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This study delves into the dynamics of Zika virus transmission by employing a

mathematical model to explain virus spread with fractional order derivatives. The

population is divided into two groups: the human group and the ticks group

to accurately explain the transmission routes of the virus. The objective of this

research is to protect susceptible individuals from infection and curb the spread

of this endemic disease. To achieve this, we have included two control measures:

the first is a sensibilization program, and the second is treatment. We investigate

the use of optimal control strategies and fractional derivative techniques under

the Caputo method to reduce the number of exposed and infected individuals.

By employing the Pontryaginmaximum principle to analyze and characterize the

optimal controls, the proposed method is further validated through numerical

simulations. The outcome of this study highlights the importance of containing

the rate of dynamic dissemination in preventing the Zika epidemic.
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1 Introduction

Zika virus infection is a disease caused by a viral infection that spreads primarily

through the bites of infected mosquitoes. While some person may not experience any

noticeable symptoms, others may develop fever, rash, joint pain, or conjunctivitis (known

as pink eye). The consequences of Zika virus infection can be particularly devastating for

pregnant women, as it can lead to severe birth defects such as microcephaly, where a baby

is born with an abnormally small head, as well as eye abnormalities. Apart from mosquito

bites, the virus can also be transmitted through sexual contact, blood transfusion, and from

a pregnant woman to her fetus before or during birth.1 Although symptoms, if any, are

generally mild, healthcare professionals often consider a person’s symptoms and recent

history to suspect Zika virus infection. Vis–vis to confirm the diagnosis, blood or urine

tests are usually performed.2

1 https://www.who.int/news-room/fact-sheets/detail/zika-virus?gclid=Cj0KCQjwuLShBhC_

ARIsAFod4fKV2P6U3A_KwDudnmZawXdqhB7fwGDuSd412P5HnQHhJKP9_dh_gP8aAsMPEALw_wcB

2 https://www.who.int/westernpacific/health-topics/zika-virus-disease
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Zika virus infection can be effectively prevented by taking

certain precautions. First, it is important to avoid mosquito bites

completely. Although there is currently no specific treatment for

Zika virus infection, there are measures that can help relieve

symptoms.3 Adequate rest, drinking plenty of fluids, and using

acetaminophen can help reduce fever and relieve pain. Zika virus

spreads in a similar way to other arthropod-borne viruses such as

dengue, yellow fever, and chikungunya. It is transmitted primarily

by certain types of mosquitoes called Aedes mosquitoes, which

lay their eggs in areas with stagnant water. These mosquitoes are

particularly active during the day, both indoors and in shaded areas

outdoors [1].

The Zika virus was first identified in the Zika Forest of Uganda

in 1947. It remained relatively unknown until 2007 when significant

outbreaks began occurring in the South Pacific islands. The

situation escalated in May 2015 when cases of local transmission

were reported in South America, followed by Central America

and the Caribbean. Eventually, the virus reached Mexico in late

November 2015. Local transmission refers to the transmission of

the virus through mosquito bites in areas where people live or

work, rather than contracting it during their travels. During the

initial week of infection, the Zika virus can be detected in the

bloodstream. When an infected person is bitten by a mosquito,

the mosquito ingests the virus by feeding on the infected blood.

The virus then multiplies within the mosquito’s body, allowing it

to transmit the virus to another person when it bites again after a

few days. Consequently, individuals who have traveled to regions

with a high prevalence of Zika virus infection may carry the virus

in their bloodstream upon returning home, potentially leading to

local transmission of the Zika virus [2].

Zika virus can be spread through various means, including

sexual contact, mother-to-child transmission, blood transfusion

or organ transplantation, and accidental exposure in laboratories.

Understanding these modes of transmission is essential for

implementing effective preventive measures against Zika virus [3].

To prevent Zika virus infection, it is important to take

precautions and use acetaminophen to treat fever and relieve pain.

Zika virus is spread by Aedes mosquitoes, similar to dengue,

yellow fever, and chikungunya. These mosquitoes are most active

during the day, especially a few hours after sunrise and before

sunset. They can also sting at night. Zika virus was first identified

in the Zika Forest, Uganda, in 1947, but gained more attention

after a large outbreak in the South Pacific islands in 2007. It

subsequently spread to South America, Central America, and the

Pacific Rim, Caribbean, and Mexico. Local transmission occurs

when infected mosquitoes bite people in their living or work areas.

While cases have been reported in certain parts of the United States,

as of December 2019, no new cases of local transmission have

been recorded. However, Zika virus infections have been reported

among travelers returning from affected countries. The Centers for

Disease Control and Prevention (CDC) permanent diagnosis for

travelers is essential [4–7].

The Zika virus has received significant attention because of

its potential impact on public health. While many individuals

infected with Zika virus do not experience any symptoms,

3 https://www.who.int/news-room/feature-stories/detail/the-history-

of-zika-virus

others may develop a range of mild symptoms such as fever,

conjunctivitis, joint and muscle pain, headache, and rash. In rare

cases, the virus has been linked to the Guillain-Barr syndrome,

a neurological disorder characterized by muscle weakness and

sensory abnormalities. One of the most troubling aspects of Zika

virus infection is its potential to cause serious complications in

pregnant women and their unborn babies. In addition, children

infected with the virus before birth may face various developmental

challenges, including delayed speech and motor skills, intellectual

disabilities, seizures, and movement difficulties [8, 9].

A number of contributions have been published in related

topics. Tesla et al. [10] studied temperature drives Zika virus

transmission: evidence from empirical and mathematical models.

Agusto et al. [11] considered a mathematical model for Zika virus

dynamics with sexual transmission route. Khan et al. [9] studied a

dynamical model of asymptomatic carrier Zika virus with optimal

control strategies. By replacing the ordinary normal equation with

a fractional derivative equation, the fractional derivatives approach

achieves an important goal of controlling the fact that the system

dynamics are affected by memory. Ahmed et al. [12] studied

equilibrium points, stability, and numerical solutions of fractional-

order predator–prey and rabies models. Zeb et al. [13] studied the

optimal campaign strategies in fractional-order smoking dynamics.

Sardar et al. [14] proposed a mathematical model of dengue

transmission with memory. Kouidere et al. [15] studied the analysis

and optimal control of a mathematical modeling of the spread of

African swine fever virus with a case study of South Korea and cost-

effectiveness. Raza et al. studied and proposed the number model in

Zika virus and the epedmic model related in it [16–20]. And papers

related it [21–33].

Considering the above, they did not take into account the ability

of the memory to contain the spreading of the Zika virus, as well as

the transmission of the Zika virusmodel to the fractional derivative.

Among the models used for epidemic analysis of Zika virus,

the majority was formulated using ODE’s, while others were

based on fractional calculus. Recall that the fractional calculus is

applied in different directions of physics, mathematical biology,

fluidmechanics, electrochemistry, signal processing, viscoelasticity,

finance, and many others. Fractional derivatives were used in

the literature to monitor the effect of memory on the system

dynamics by replacing the normal derivative arrangement with a

fractional derivative arrangement. In epidemicmodeling, fractional

derivatives and fractional integrals are important aspects, because

the effect of memory plays an important role in the spread of the

disease. The presence of memory effects on past events will affect

the spread of the disease in the future so that the disease can be

controlled in the future, and the distance of the memory effect

indicates the date of the disease spread. Thus, the effects of memory

on the spread of infectious diseases can be verified using fractional

derivatives. The fractional calculus adds an extra dimension in

the study of dynamics of epidemiological models, especially for

COVID-19 pandemic. Therefore, the fractional version of many

epidemic models has been investigated as in Ahmed et al. [12] and

Khan and Atangana [34].

This article is organized using the following methodology:

in the first section, we present some basic characteristics and

definitions of the integral and fractional derivatives. Because of its

applicability to the initial conditions of differential equations, we
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will apply Caputo’s definition to fractional order differentiation. In

Section 2, we describe the problem of optimal command on the

basis of the suggested model, and we also characterize the terms

of optimal command by utilizing the principle of Pontryagin’s

maximum. In Section 4, we performed some computational

simulations. Finally, in Section 5, the article is terminated.

2 Methods

2.1 Mathematical model

A mathematical model SPEPIPRPSMIM is considered, which

represents the spread of the Zika virus through a population. As

a result, we divided the N population into six compartments: To

begin, the people susceptible SP, the people exposed EP, the people

infected IP, the people recovered RP, the ticks susceptible SM , and

the ticks infected IM .

In Figure 1, the considered model is graphically represented.

As a result, we present the fractional optimal command

mathematical model of the Zika virus, which is governed by the

system of differential equations shown below Equation 1:



































DαSP(t) = ξP − µPSP(t)− β1
SP(t)EP(t)

N − β2
SP(t)IP(t)

N − β3
SP(t)IT (t)

N

DαEP(t) = β1
SP(t)EP(t)

N + β2
SP(t)IP(t)

N + β3
SP(t)IT (t)

N − (µP + α)EP(t)
DαIP(t) = αEP(t)− (µP + σ + δ)IP(t)
DαRP(t) = σ IP(t)− µPRP(t)

DαST (t) = ξT − µMST (t)− β4
ST (t)IT (t)

N

DαIT (t) = β3
ST (t)IT (t)

N − µMIT (t)

(1)

where SP(0) ≥ 0, EP(0) ≥ 0, IP(0) ≥ 0, RP(0) ≥ 0, ST(0) ≥ 0 and

IT(0) ≥ 0 are the initial state.

With

- ξP : recruitment rate of people susceptible.

- ξT : ratio of susceptible Zika being recruited.

- µP : death ratio in the population from natural causes.

- µT : death ratio in Zika due to natural causes.

- β1: infection ratio among people through contact with

exposed people.

- β2: contamination ratio among people through contact with

infected individuals.

- β3: infection ratio among people through contact with infected

Zika.

- β4: infection rate among Zika through contact with infected

individuals.

- α: the ratio of exposed becoming infected with the virus.

- σ : the ratio of infected become recovered from the virus.

- δ: death ratio caused by complications.

3 Optimal command problem with
fractional derivation

3.1 Application of optimal command

Our strategy for managing the Zika virus focuses on reducing

its spread among the population. The aims is to minimize both the

number of individuals exposed to the virus and the number of those

who become infected. To accomplish this, we developed a program

that employs two distinct controls, denoted as w1(t) and w2(t),

for a time period of tinlbrack [0,T]. The control w1(t) represents

an awareness campaign launched at a specific time t, whereas the

control w2(t) represents treatment options available at the same

time t.























































DαSP(t) = ξP − µPSP(t)− β1(1− w1(t))
SP(t)EP(t)

N −

β2(1− w1(t))
SP(t)IP(t)

N − β3(1− w1(t))
SP(t)IT (t)

N

DαEP(t) = β1(1− w1(t))
SP(t)EP(t)

N +

β2(1− w1(t))
SP(t)IP(t)

N + β3(1− w1(t))
SP(t)IT (t)

N − (µP + α)EP(t)

DαIP(t) = αEP(t)− σ (1− w2(t))IP − (µP + δ)IP(t)

DαRP(t) = σ (1− w2(t))IP(t)− µPRP(t)

DαST(t) = ξT − µTST(t)− β3
ST (t)IT (t)

N

DαIT(t) = β3
ST (t)IT (t)

N − µT IT(t)

(2)

with SP(0) ≥ 0, EP(0) ≥ 0, IP(0) ≥ 0, RP(0) ≥ 0, ST(0) ≥ 0 and

IT(0) ≥ 0 are the initial state (Equation 3).

J(w1,w2) =

T
∫

0

[

EP(t)+ IP(t)+
A

2
w2
1(t)+

B

2
w2
2(t)

]

dt (3)

In this equation, we assign relative weights to the cost of

implementing the awareness program and treatment controls using

parameters A and B, where A and B are positive numbers. These

weights assist us in determining the relative significance of the

controls w1(t) and w2(t) at a given time t. To capture the non-

linear interactions that arise from high levels of implementation,

we use a quadratic cost function for the controls. This cost function

includes the financial resources required for the treatment and

implementation of an awareness campaign. The final time period

in the implementation of the controls is represented by T.

To put it differently, we aim to find the optimal controls w∗
1 and

w∗
2 that would minimize the cost function and meet the objectives

of controlling the spread of the Zika virus.

To put it another way, we want to find the optimal controls

w∗
1 and w∗

2 that minimize the cost function (Equation 4), while also

controlling the spread of the Zika virus.

J(w∗
1 ,w

∗
2) = min

(w1 ,w2)∈U
J(w1,w2) (4)

Where U is the set of admissible commands defined by U =

{(w1,w2)/0 ≤ w1min ≤ w1i(t) ≤ w1max ≤ 1, 0 ≤ w2min ≤ w2i(t) ≤

w2max ≤ 1, / t ∈ [0,T]}.

The primary objective in FOCPs is to determine the optimal

command pair (w1,w2) by minimizing the objective function:

J(w1,w2) =

T
∫

0

[

EP(t)+ IP(t)+
A

2
w2
1(t)+

B

2
w2
2(t)

]

dt (5)

Subject to the constraint

DαSP(t) = f1(SP,EP, IP,RP, ST , IT ,w1,w2)

DαEP(t) = f2(SP,EP, IP,RP, ST , IT ,w1,w2)

DαIP(t) = f3(SP,EP, IP,RP, ST , IT ,w1,w2)
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FIGURE 1

Figure population compartments model.

DαRP(t) = f4(SP,EP, IP,RP, ST , IT ,w1,w2)

DαST(t) = f4(SP,EP, IP,RP, ST , IT ,w1,w2)

DαIT(t) = f5(SP,EP, IP,RP, ST , IT ,w1,w2)

The following expression defines a modified objective function

(Equation 6):

̂ (w1,w2) =
T
∫

0

[

H∗(SP,EP, IP,RP, ST , IT ,w1,w2, t)
]

dt −
T
∫

0
[

6
∑

i=1
ξi (t) fi(SP,EP, IP,RP, ST , IT ,w1,w2, t)

]

dt (6)

where H(SP,EP, IP,RP, ST , IT ,w1,w2, t)

H(SP,EP, IP,RP, ST , IT ,w1,w2, t) = EP(t)+ IP(t)+

A
2 w

2
1(t)+

B
2w

2
2(t)+

6
∑

i=1
ξi (t) fi(SP,EP, IP,RP, ST , IT ,w1,w2, t)(7)

From Equations (5, 7), we can derive the following

DαSP(t) = − ∂H∗(t)
∂ξ1

(t) DαEP(t) = − ∂H∗(t)
∂ξ2

(t)

DαIP(t) = − ∂H∗(t)
∂ξ3

(t) DαRP(t) = − ∂H∗(t)
∂ξ4

(t)

DαST(t) = − ∂H∗(t)
∂ξ5

(t) DαIT(t) = − ∂H∗(t)
∂ξ6

(t)

(8)

With the transversality conditions at time T :

ξ1(T) = 0, ξ2(T) = 0, ξ3(T) = 0, ξ4(T) = 0, ξ5(T) = 0

and ξ6(T) = 0 (9)

Equations (8, 9) outline the required conditions for the

previously defined FOCP in terms of a Hamiltonian.

These conditions generate a series of fractional differential

equations defined by the state variables SP,EP, IP,RP, ST , IT and

commands w1,w2, and solving for the Lagrange multiplier

ξi can be accomplished through analytical, numerical, or a

blended approach.

3.2 Characterization of optimal command

The Pontryagain’s principle [35] to solve the optimal

commands problem is given below. This method converted this

into a problem of minimizing a Hamiltonian H(t) at time t

(Equation 10), which is defined by

H(SP,EP, IP,RP, ST , IT ,w1,w2, t) = EP(t)+ IP(t)+
A
2 w

2
1(t)+

B
2w

2
2(t)+

6
∑

i=1
ξi (t) fi(SP,EP, IP,RP, ST , IT ,w1,w2, t) (10)

That fi is the right side of the differential equation of the i
th state

variable of the system at time t.

Theorem 1. The optimals commands (w∗
1 ,w

∗
2) and the solutions

S∗P, E
∗
P, I

∗
P , R

∗
P, S

∗
T and I∗T of the corresponding co-state system

(Equation 2) are given, the adjoint variables ξ1(t), λ2(t), ξ3(t), ξ4(t),

ξ5(t), and ξ6(t) satisfying:

Dαξ1(t) = −ξ1(t)
[

−µP − β1(1− w1(t))
EP(t)
N −

β2
IP(t)
N − β3

IT (t)
N

]

− ξ2(t)
(

β1(1− w1(t))
EP(t)
N − β2

IP(t)
N − β3

IT (t)
N

)

Dαξ2(t) = −ξ1(t)
[

−β1(1− w1(t))
SP(t)
N

]

−

ξ2(t)
[

β1(1− w1(t))
SP(t)
N − ( µP + α)

]

−ξ3(t)α + ξ4(t)β3
ST (t)
N − ξ5(t)β3

ST (t)
N

Dαξ3(t) = −ξ1(t)
[

−β2(1− w1(t))
SP(t)
N

]

−

ξ2(t)
[

β2(1− w1(t))
SP(t)
N − ( µP + α

]

)

−ξ3(t)
[

(µP − (1− w2(t))σ )− ξ4(t)((1− w2(t))σ )
]

Dαξ4(t) = ξ4(t)µP
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Dαξ5(t) = ξ5(t)(µM IT(t)+ β4
EP(t)

N
)− ξ6(t)(β4

IT(t)

N
)

Dαξ6(t) = ξ1(t)(β3
SP(t)

N
)−

ξ2(t)(β3
SP(t)

N
)+ ξ5(t)(ST(t)+ β4

EP(t)

N
)− ξ6(t)(µM +

β4
ST(t)

N
)

We find the transversality conditions at time T: ξ1(T) =

0, λ2(T) = −1, ξ3(T) = −1, ξ4(T) = 0; ξ5(T) = 0 and ξ6(T) = 0.

Furthermore, for t ∈ [0,T], the optimal controls w∗
1 and w

∗
2 are

given by

w∗
1 = min

(

w1max, max
(

w1min,
(λ1(t)−ξ2(t))

A ×

β1
S∗P(t)E

∗
P(t)

N + β2
S∗P(t)I

∗
P(t)

N + β3
S∗P(t)I

∗
T (t)

N

))

(11)

w∗
2 = min

(

w2max, max

(

w2min,
λ3(t)− ξ4(t))

B
× I∗P(t)

))

(12)

Proof. Here, we applied the Pontryagain’s principle [35] to solve

the optimal command problem given below.

So, we defined the Hamiltonian H by Equation 13:

H∗(t) = EP(T)+ IP(T)+
A

2
w2
1(t)+

B

2
w2
2(t)

+ξ1(t)

[

ξP − µPSP(t)− β1(1− w1(t))
SP(t)EP(t)

N
−

β2(1− w1(t))
SP(t)IP(t)

N
− β3(1− w1(t))

SP(t)IT(t)

N

]

+ξ2(t)

[

β1(1− w1(t))
SP(t)EP(t)

N
+

β2(1− w1(t))
SP(t)IP(t)

N
+ β3(1− w1(t))

SP(t)IT(t)

N
−

(µP + α)EP(t)
]

+ξ3(t)
[

αEP(t)− σ (1− w2(t))IP − (µP + δ)IP(t)
]

+ξ4(t)
[

σ (1− w2(t))IP(t)−

µPRP(t)
]

+ξ5(t)

[

ξT − µTST(t)− β3
ST(t)IT(t)

N

]

+ξ6(t)

[

β3
ST(t)IT(t)

N
− µTIT(t)

]

(13)

For t ∈ [0,T], the adjoint equations and transversality

conditions can be obtained by using the Pontryagin’s maximum

principle [35–38] such that

Dαξ1(t) = −
∂H(t)

∂SP(t)
= −ξ1(t)

[

−µP − β1(1− w1(t))
EP(t)

N
−

β2
IP(t)

N
− β3

IT(t)

N

]

−ξ2(t)

(

β1(1− w1(t))
EP(t)

N
−

β2
IP(t)

N
− β3

IT(t)

N

)

Dαξ2(t) = −
∂H(t)

∂EP(t)
= −ξ1(t)

[

−β1(1− w1(t))
SP(t)

N

]

−

ξ2(t)

[

β1(1− w1(t))
SP(t)

N
− ( µP + α)

]

−ξ3(t)α + ξ4(t)β3
ST(t)

N
− ξ5(t)β3

ST(t)

N

Dαξ3(t) = −
∂H(t)

∂IP(t)
= −ξ1(t)

[

−β2(1− w1(t))
SP(t)

N

]

−

ξ2(t)

[

β2(1− w1(t))
SP(t)

N
− ( µP + α

]

)

−ξ3(t)
[

(µP − (1− w2(t))σ )− ξ4(t)((1− w2(t))σ )
]

Dαξ4(t) = −
∂H(t)

∂RP(t)
= ξ4(t)µP

Dαξ5(t) = −
∂H(t)

∂ST(t)
= ξ5(t)(µM IT(t)+β4

EP(t)

N
)− ξ6(t)(β4

IT(t)

N
)

Dαξ6(t) = − ∂H(t)
∂IT (t)

= ξ1(t)(β3
SP(t)
N )−

ξ2(t)(β3
SP(t)
N )+ ξ5(t)(ST(t)+ β4

EP(t)
N )− ξ6(t)(µM + β4

ST (t)
N )

With the transversality conditions at time T: ξ1(T) =

0, λ2(T) = −1, ξ3(T) = −1, ξ4(T) = 0; ξ5(T) = 0 and ξ6(T) = 0.

For, t ∈ [0,T] the optimal commands w1 and w2 can be solved

from the optimality condition

−
∂H(t)

∂w1(t)
= 0 ⇒ −Aw1(t)− (ξ2(t)− ξ1(t))β1

S∗P(t)E
∗
P(t)

N
)+

β2
S∗P(t)I

∗
P(t)

N
)+ β3

S∗P(t)I
∗
T(t)

N
= 0

−
∂H(t)

∂w2(t)
= 0 ⇒ −Bw2(t)− (ξ4(t)− ξ3(t))IP(t) = 0

We have

w1(t) =
(ξ1(t)−ξ2(t))

A × β1
SP(t)EP(t)

N )+ β2
SP(t)IP(t)

N )+

β3
SP(t)IT (t)

N

w2(t) =
λ3(t)− ξ4(t))

B
× IP(t)

By the bounds in U of the commands, it is easy to obtain w∗
1

andw∗
2 , which are given by Equations (11, 12) in the form of system

(Equation 8).

4 Discussion

This section delves into the outcomes obtained through the

numerical resolution of the optimality system. In our problem

of control, the state variables have initial conditions and the

adjoint conditions have terminal conditions. In other words, the

optimality system is a boundary problem with two points and

distinct boundary conditions for the time steps i = t0 and
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FIGURE 2

The evolution of the number of exposed and infected people without control.

TABLE 1 The values of the parameters used in the numerical simulation.

Parameter Description Value in d−1

ξP The rate at which susceptible people are recruited 0.02

3M The rate at which susceptible Zika are recruited 0.2

µP The mortality rate due to natural causes among people 0.1

µT The mortality rate due to natural causes among Zika 0.8

β1 The ratio of infection transmission among individuals through contact with exposed individuals 0.4

β2 The ratio of infection transmission among individuals through contact with infected individuals 0.2

β3 The ratio of infection transmission among individuals through contact with the infected Zika 0.1

β4 The ratio of Zika become infected with the virus by contact with the infected Zika 0.1

α The ratio of exposed becoming infected with the virus 0.2

σ The ratio of people infected become recovered from the virus 0.2

δ The ratio of death resulting from complications 0.3

i = tf . The optimality problem is resolved iteratively, in which

the state system is progressed forward and the adjoint system is

progressed backward. We initially estimate the controls during the

first iteration and subsequently update them using characterization

before the next iteration commences. We proceed until we reach

the convergence of the successive iterations. An optimality program

is compiled and written in MATLAB according to the data below.

As the control and state functions have different magnitudes,

the weight constant is set to the following values: A = 100 and

B = 100.

4.1 Scenario without control

In this scenario, we use any control.

Based on Figure 2 and the parameter values in Table 1, we noted

an increase in the number of exposed and infected people with

the Zika virus, which leads to an increase in the number of deaths

due to the lack of any strategy to contain the disease and prevent

its spread.

4.2 Scenario 1: awareness program:
education

In this scenario, we use only the optimal control w1(t).

The number of people exposed to and infected with the

Zika virus has decreased, as shown in Figure 2. Due to the

implementation of the strategy, sensitization campaigns will be

conducted for people who are likely to be infected. Moreover,

due to the risks of mixing with people infected with the virus,

this biological strategy aims to prevent the spread of the disease.

The number of people exposed without control ranges from 150

(alpha = 0.3) to 3.03105 (alpha = 0.6) and from 150 (alpha = 0.4)

to 3.42106 (alpha = 0.4) with control. The number of people

infected without treatment ranges from 50∗ (alpha = 0.6) to
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FIGURE 3

The evolution of the number of exposed and infected people without and with control w1(t).

FIGURE 4

The evolution of the number of infected pigs and ticks susceptible to infection with and without controls w2(t).
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9.06, 104 (alpha = 0.3) with treatment, and from 50 (alpha = 0.4)

to 8.14, 104 (alpha = 0.4) without treatment.

On the other hand, the fractional derivatives have a significant

influence on the description of memory effects in dynamic systems.

Memory’s effects diminish as alpha approaches 1. Furthermore, in

ordinary differential equations, the derivative order fractional alpha

acts as a time delay. Figure 3 shows that the memory effect of the

system increases when the order of the derivative alpha is equal to 1,

and as a result, the number of infected people decreases over time.

4.3 Scenario 2: education and treatment

In this scenario, we use only the optimal control w2(t).

In Figure 4, we notice an important decrease in the number

of people infected with a virus, that after 150 days, the number

of exposed without control is 150 (α = 0.3) to 1.85.106 (α =

0.6) and 150 (α = 0.4) to 2.61.106 (α = 0.4) with control. The

number of infected without control is 50 (α = 0.6) to 4.32.104

(α = 0.3) and 50 (α = 0.4) to 6, 04.104 (α = 0.4) with control.

After applying this strategy of treatment as a vaccine and other

treatments and quarantines, which will have important results in

limiting the spread of the virus, the results were positive.

5 Conclusion

Our study has successfully employed fractal derivatives

to establish a theoretical and computational analysis for

a mathematical model of Zika transmission through a

population. The model is a fractional mathematical model

called SPEPIPRPSTIT , and it depicts the spread of the Zika

virus throughout the population, which contained two controls.

Our study has effectively integrated two control measures, an

awareness program and a treatment, into the mathematical model

of Zika transmission.

We have also conducted a thorough investigation of the

optimal control strategy, which aims to minimize the spread

of the virus by reducing the number of exposed and infected

individuals. Utilizing the principles of control theory, we were able

to derive the characterization of optimal control. The numerical

simulations of our results have confirmed the effectiveness of the

proposed containment strategies. Our research has conclusively

shown that controlling the rate of dynamic dissemination is critical

in containing the Zika epidemic.
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