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This paper focusses on the nonlinear fractional Kadomtsev–Petviashvili (FKP) 
equation in space–time, employing the conformable fractional derivative (CFD) 
approach. The main objective of this paper is to examine the application of the 
(G’/G)-expansion method in order to find analytical solutions to the FKP equation. 
The (G’/G)-expansion method is a powerful tool for constructing traveling 
wave solutions of nonlinear evolution equations. However, its application to 
the FKP equation remains relatively unexplored. By employing traveling wave 
transformation, the FKP equation was transformed into an ordinary differential 
equation (ODE) to acquire exact wave solutions. A range of exact analytical 
solutions for the FKP equation is obtained. Graphical illustrations are included to 
elucidate the physical characteristics of the acquired solutions. To demonstrate 
the impact of the fractional operator on results, the acquired solutions are 
exhibited for different values of the fractional order 𝛼, with a comparison to their 
corresponding exact solutions when taking the conventional scenario where 
𝛼 equals 1. The results indicate that the (G’/G)-expansion method serves as an 
efficient method and dependable in solving the nonlinear FKP equation.
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1 Introduction

Nonlinear partial differential equation (NPDEs) play a crucial role in characterizing an 
array of phenomena across diverse fields. For example, in the field of physics, numerous issues 
such as fluid mechanics, nonlinear dynamics, plasma physics, and wave motions can 
be described through NPDEs. Furthermore, NPDE applications span across various fields such 
as engineering, mechanics, and chemistry; as mentioned in Dodd et  al. (1). Gaining a 
comprehensive understanding of these nonlinear phenomena can be achieved by finding exact 
solutions for NPDEs. As a result, several approaches have been developed to accurately solve 
NPDEs using precise numerical techniques, such as the Backlund transformation and the 
Homotopy perturbation method, and others (2–7). Moreover, numerous potent techniques 
have been recently developed, such as the (G′/G)-expansion method and others (8–12).
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Kadomtsev and Petviashvili (13) introduced a nonlinear equation 
as an extension of the well-known Kortewe de-Vries (KdV) equation. 
The mathematical representation of the Kadomtsev and Petviashvili 
(KP) equation is

 
U aUU bU Ut x xxx x yy� �� � � �� 0,

 
(1)

where a  and b  are constant, the function U x y t, ,� �  represents 
spatial directions x  and y , along with time t , and γ  is a constant 
scalar which can be either ±1. Based on Eq. (1), when a b= =1 , the 
space–time fractional Kadomtsev–Petviashvili (FKP) equation is 
given as follows:

 
D U D U U D U D U D Utx x x x y
�� � �� ���� ���� � � � �2 0.

 
(2)

This paper focusses on finding exact wave solutions of Eq. (2) by 
employing the conformable fractional derivative (CFD). The CFD, 
initially introduced by Khalil et al. (14), is a revolutionary step in the 
realm of fractional calculus, with the derivative showcasing essential 
qualities that have broad implications across a myriad of disciplines, 
including but not limited to the domains of mathematics, engineering, 
and physics. Within Eq. (2), we denote the CFD in reference to time 

t� �  and space x� �  using Dt
α  and Dx

α , accordingly. Moreover, 
we define higher-order operations such as D U D D Ux x x

�� � �� � �  for 
the second-order and D U D Dx x x

���� � ���� � �  for the fourth-order 
CFDs. The use of CFD within soliton theory is primarily advantageous 
due to its capacity for effectively characterizing soliton wave behaviors 
and providing profound physical insights. With these merits in mind, 
this paper applies the (G’/G)-expansion method to derive traveling 
wave solutions for Eq. (2) setting � �1 . The paper builds upon 
existing scholarly interest in fractional dimensions as observed in the 
FKP equation and supported by literature references (15, 16), among 
references therein.

The (G’/G)-expansion method, presented by Wang et al. (9), is 
widely used to construct traveling wave solutions of different 
NPDEs. However, its application to the FKP equation remains 
relatively unexplored. Consequently, the novelty of this research 
lies in the application of the (G’/G)-expansion method to the FKP 
equation as this method has not been widely applied to this 
particular equation. Numerous studies have previously utilized this 
method in the examination of different NPDEs to extract traveling 
wave solutions, as illustrated in references (17–22). Recognizing 
the limitations of current solution methods for the FKP equation, 
the motivation of this paper is to harness the power of the (G’/G)-
expansion method to unearth analytical solutions. This not only 
promises to expand the repository of exact solutions available for 
the FKP equation but also stands to offer deeper insights into the 
complex behaviors of fractional-order nonlinear systems. The main 
objective of this paper is to study the use of (G’/G)-expansion 
method in order to find analytical solutions to the FKP equation 
and to explore the implications of these solutions for understanding 
the behavior of nonlinear systems. By utilizing traveling wave 
transformation, the FKP equation was transformed into an 
ordinary differential equation (ODE), leading to discover more 
comprehensive exact analytical solutions. Consequently, a more 
comprehensive range of exact analytical solutions for the FKP 

equation was obtained. Graphical illustrations are included to 
elucidate the physical characteristics of the acquired solutions. To 
demonstrate the impact of the fractional operator on results, the 
acquired solutions are exhibited for different values of the 
fractional order 𝛼, with a comparison to their corresponding exact 
solutions when taking the conventional scenario where 𝛼 equals 1. 
The structure of this article is as follows: Section 2 covers the 
conformable fractional derivative. In section 3, the (G’/G)-
expansion method is described in detail. In section 4, solutions for 
the space–time FKP equation are presented. Section 5 showcases 
graphical representations to illustrate the physical characteristics 
of the derived solutions. Finally, the paper concludes with section 6.

2 Materials and methods

This section introduces the fundamental review of the CFD, G’/G-
expansion method and its application.

2.1 Conformable fractional derivative

In this subsection, we  present a concise discussion of the 
fundamental properties of CFD, following the monographs authored 
by Khalil et al. (14). We define the conformable derivative of order α, 
where 0 < α ≤ 1, with respect to the independent variable x  as

 

D U x
U x x U x

x U D
t

�
�

�

� �

�

�
�

� � �
�� � � � �

� �� � � � �
�

�

� �

lim ,

, , , lim

0

1

0
0 0 1 0 UU x� �.

 
(3)

This well-formed fractional derivative is obtained by adhering to 
certain essential properties. Let us consider the derivative order 
��� ��0 1, , and suppose that for all positive values of x , U  and V  
represent α -differentiable functions with a  and b  as constants. 
Using Eq. (3), we obtain the following properties:

 • D x x� � � �� �� �� , .
 • D a� � 0.

 • D U x x dU
dx

� �� � � �1 .

 • D aU bV aD U bD V� � ��� � � � .

 • D UV UD V VD U� � �� � � � .

 • D U
V

VD U UD V
V

�
� ��

�
�

�
�
� �

�
2 .

 • D U V x dU
dV

D V x x dU
dV

dV
dx

� � �� �� �� � � � � � �1 .

These properties have been well proven and share many properties 
with integer derivatives (14, 23). It is noted that the conformable 
differential operator complies with several fundamental principles 
analogous to those of the chain rule, Taylor series expansion, and 
Laplace transformation (24). In this paper, the FKP equation is 
translated into an ODE within the context of CFD.
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2.2 Description of the (G’/G)-expansion 
method

In what follow, we  highlight the key steps of the G’/G-
expansion method:

Step 1: We assume that the nonlinear fractional partial differential 
equation including x y,  and t  as follows:

 
P U D U D U D U D U D D U D U D Ut x y t t x x y, , , , , , ,� � � �� � � �� ��� � �� � � 0,

 
(4)

where U x y t, ,� �  is the result of this equation.
Step  2: Solutions of Eq. (4) are obtained by considering the 

following traveling wave transformation

 
U x y t u x y t, , , ,� � � � � � � �� � �, .

 
(5)

By substituting Eq. (5) into Eq. (4), the ODE is obtained 
as follows:

 
P u u u u, , , ,� �� ���� � � 0,

 
(6)

where the superscript is expressed as the derivative concerning ξ .
Step 3: Solutions of Eq. (6) are represented as

 
u i m

m
i

i
� �� � � �

�
�

�
�
�
�

��� G
G

,
 

(7)

where ρi  remains constant, m  designates a positive integer 
whose value will be determined and the function G G� � ��  fulfills a 
second order ODE in the form

 �� �� � �G G G� � 0,  (8)

where λ and µ are constants. Depending on the sign of 
� �2 4�� � , Eq. (6) has a family of solutions as:

Family 1: For  � �2 4 0� � ,
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(9)

Case 1: when A B� �0 0, , in Eq. (9), we get
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1
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2

tanh .
 

(10)

Case 2: when A B� �0 0, , we have
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�
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G
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�2
24
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coth .
 

(11)

Family 2: For  � �2 4 0� � ,
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(12)

Case 1: when A B� �0 0, , in Eq. (12), we obtain

 

�� �
� �

�
�

��
�
�

�
�
� �

G
G

�
�

� �
� ��

�2
24

2
1
2

4
2

cot .
 

(13)

Case 2: when A B� �0 0, , we have

 

�� �
� �

� �
�

��
�
�

�
�
� �

G
G

�
�

� �
� ��

�2
24

2
1
2
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tan .

 
(14)

Family 3: For  � �2 4 0� � ,

Case 1: when A B= =1 1, , we get

 

�� �
� �

�
�

�
G
G

�
� �

�1
1 2

.
 

(15)

2.3 Application

In this subsection, the G’/G-expansion method is utilized to 
derive wave solutions for Eq. (2) when � �1 . This case transforms 
Eq. (2) as follows:

 
D U D U U D U D U D Utx x x x y
�� � �� ���� ��� � � � �2 0.

 
(16)

Now, consider the following traveling wave transformation

 
U x y t u x y ct, , , .� � � � � � � �� �� �

�
�� � �1

 
(17)

Taking Eq. (17) into Eq. (16), Eq. (16) converts to an ODE, and 
integrating the resultant equation twice, we get
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� 2 21

2
0�� � � � ���c u u u ,

 
(18)

where σ  and c  are constants. By equating the nonlinear term u2  
to the highest derivative ′′u , we  determine that m = 2 . Thus, 
Eq. (7) becomes

 
u G

G
G
G
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0 1 2
��
�
�
2
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(19)

Substituting Eq. (19) into Eq. (18), we obtain
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(20)

where  � �� �2 c.

Substituting Eq. (8) into Eq. (20) and methodically collecting all 
terms by corresponding powers of G’/G, we establish a coherent set of 
algebraic equations through the equating of each term’s coefficient to 
zero within Eq. (20). These algebraic equations are then resolved 
utilizing the computational capabilities of Maple to obtain the following

Set 1: 
� � � � �

� � � � �

� � � � �
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�

�
��

�
�
�� �

1

16

1

2
0

0 12
3

64
0

0

1 2 2
2

1

, , ,

, , , .

 

 

 

(21)

Set 2: 
� � � � �

� � � � �

� � � �
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�

�
��

�
�
�� �

1

16
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0 12
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0

0
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1

, , ,

, , , .

 

 

(22)

Set 3: 
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0 0
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.
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Set 4: 
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(24)

Set 5: 
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� � � � �
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4
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Set 6:

  

� � � � � � � �
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Set 7: � � � �
� � � �

� � � �
� � � �

�
�
�� �

0 2

0 0 0 0

0

1 2 2 1

,

, , , .  
(27)

We finally get the exact solutions of Eq. (16), where the solutions 
are derived according to the following:

Family 1:
In case 1, substituting Eq. (21) into Eq. (10) yields
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In case 1, substituting Eq. (26) into Eq. (10) introduces
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In case 2, substituting Eq. (23) into Eq. (11) gives
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Family 2:
In case 1, substituting Eq. (22) into Eq. (13) gives

 

U x y t c c x y ct4
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In case 1, substituting Eq. (25) into Eq. (13) yields
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In case 2, substituting Eq. (24) into Eq. (14) presents
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Family 3:
In this case, substituting Eq. (27) into Eq. (15) provides
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(34)

3 Graphical representations of the 
obtained solutions

In what follow, we delineate three-dimensional (3D) graphical 
depictions which portray the acquired solutions at assorted space and 
time intervals, with different values of the fractional order parameter 𝛼.

The 3D graphs in Figure 1 depicts the nonlinear soliton solutions 
of U x y t1 , ,� �  characterized by parameters c y� � �1 2 2, ,� and 
within the range 0 10≤ ≤x t,  as per Eq. (28), elucidating the dynamics 
of non-linear wave propagation. The depiction embraces the exact 
solutions of U x y t1 , ,� �  for fractional orders � � �� � �1 0 98 0 96, . , .
and � � 0 94. , offering kink soliton solutions with absolute values 
delineated in Figures  1A–D accordingly. It is noteworthy within 
Figure 1 that an increase in the value of α  is inversely related to the 
magnitude of U x y t1 , ,� � . For comprehensiveness, it is paramount to 
articulate that same behavior are exhibited by nonlinear waves within 
solutions U x y t U x y t4 6, , , ,� � � �,  and U x y t7 , ,� � , as witnessed in their 
respective 3D representations akin to those 
demonstrated for U x y t1 , ,� �.

In exploring the dynamic features of nonlinear wave propagation 
as delineated in Eq. (30) and Figure 2 illustrates the 3D graphical 
depictions of the wave solutions for U x y t3 , ,� � , constructed under 
parameters set at c � � �1 2 1, ,� �  and y = 2  over a domain where 
0 10≤ ≤x t, . Noteworthy within these illustrations is the depiction of 
solitary wave solutions at different α  values—specifically 
� � �� � �1 0 98 0 96, . , . and � � 0 94.  corresponding individually to 

FIGURE 1

3D graph of solutions ( ), , 1, 2, 2 0 , 10.1U x y t for c y with x tσ= = = ≤ ≤ .
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Figure 2A–D. A clear pattern that emerges from Figure 2 is the direct 
relationship between α  values and the resultant wavelength; an 
increment in α  is associated with an increase in the wavelength. 
Concurrently, a diminutive trend in amplitude is noted as α  decreases 
from 1 to 0.94.

Figure 3 displays the 3D graphical representations of the solution 
U x y t5 , ,� � , under specified conditions: c � � �1 2 1, ,� � and y = 2
. The value range for both x  and t  is restricted between 0 and 10. The 
values of α  are set at 1, 0.98, 0.96, and 0.94 for Figures  3A–D, 
respectively. These graphs are crucial in illustrating the kink soliton 
solutions that arise from the nonlinear wave dynamics as governed by 
Eq. (32). Notably, a diminution in the value of α  correlates with the 
propagation of the wavefront toward higher values on the x -axis.

4 Conclusion

In this paper, the (G’/G)-expansion method has been 
efficiently utilized to obtain analytical solutions for the fractional 
Kadomtsev–Petviashvili (FKP) equation involving the 
conformable fractional derivative (CFD). A range of exact 
analytical solutions for the FKP equation has been obtained. To 
demonstrate the impact of the fractional operator on results, the 
acquired solutions are exhibited for different values of the 
fractional order 𝛼, with a comparison to their corresponding 
exact solutions when taking the conventional scenario where 𝛼 
equals 1. This has been done to discern the impact of varying 

fractional-orders 𝛼 to delineate how variations in 𝛼 influence the 
properties of the solutions. The physical characteristics of the 
acquired solutions have been illustrated through various 
graphical representations. The results of this paper demonstrates 
the potency, simplicity, and efficacy of the (G’/G)-expansion 
approach. This method holds potential for tackling numerous 
challenges across diverse disciplines. Ultimately, the derived 
results can hold significant value for computational and 
experimental investigations in wave studies. All calculations 
within this study were conducted using MAPLE. Further research 
could be undertaken to study the numerical solutions of the FKP 
equation as well as analytical solutions of the stochastic 
FKP equation.
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FIGURE 2
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