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Predicting the timing of phenological events is important in agriculture,

especially high-revenue products. A project sponsored by USDA-ARS had the

objective of adapting a previously developed model for estimating proportions

of insects in di�erent development stages as a function of temperature (degree)

and time (days) for predicting bloom in almond orchards. Data for the model

normally form a two-way table of counts, with rows corresponding to sample

percentages of di�erent development stages and columns to sampling times.

In this study, we report a technique developed to estimate sample sizes of

multinomial and product multinomial models using a method of moments and

determine the empirical coverage of sample size. This study aims to determine an

appropriate sample size for data collection. This involves establishing a sampling

distribution for the Pearson statistic, defined as the product of the sample

size and the deviance of empirical proportions from population proportions.

The intended outcome is to predict the optimal timing for harvesting crops at

desired development stages when coupled with the phenologymodel, for which

variability of themaximum likelihood estimates of the phenologymodel depends

on sample size.

KEYWORDS

chi-squared, maximum likelihood parameter estimation, method of moments, missing

counts, pooling, sparse datasets

1 Introduction

Prediction of the timing of developmental stages of plants and insects is important in

agricultural management. “Phenology,” or the timing of development stages, is a complex

process depending on many factors, such as weather and time [1]. For example, according

to the USDA, the 2018–2019 US wheat crop was projected at 1,821 million bushels, a 5%

increase from previous year [2]. Actual yields for an individual farmer depended on the

collective management actions taken by the farmer for pest control, pollination, and soil

fertility. Such actions can vary greatly in effectiveness depending on the development stage

of the crop and/or pest.

Dennis et al. [1] developed a model to predict proportions of insects in

different development stages as a function of accumulated degree-days (DD). The

data for the model are a two-way table of counts, with each row giving the

counts of different development stages recorded in a sample of insects taken at a

particular time. The model, known in the literature as the Dennis-Kemp model,
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specifies logistic functions for how the stage proportions change

through time [3]. The functions contain unknown parameters

requiring statistical estimation. The likelihood function is product

multinomial, each multinomial corresponding to one row of

the data table. Various statistical inferences for the model have

been presented [1, 4] based on standard asymptotic theory for

multinomial models [5]. Statistically, the model is a form of ordinal

data model with a time covariate [6, 7].

This study was motivated by a non-standard phenology

dataset that was collected by the California almond industry, Blue

Diamond Growers R© [8], which was retrieved from http://www.

bdingredients.com/category/almond-bloom-harvest-reports/. The

scheduling of placement of honeybees for pollination is of critical

importance in almond growth. The almond trees go through

different phenological stages during a growing season, and the

bees must be brought in at the onset of flowering for optimal

production. There was a USDA-ARS project implemented to adapt

the Dennis-Kemp phenology model for use by almond growers.

Phenology data on almond trees had been collected by the almond

growers for many years. However, the data proved to have a serious

shortcoming: the two-way tables contained percentages rather than

counts (each row adding to 100), and, to make things worse,

the sample sizes corresponding to the row percentages were not

recorded. The question arose: can the sample sizes be estimated?

Theoretically, there is information about sample sizes in percent-

only data. In a multinomial model, the magnitude of the departures

of empirical proportions from the modeled proportions – that is,

the variability in the data – depends on the sample size. It became

apparent from the literature that the estimation of sample size in

multinomial models with data on proportions but not counts had

not been studied.

“Estimation of sample size in multinomial models” has many

different meanings and contexts. Here, some of the questions

are outlined which have been previously addressed under that

broad banner. Some of the questions involve survey design, that

is, determination of how large a sample is needed to achieve

some inferential goal. Other questions involve the sample size

being unknown due to one or more missing counts, as in mark-

recapture models (in which the count of animals not trapped

is missing).

Eichenberger et al. [9] developed a model for sample

size determination in survey design for groups that might be

not detected by the sample. They formulated a technique for

determining the smallest sample size necessary to ensure that a

group is represented in the sample with probability of at least

1 − α. However, in the multinomial phenology models, the group

probabilities change through time.

Thompson [10] proposed a method of selecting the smallest

sample size n for a random sample from population with known

multinomial probabilities pj, j = 1, 2, . . . , r, such that the

probability will be at least 1 − α that all sampled proportions

p̃1, p̃2, . . . , p̃r will simultaneously be within specified distances

of true population probabilities. Chosen distances require some

previous knowledge about the population of interest. Although

Thompson’s model does not apply to a product multinomial, it

could be adapted for a particular sampling time of interest in a

phenology study.

Otis et al. [11] summarized and improved earlier work from the

1950s of population size estimation for mark-recapture in a closed

population model. In a population of size N, for q sampling times,

on each sampling occasion, an individual is either captured or not

captured. There are 2q possible capture histories, j = 1, 2, . . . , 2q.

For the number of individuals captured at ith sampling time yj, the

number of individuals not captured in the experiment is: n−
t−1
∑

i=1

yj.

The last count is missing from the data, posing an estimation

problem that is equivalent to having a missing sample size n. Mark-

recapture differs from the problem investigated here in that actual

counts are available in mark-recapture data (just not all of them).

This study proposes and evaluates a method to estimate

sample size n for a multinomial model when the percentages are

known but not the counts. Sample size estimation is accomplished

by the method of moments approach using the relationship of

multinomial counts with the chi-squared distribution. Confidence

intervals for n are developed as well. In Section 2, a simplified

version of the problem is studied, estimating the sample size n in a

multinomial model, when the probabilities, but not the counts, are

available. An estimate is developed and circumstances are described

for when the estimate will work well. In Section 3, the full problem

raised by the non-availability of counts in phenology data is tackled.

Specifically, the problem of inference for the phenology model by

Dennis et al. [1] is addressed, where the probabilities of observing

crops at specific developmental stages depend on temperature and

time. In Section 3, we propose rules for pooling sparse cells in

datasets when the described method in Section 2 fails. The data

from Blue Diamond Growers R© [8] serve to illustrate the concepts.

The nomenclature of parameters that we refer to in this study is

presented in Table 1.

2 Estimation of sample size with
known proportions

2.1 Purpose

This section describes a proposed method for estimating the

unknown sample count n for a multinomial model with r possible

outcomes, j = 1, 2, . . . , r, with known probabilities p1, p2, . . . , pr .

The count data y1, y2, . . . , yr along with n are assumed missing, but

data are present in the form of yj/n.

2.2 Chi-square

For a multinomial model with r possible outcomes, and

corresponding known probabilities p1, p2, . . . , pr , drawing samples

Y1 = y1,Y2 = y = 2, . . . ,Yr = yr , where n =
r
∑

j=1

yj, have

associated probability mass function:

P(Y1 = y1,Y2 = y2, . . . ,Yr = yr) =
(

n!

y1! y2! . . . yr!

)

p
y1
1 p

y2
2 . . . p

yr
r .

(1)
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TABLE 1 Parameter nomenclature.

Symbol Meaning

n Sample size

j Stage of development index

i Sampling time index

t Sampling time

p True proportions

p̃ Empirical proportions

p̂ Estimates of true proportions derived from D-K

model

y Counts

q Total number of sampling times

r Total number of stages of development

χ2 Pearson goodness-of-fit statistic

D2 Deviance statistic

k Degrees of freedom of chi-squared distribution

Ñ Moment estimate of n

N̂ Unbiased estimate of n

aj Amount of development needed in DD to undergo

stage j

v Variability of development rates within the

population

θ Vector of D-K model parameters

θ̂ Maximum likelihood estimates of θ

We denote empirical proportions sampled from this

distribution by p̃1, p̃2, . . . , p̃r .

The Pearson goodness-of-fit statistic for a multinomial with

known group probabilities p1, p2, . . . , pr can be written by factoring

n out, thereby expressing the statistic in terms of known

probabilities and empirical proportions (Equation 2):

χ2 = n

r
∑

j=1

(p̃j − pj)
2

pj
(2)

or:

χ2 = nD2. (3)

As n becomes large, the sampling distribution of the Pearson

statistic asymptotically approaches a chi-squared distribution with

k degrees of freedom, k = r − 1, and its variance asymptotically

approaches the chi-squared distribution variance of 2k.

2.3 Method of moments

Amethod of moments estimate of the unknown parameter n is

constructed by setting (χ2) equal to its expected value, the degrees

of freedom k. The moment estimate of n follows from algebraic

solution and is (E(χ2)) divided by the deviance statistic, seen in

Equation (4):

Ñ = k

D2
. (4)

The estimate increases as the deviance from chi-squared

distribution decreases. Thus, the variability of the empirical

proportions around the model proportions contains information

for estimating n. The Pearson statistic was chosen for the basis of

estimating n rather than the likelihood ratio statistic because the

Pearson statistic is known to have superior asymptotic properties,

such as for sparse tables [12]. For the purpose of evaluating the

sampling distribution of Ñ, we rewrite it as follows:

Ñ = nk

χ2
, (5)

where (χ2 ∼)chi-squared(k). A chi-squared random variable

divided by a constant has a gamma distribution, and Ñ is observed

to be the reciprocal of a gamma random variable. In particular,

Ñ = 1/Y where Y ∼gamma(k/2, nk/2). The moment estimate Ñ

is biased; the expected value of a reciprocal gamma provides a bias

correction. If V has a gamma distribution with shape parameter α

and rate parameter β (so that E(V) = α/β), then

E

(

1

V

)

= β

α − 1
, (6)

Thus from Equation (6), the expected value of the reciprocal of

Y is as follows:

E(Ñ) = n
k

k− 2
. (7)

An unbiased estimate of n thus becomes:

N̂ = Ñ
k− 2

k
. (8)

A 100(1 − γ )% confidence interval for n can be constructed

from the relationship of the estimate N̂ with a chi-squared

distribution. Given two chi-squared percentiles with PDF area 1−γ

between them, the equal tail percentiles is as follows:

P(χ2
1−γ /2 , χ2

γ /2) ≈ 1− γ , (9)

An approximate 100(1 − γ )% confidence interval for n is as

follows:

P(χ2
1−γ /2 , χ2

γ /2) =
(

χ2
1−γ /2N̂

k− 2
,
χ2

γ /2N̂

k− 2

)

. (10)

2.4 Convergence of chi-squared

We studied the size n needed for the confidence interval

coverage to hold true using iterative sampling from themultinomial

distribution. Per each value of n, we performed 104 times of

iterative sampling and counted the proportion of confidence

intervals that included n and compared that proportion with 1−γ .

Because the point and interval estimates of n were derived

from the chi-squared goodness-of-fit statistic, we might expect

the statistical properties of the estimates depend heavily on the
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TABLE 2 Estimates of sample size parameters and empirical coverage of

sample size from 104 times of iterative sampling.

True sample size n

10 50 90 130

Mean(Ñ) 15.33 80.61 148.26 213.11

V(Ñ) 181.28 9,205.88 34,260.96 90,523.85

Mean(N̂) 9.20 48.37 88.96 127.87

V(N̂) 65.26 3,314.12 12,333.95 32,588.59

Mean(χ2
stat) 5.00 5.04 5.00 5.03

V(χ2
stat) 9.54 9.74 9.65 10.08

N̂ empirical

coverage of 95% CI

93.81 95.48 95.31 95.10

Multinomial case.

adequacy of the chi-squared approximation. The conventional rules

for the chi-squared statistic to asymptotically converge are for the

expected counts ej = npj ≥ 5 for at least 80% of the cells and

ej ≥ 1 for all j [13]. Another common, more conservative, approach

is setting ej ≥ 5 for all j [14]. This leads to the conclusion that for

higher probabilities, smaller sample sizes are adequate.

2.5 Results

We derive point estimates of n and actual coverage of

100(1 − γ )% confidence interval for n using the method of

moments, which was described earlier. In this example, we use

true cell probabilities p1, p2, . . . , pr , r = 6, with values of p =
〈1/12, 2/12, 3/12, 2/12, 2/12, 2/12〉 as an example. We chose a

vector with low variability between cell probabilities to demonstrate

when the method of moments approach works well, where, in next

section, we build on technique to demonstrate method of moments

estimation on the sparse dataset.

The values of n were set to 10, 50, 90, and 130. For each value

of n, 104 empirical counts Y1 = y1,Y2 = y = 2, . . . ,Yr =
yr were drawn from a multinomial distribution (Equation 1).

For each of 104 empirical samples from the multinomial

distribution, we obtained empirical proportions p̃1, p̃2, . . . , p̃r . The

true probabilities and empirical proportions were then used to

calculate point estimates of n (biased and unbiased) and 95%

confidence intervals according to the Equation (10) and Table 2.

For each of the iterations, we determined if the tested n value fell

within the interval defined in the Equation (10). We report the

total number of times it did in the percentage, which is defined as

the N̂ empirical coverage of 95% CI. The chi-squared distribution

approximation for Pearson’s goodness-of-fit statistics is seen in

Table 2 and Figure 1.

The unbiased estimate N̂ converges quickly to the true value n

when p1, p2, . . . , pr are non-sparse. When n is 50, approximately

83.33% of npj ≥ 5, being at least 4, meets the requirements of

minimum expected counts stated in the literature [13, 14]. The

simulated biases of Ñ were considerable at 153.33%, 161.22%,

164.73%, and 163.93% of the n value for n of 10, 50, 90, and

130, respectively, close to nk/(k − 2) as stated in Equation (7)

for k = 5. The results of the mean value of (χ2) reciprocal

over 104 simulations are approximately 1/(k − 2), and variance

of approximately (2/[(k − 2)2(k − 4)]), the defined variance [15].

The asymptotic variance of Ñ is found from the reciprocal gamma

variance as follows:

V(Ñ) = n2k2V

(

1

χ2

)

= 2n2k2

(k− 2)2(k− 4)
. (11)

The variance of Ñ from the iterative sampling, sim =
n2k2V

(

1/χ2
stat

)

, became closer to the asymptotic variance, asym

from Equation (11) as n increased (|sim− asym|/asym) within

67.37%, 33.72%, 23.86%, and 3.58% of the asymptotic variance for

n = 10, n = 50, n = 90, and n = 130, respectively.

3 Dennis–Kemp model with same n
for each time interval

3.1 Purpose

This section implements on method for sample size n

estimation described above and applies Dennis–Kemp model [3]

for the implementation in forecasting plant development events

of Blue Diamond Growers R© Nonpareil almonds. We present a

method for the estimation of sample size; when probabilities of a

crop being at a certain development stage are a function of degree-

days, phenology dataset is recorded in percentages for each of r

development stages and q sampling times, as well as how to account

for sparseness of contingency tables due to low or zero expected

cell probabilities.

3.2 Blue diamond almond counts

The Blue Diamond Growers R© keep track of development in

almond orchards during each growing season for sampling times ti,

i = 1, 2, . . . , q in degree-days (DD) for r stages of tree development

between dormancy and full bloom [8]. A project was initiated under

the USDA Agricultural Research Service to develop a phenology

model for the almonds in order to forecast the best time (10%

bloom) to schedule honey bee placement for pollination. When the

data were made available to USDA-ARS, the investigators became

aware that the sampled proportions yij/ni for each ti, expressed as

percentages, were recorded, but neither yij nor the ni. Because the

sampling protocol appeared to be standard, it was assumed that the

sample size at each time ti stayed the same, i.e., ni = n.

3.3 Model description

We describe how the amount of development needed in DD to

undergo stage j, j = 1, 2, . . . , r is derived from the maximization of

the log-likelihood function of the Dennis–Kemp (D-K) model [1]

as follows:
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FIGURE 1

Sorted distances of Pearson’s chi-squared statistic for varying n sample sizes (10, 50, 90, and 130) over 104 times of iterative sampling plotted against

the quantiles of (χ2
r−1) distribution. Multinomial case.

pij = 1/

[

1+ exp

(

−
aj − ti√

νti

)]

, for j = 1,

pij = 1/

[

1+ exp

(

−
aj − ti√

νti

)]

− 1/

[

1+ exp

(

−
aj−1 − ti√

νti

)]

, for j = 2, ..., r − 1,

pij = 1− 1/

[

1+ exp

(

−
aj−1 − ti√

νti

)]

, for j = r.

(12)

aj represents the amount of development in DD needed to

undergo stage j and ν is the variability of development

rates within the population. The quantity aj can be

interpreted as the DD value at which half of the population

is at stage j or an earlier stage. The model assumes the

underlying development level of an organism to be a

continuous mean-increasing stochastic process, with the

organism entering a discernible stage j after attaining

development level.

The log-likelihood for the Dennis–Kemp model can be

expressed as a sum multinomial, noting that the first term is a

constant (Equation 13):

ℓ(θ) =
q
∑

i=1

(

n

yi1yi2 . . . yir

)

+ n

q
∑

i=1

r
∑

j=1

p̃ijlog(pij), (13)

θ=〈a1, a2, . . . , ar−1, ν〉. Here the log-likelihood is written under the

assumption of the same sample size for each sampling time. Sample

sizes n are not needed for maximization of θ .

The log-likelihood is maximized when the double sum

is maximized. We derived the log ML parameter estimates

θ̂=〈â1, â2, . . . , âr−1, ν̂〉 as described elsewhere [1] from the dataset

(Figure 2 right). The data with q=18 sampling times originally

consisted of r=7 development stages; Dormant, Green Tip, Pink

Bud, Popcorn, Bloom, Petal Fall, Jacket. For all of the recorded

sampling times, the dataset proportion was 0 for development

stage j=1, corresponding to Dormant. The Dormant stage was

excluded from the dataset, reducing the total number of stages of

development to r=6.

The estimates of expected proportions, p̂i1, p̂i2, . . . , p̂ir , i =
1, 2, . . . , q, were derived from the Dennis–Kemp model

from Equation (12) with log ML estimates θ̂ , where θ̂ =
〈695.593861, 769.75409, 816.23861, 919.06448, 952.97393, 1.08606〉.
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The (log) ML estimation makes it possible for the descriptive

quality of the model to be evaluated for the collected (almond)

dataset using the goodness-of-fit test. An estimate of the expected

value for the collected dataset counts is np̂ij. The comparison of the

fitted estimates of expected proportions as a function of DD from

the Dennis–Kemp model against the observed proportions along

with the two-way table with row percentages of Blue Diamond

Growers R© Nonpareil almonds is shown in Figure 2.

3.4 Variability of maximum likelihood
estimates depends on n

We derive the 100(1 − γ )% Wald confidence interval for θ ,

of which the variance of the ML estimates depends on n. For

sufficiently large samples, ML estimates θ̂ follow a multivariate

normal distribution with mean vector θ and variance-covariance

matrix [13], seen in Equation (14):

V(θ) = I(θ)−1, (14)

where I(θ) is the Fisher information matrix for ℓ(θ), seen in

Equation (15):

I(θ) = n

q
∑

i=1

r
∑

j=1

1

pij

∂pij

∂θk

∂pij

∂θl
. (15)

The variance-covariance matrix V(θ) can be estimated with

Hessian matrix J(θ̂) with r × r dimension for r parameters. The

100(1 − γ )% Wald confidence interval for θj is seen in Equation

(16):

θ̂j ± zγ /2

√

v̂jj , (16)

where v̂jj is the j
th element on the main diagonal of V̂(θ).

In Supplementary Table S1, we compare the variability of

empirical ML estimates from empirical data sampled with different

n values. In Section 3.5, we demonstrate the importance of the

method of moments approach and its relation to Pearson goodness

of fit statistic in the assessment of adequate n value forML estimates

from the D-K model, whereas in Section 3.6, we introduce the

pooling method of sparse cells of p̂.

3.5 Estimation of n from method of
moments

The sample size needed for confidence intervals of the Dennis–

Kemp model ML is estimated with method of moments and its

relation to Pearson goodness-of-fit statistic. From (χ2 = nD2)

(Equation 3), with a different (D2) than in previous section:

χ2 = n

q
∑

i=1

r
∑

j=1

(p̃ij − pij)
2

pij
, (17)

where pij is estimated as p̂ij from the Dennis–Kemp model. From

(χ2 ∼)chi-squared(k):

k = q(r − 1) (18)

which reflects the q sampling times, and the empirical proportions

p̃ij are sampled from a product multinomial.

As derived in previous section in Equation (5), the moment

estimate Ñ is biased, and N̂ in Equation (8) is the new unbiased

estimate of n, with k = q(r−1). However, for themodel with same r

number of parameters, as the number of sampling times q increases,

the bias of moment estimate Ñ decreases. For example, for r = 6,

with a multinomial k = r−1 (equivalent to k = q(r−1) for q = 1),

the expected value is 66.67%, which is too high, where with q = 18

sampling times, the sample size is overestimated only by 2.27%.

The 100(1 − γ )% confidence interval for n with equal tail

percentiles (P(χ2
1−γ /2 , χ2

γ /2) ≈ 1 − γ ) Equation (9) remains

(P(χ2
1−γ /2 , χ

2
γ /2) = (χ2

1−γ /2N̂/(k−2), χ2
γ /2N̂/(k−2))), as defined

in Equation (10).

3.6 Convergence and low expected counts

The data contain zeroes for some of the development stages

per ti, and we propose a pooling technique. The convergence rule

for a chi-squared statistic for product multinomial is same for a

multinomial case; npij ≥1 for all j and npij ≥5 for at least 80% of

the cells or more rigorous npij ≥5 for all j for each ti separately.

For our model with sparse data commonly observed in phenology,

we allow npij <1, otherwise pooling of cells per ti would yield less

than two cells per ti. This is under the assumption that multinomial

distributions for different times are assumed to be independent.

Figure 3 illustrates the method.

The estimated multinomial probabilities p̂i1, p̂i2, . . . , p̂ir per ti,

i = 1, 2, . . . , q are found by maximization of vector θ , which have

their lower bound set to equal to no less than a chosen constant

(10−6). This allows for sampling of potentially non-zero empirical

proportions p̃i1, p̃i2, . . . , p̃ir for t1, t2, . . . , tq. Sampled p̃ij, for which

a probability of random draw from multinomial distribution is

set to the minimum value, will depend on that arbitrarily chosen

lowest acceptable probability, leading to an extremely low value

of that p̃ij. A few low or zero counts can strongly bias sample

size estimation. Pooling low expected probabilities p̂i1, p̂i2, . . . , p̂ir
together as a single stage [13] can be an alternative.

In the pooling case, instead of (χ2) holding q(r − 1) degrees of

freedom, each row of counts per ti will contribute ri − 1 degrees of

freedom, with ri being not necessarily the same for i = 1, 2, . . . , q.

Summation of ri − 1 over q sampling times yields new degrees of

freedom k, which is distributed with (χ2
k
):

k =
q
∑

i=1

ri − q. (19)

The D2 represented as a double sum in Equation (17) can be

rewritten as Equation (20):

D2 =
r1
∑

j=1

(p̃ij − pij)
2

pij
+

r2
∑

j=1

(p̃ij − pij)
2

pij
+ · · · +

rq
∑

j=1

(p̃ij − pij)
2

pij

(20)

Empirical sample size is derived by setting (E(χ2)) to its

expected degrees of freedom divided by the deviance statistic
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FIGURE 2

Line plots of estimates of expected proportions from the D-K model p̂ij in stages 1-6 as a function of temperature and time (Degree-Days). Colored

circles correspond to proportions from the collected data, expressed in percentages (left). Contingency table showing the sparseness of collected

proportions (right).

FIGURE 3

Proposed method of pooling of sparse p̂ to assess adequate sample size.
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(Equation 21).

Ñ =
( q
∑

i=1

ri − q

)

/D2. (21)

The expected value of Ñ is defined by Equation (7) but with

degrees of freedom from Equation (19). For the reciprocal of Ñ Y ,

Y ∼ Ŵ(α, cβ) with

c = nk (22)

and

α = k/2 , (23)

(Equations 22, 23) the estimate of sample size n is corrected for bias

and set to a new estimate N̂ (Equation 24).

N̂ =
( q
∑

i=1

ri − q− 2

)

/D2. (24)

3.7 Results

Following are the results of sample size estimation method

with and without pooling the cells with low expected probabilities

from the Dennis–Kempmodel. The almond dataset consisted of 18

sampling times ti, i = 1, 2, . . . , q, i.e., q = 18. The starting sample

sizes were set to 50, 150, 250, and 500 before pooling and 50, 250,

750, and 1,000 with pooling. The parameters Ñ, N̂, and Pearson

(χ2) and the coverages of N̂ were estimated from (104) times of

iterative sampling.

For the first case, the sample size estimation technique was

evaluated for the unpooled model where the cell count per time

point was kept constant at six for r = 6 stages of development of

almond. The observed empirical proportions were sampled from a

product multinomial. The Pearson (χ2) for 104 times of iterative

sampling was set to degrees of freedom k from Equation (18), with

q = 18 and r = 6. The empirical coverages and variances of

sample sizes derived from the method of moments are compared

with the empirical coverages and variances of maximum likelihood

estimates derived from the phenology model.

The second case involved pooling cells in the table with

expected probabilities p̂ij so that each row that corresponded to

specified ti could potentially have different number of cells ri.

Following the cell pooling recommendations [13, 14], cells with

p̂ij <0.0035 were combined with adjacent p̂ij cells, except for last

three sampling times, i = 16, i = 17, and i = 18, where cells

were pooled with adjacent cell p̂i5 = 0.003488668 for i = 16,

p̂i5 = 0.0017957 for i = 17, and p̂i5 = 0.0009966204 for i = 18,

respectively, so the table of pooled expected probabilities had at

least two cells per sampling time ti.

Sorted distances of Pearson’s chi-squared statistic from 104

times of iterative sampling were plotted against the quantiles of chi-

squared distribution, χ2
q(r−1)

for first case (Table 3, Figure 4) and

after pooling χ2
k
, k =

q
∑

i=1

ri − q, k = 51 for second case (Table 4,

Figure 5).

TABLE 3 Estimates of parameters and empirical coverage of sample size

from 104 times of iterative sampling.

True sample size n

50 150 250 500

Mean(Ñ) 73.03 197.06 312.37 595.24

V(Ñ) 758.76 4,832.83 11,036.75 35,686.84

Mean(N̂) 71.41 192.68 305.43 582.01

V(N̂) 725.41 4,620.43 10,551.68 34,118.38

Mean(χ2
stat) 90.14 89.61 90.90 89.46

V(χ2
stat) 9.54 9.74 9.65 10.08

N̂ empirical

coverage of 95% CI

33.13 41.18 48.50 56.78

Product multinomial case: before pooling.

For n = 50, n = 150, n = 250, and n = 500 before pooling

case, simulated biases of Ñ were considerable at 146.06%, 131.37%,

124.95%, and 119.05% of the n value, respectively, very slowly

converging to nk/(k−2) (102.27% for k = 90), as stated in Equation

(7). From the relationship of expected value of Ñ from Equation

(11), the simulated variance of Ñ was within 1,147.71%, 783.01%,

625.96%, and 486.84% of the asymptotic variance for n = 50,

n = 150, n = 250, and n = 500, respectively. The unbiased

estimate N̂ converges slowly to n, and the N̂ empirical coverage of

95% CI is low (Table 3).

After pooling the sparse cells, the sample size estimation n

improved. For n = 50, n = 250, n = 750, and n =
1, 000, the simulated biases of Ñ were considerable at 106.14%,

104.5%, 104.53%, and 104.02% of the n value, respectively (expected

104.08% for k = 51). For the same corresponding values of n,

the simulated variance of Ñ was within 49.92%, 8.11%, 4.05%,

and 2.10%, respectively of the asymptotic variance. The unbiased

estimate N̂ converged quickly to n, and the N̂ empirical coverage of

95% CI was close to expected 95% (Table 4).

3.8 Discussion

In this study, we utilized the estimated sample size to construct

confidence intervals of the population parameters using method of

moments and pooling sparse data to estimate the sample size that

converges to true coverage. The intended outcome is data sampling

with adequate sample size to determine empirical estimates of

population proportions. The goal is to predict the optimal timing

to harvest crops at desired development stages when coupled with

the phenology model.

We pooled our data such that np̂ij ≥ 1 for all pooled cells,

i.e., n = 286, when p̂ij ≥ 0.0035, except for last three out of

eighteen rows to allow for two cells in these rows. We showed that

the variability of the ML estimates depends on the sample size,

but the maximum-likelihood method is not adequate to assess the

sample size through the convergence of empirical coverage of θ̂ . We

showed that without pooling case, the empirical variance of sample

size was over 400% of the asymptotic variance and that the coverage

of sample size was low, even at n = 500. For the pooling case, we

observed a dramatic drop from 49.92% at n = 50 to below 10% in
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FIGURE 4

Sorted distances of Pearson’s chi-squared statistic for varying n sample sizes (50, 150, 250, and 500) over 104 times of iterative sampling plotted

against the quantiles of χ2
k distribution, k = q(r − 1). Product multinomial before pooling case.

TABLE 4 Estimates of parameters and empirical coverage of sample size

from 104 times of iterative sampling.

True sample size n

50 250 750 1,000

Mean(Ñ) 53.07 261.25 783.98 1,040.17

V(Ñ) 172.78 3,114.69 26,980.26 47,067.29

Mean(N̂) 50.98 251.00 753.24 999.38

V(N̂) 159.50 2,875.19 24,905.66 43,448.12

Mean(χ2
stat) 51.07 50.98 50.84 51.08

V(χ2
stat) 168.58 114.09 104.71 105.63

N̂ empirical

coverage of 95% CI

88.95 94.04 94.66 94.64

Product multinomial case: after pooling.

the empirical variance of sample size when n reached 250 and below

5% in the empirical variance of sample size when n reached 750.

It is recommended that the rule for pooling is not violated more

than the tested limit. The proposedmethod is an improvement over

the existing technique [16] that does not allow exceptions to the

pooling. It is also more relevant than the method proposed by Otis

et al. [11] for mark-recapture in closed populations.

The developed model is an extension from the Dennis–Kemp

model [1], in which the maximization of parameter estimates does

not depend on the sample size but their variability does. The

expected proportions of almond data are a function of temperature

and time, and the implementation of developed sample size

estimation with previously developed models can be applied to

future phenology data.

The rationale for choosing 104 as the number of iterations

in our analysis was to optimize the high computational time

associated with the likelihood maximization and the statistical

assessment of empirical data. In the future, we will perform a more

robust analysis with a larger number of iterations, during which we

will explore the performance of the method with other confidence

intervals, in addition to the Wald interval, including the Wilson

score interval.

For Blue Diamond Growers R© almond data, an assumption of

our technique proposed in this study is that constant sample size

over sampling time individual multinomials for each ti is assumed
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FIGURE 5

Sorted distances of Pearson’s chi-squared statistic for varying n sample sizes (50, 250, 750, and 1,000) over 104 times of iterative sampling plotted

against the quantiles of χ2
k distribution, k =

q
∑

i=1

ri − q. Product multinomial after pooling case.

to be independent [13]. Future expansion of this technique is to

incorporate a non-product multinomial technique to account for

time dependency and allow for variable sample sizes per ti. A

thorough knowledge of the studied population is needed for the

assumption to be deemed feasible.
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