycling targets, which could globally influence 
supply chains if successfully implemented (54, 57). In addition, the 
circularity of lithium-ion battery materials has the potential to 
alleviate some of the critical environmental impacts, with recycling 
processes recovering significant percentages of metals like cobalt, 
nickel, and lithium. These processes, however, must be optimized to 
avoid shifting the environmental burden to other stages of the supply 
chain (57, 59). The ongoing development of closed-loop recycling 
methods, which focus on the direct regeneration of battery cathodes, 
offers promising advancements in reducing both environmental 
impact and supply chain vulnerabilities (45).

The Support Program Deficiency Risk, with a definite weight of 
0.145213174, is the second most significant. This risk highlights the 
essential role of adequate support programs in the successful 
implementation of sustainable practices within the supply chain. The 
high weight assigned to this risk reflects its potential to exacerbate 
other risks, particularly those related to resource management and 

FIGURE 4

Sensitivity analysis heatmap of different weight ranges on scenarios on strategies.
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regulatory compliance, if appropriate support systems are not in place. 
The deficiency in support programs presents a significant risk to the 
sustainable supply chain in the lithium-ion battery circular economy 
within the automotive industry. The integration of circular economy 
principles is heavily reliant on robust governmental and institutional 
support, including policies, economic incentives, and regulatory 
frameworks. Studies indicate that inadequate support programs can 
lead to insufficient recycling rates, higher costs, and logistical 
challenges, thereby undermining the sustainability of the supply chain. 
For instance, a study highlighted that inefficient government policies 
and lack of safety standards are among the most significant barriers to 
the successful implementation of circular economy strategies in the 
electric vehicle battery sector (18). Similarly, inadequate policy 
frameworks were identified as a major obstacle in achieving the 
economic feasibility of lithium-ion battery recycling, which is critical 
for the circular economy model (10). Moreover, the lack of 
comprehensive support programs hampers the ability to establish 
resilient closed-loop supply chains, which are essential for reducing 
environmental impacts and securing material supplies. Research 
emphasizes the need for robust support mechanisms, such as 
economic incentives and regulations, to drive the circular economy in 
the automotive sector, ensuring that recycling and reuse processes are 
both economically viable and environmentally sustainable (46). 
Additionally, the success of circular business models is contingent 
upon the alignment of supply chain stakeholders and the presence of 
adequate support programs to facilitate collaboration and innovation 
(8). Thus, addressing the support program deficiency is critical to 
advancing sustainable supply chains in the lithium-ion battery circular 
economy, particularly within the automotive industry.

Lastly, the Improper Waste Management Risk, with a definite 
weight of 0.137210383, is the third most critical. This risk 
emphasizes the importance of handling waste responsibly in 
lithium battery production. Improper waste management can lead 
to severe environmental contamination and can result in financial 
and reputational damage for companies. Although slightly lower in 
weight compared to the top two risks, its close proximity in value 
underscores its significance. The interconnected nature of these 
risks highlights the complex challenges in maintaining both 
environmental and operational sustainability in lithium battery 
production. Improper waste management poses a significant risk 
to the sustainable supply chain in the lithium-ion battery circular 
economy within the automotive industry. As electric vehicles (EVs) 
become more prevalent, the improper disposal of spent lithium-ion 
batteries threatens both environmental safety and the efficiency of 
recycling processes critical to the circular economy. Studies have 
shown that without proper waste management, significant amounts 
of valuable materials like lithium, cobalt, and nickel are lost, 
reducing the efficiency of recycling and increasing the demand for 
raw material extraction. This inefficiency disrupts the sustainability 
of supply chains, leading to higher costs and environmental 
degradation. For example, research highlights that improper waste 
management leads to increased emissions and resource 
inefficiencies, which could be  mitigated through improved 
recycling technologies and stricter regulatory frameworks (10). 
Moreover, the sustainability of the lithium-ion battery supply chain 
is heavily dependent on the adoption of circular economy practices, 
which require effective waste management to close the loop on 
material usage. Inefficiencies in current waste management 
practices, such as the lack of robust recycling infrastructure and 

inadequate policy enforcement, exacerbate the environmental risks 
associated with the end-of-life phase of lithium-ion batteries. 
Studies have called for the integration of advanced recycling 
techniques and the development of comprehensive waste 
management strategies to ensure the sustainability of the supply 
chain. These strategies are essential for reducing the environmental 
footprint of lithium-ion batteries and enhancing the resilience of 
the supply chain (45, 47). Effective waste management is therefore 
crucial not only for environmental protection but also for 
maintaining a sustainable and efficient lithium-ion battery supply 
chain in the automotive industry.

In the context of zero-sum game theory, the selection of optimal 
strategies often hinges on the careful consideration of lower and upper 
bounds, which represent the range of possible outcomes under risk. 
These bounds are crucial for decision-makers who must account for 
both the worst-case and best-case scenarios. Specifically, the lower 
bound indicates the minimum value that a strategy can yield, 
reflecting the worst possible outcome, while the upper bound 
represents the maximum value, highlighting the best possible outcome 
under optimal conditions. The strategy that best balances these 
bounds is typically considered the most robust, as it minimizes 
potential losses while maximizing potential gains. Comparative 
analysis of different strategies under this framework reveals that 
Strategy S3, with a lower bound of −0.6667 and an upper bound of 
−0.2222, emerges as the most optimal choice. This strategy 
outperforms others, particularly Strategies S4 and S6, which have 
lower bounds of −1.0000. The significantly lower bound of these 
strategies suggests a higher risk in worst-case scenarios, making them 
fewer desirable choices when the objective is to mitigate risk. The 
advantage of Strategy S3 lies in its ability to offer the least loss in the 
worst case while also having the potential to achieve relatively higher 
gains in the best case. This dual benefit underscores the importance of 
balance in strategic decision-making, particularly in uncertain 
environments where the outcomes can vary widely. In conclusion, 
Strategy S3’s balance between minimizing potential losses and 
maximizing potential gains makes it a robust and optimal choice in 
the context of zero-sum game theory. The academic consensus 
reinforces the importance of selecting strategies that offer stability in 
the face of risk, supporting the prudence of choosing Strategy S3 over 
less balanced alternatives.

6 Implications of the study

In order to effectively manage the risks identified in the sustainable 
supply chain of the circular economy of lithium-ion batteries in the 
automotive industry, some practical and managerial suggestions are 
presented. First, strengthening support programs and government 
policies through strict regulation and providing economic incentives 
for battery recycling and reuse can help reduce the risk of insufficient 
program support. Second, improving waste management through the 
development of advanced recycling infrastructure and the 
implementation of strict standards for the safe collection, transport, 
and disposal of batteries can reduce the risks associated with improper 
waste management. Also, creating extensive collaborations between 
different parts of the supply chain and encouraging the use of new 
recycling technologies can help reduce environmental impacts and 
increase the sustainability of the supply chain. Applying a 
comprehensive approach to managing these risks can lead to 
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improving resource efficiency, reducing costs, and reducing 
environmental pollution.

7 Conclusion

The importance of this research lies in its focus on optimizing 
decision-making in highly uncertain environments, such as those 
governed by zero-sum game theory, and its practical application to the 
sustainable supply chain of lithium-ion batteries in the automotive 
industry. As the demand for electric vehicles continues to rise, the 
efficient management of risks associated with battery production, 
recycling, and waste management becomes increasingly critical. This 
study not only advances theoretical understanding by identifying 
optimal strategies that balance potential losses and gains but also 
offers actionable insights that can help industry stakeholders navigate 
the complex challenges of sustainability. By addressing these issues, 
the research contributes to the development of more resilient and 
environmentally responsible supply chains, which are essential for the 
long-term success of the automotive industry and the broader 
transition to a sustainable, circular economy. The findings of this study 
highlight the importance of strategic decision-making in the context 
of zero-sum game theory, where the optimal strategy is determined by 
a careful balance between lower and upper bounds. Strategy S3, with 
its relatively higher lower bound of −0.6667 and upper bound of 
−0.2222, emerges as the most robust choice. This strategy not only 
minimizes potential losses in the worst-case scenario but also 
maximizes potential gains in the best-case scenario. The comparative 
analysis demonstrates that strategies with lower bounds, such as S4 
and S6, pose a higher risk in worst-case scenarios, making them less 
desirable for risk-averse decision-makers. The advantage of Strategy 
S3 lies in its ability to provide stability and potential gains, offering a 
balanced approach that is essential in uncertain environments. This 
study reinforces the significance of selecting strategies that balance 
risk and reward, particularly in scenarios where outcomes can 
vary widely.

The practical implications of this research are profound, especially 
in the sustainable supply chain management of lithium-ion batteries 
within the automotive industry. To mitigate the risks identified, it is 
essential to strengthen support programs and government policies, 
particularly through stringent regulations and economic incentives 
that promote battery recycling and reuse. Additionally, improving 
waste management practices by developing advanced recycling 
infrastructure and implementing strict standards for safe battery 
handling can significantly reduce environmental risks. Encouraging 
collaboration across the supply chain and adopting new recycling 
technologies are also crucial for enhancing sustainability. These 
managerial suggestions, grounded in the study’s findings, provide a 
comprehensive approach to managing risks, ultimately leading to more 
efficient resource use, cost reductions, and a reduction in environmental 
pollution. One of the significant limitations of this research is the 
scarcity of resources and expertise available in the context of developing 
countries, particularly regarding the sustainable supply chain 
management of lithium-ion batteries. In these regions, the lack of 
robust data and limited access to advanced recycling technologies pose 
challenges to the practical implementation of the study’s 
recommendations. Additionally, the shortage of skilled professionals 
and experts in sustainable practices further hinders the development 
and optimization of effective strategies. For future research, the 

application of hesitant fuzzy sets and interval-valued hesitant fuzzy sets 
is proposed within the game theory matrix to address the complexities 
of decision-making under uncertainty. These advanced fuzzy set 
approaches like Probabilistic Hesitant Fuzzy allow for a more nuanced 
representation of uncertainty and hesitation, which are inherent in 
real-world scenarios, particularly in contexts where precise data is 
scarce or decision-makers face conflicting information.
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