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The aging process is a complex and multifaceted phenomenon affecting 
all living organisms. It involves a gradual deterioration of tissue and cellular 
function, leading to a higher risk of developing various age-related diseases 
(ARDs), including cancer, neurodegenerative, and cardiovascular diseases. The 
gene regulatory networks (GRNs) and their respective niches are crucial in 
determining the aging rate. Unveiling these GRNs holds promise for developing 
novel therapies and diagnostic tools to enhance healthspan and longevity. This 
review examines GRN modeling approaches in aging, encompassing differential 
equations, Boolean/fuzzy logic decision trees, Bayesian networks, mutual 
information, and regression clustering. These approaches provide nuanced 
insights into the intricate gene-protein interactions in aging, unveiling potential 
therapeutic targets and ARD biomarkers. Nevertheless, outstanding challenges 
persist, demanding more comprehensive datasets and advanced algorithms 
to comprehend and predict GRN behavior accurately. Despite these hurdles, 
identifying GRNs associated with aging bears immense potential and is poised 
to transform our comprehension of human health and aging. This review aspires 
to stimulate further research in aging, fostering the innovation of computational 
approaches for promoting healthspan and longevity.
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1 Introduction

Aging is a natural process that leads to a gradual decline in an individual’s physiological 
function and reserve, diminishing their ability to survive and reproduce as they age. Its 
universal occurrence is a significant risk factor for developing several chronic diseases like 
cancer and cardiovascular or neurodegenerative diseases, ultimately leading to death bearing 
considerable individual and societal consequences and representing a growing global socio-
economic burden. Consequently, substantial resources are dedicated to enhancing health span, 
focusing on the years an individual lives without chronic and debilitating diseases, in contrast 
to lifespan, which measures the total years from birth to death (1, 2).

The quest to understand aging and identify molecular and cellular mechanisms 
promoting health span traces back to the pioneering work of Benjamin Gompertz (3). 
Throughout history, reductionist science played a pivotal role in unraveling aging 
mechanisms, life span control, and age-related diseases. Notably, using Caenorhabditis 
elegans as a model organism, single-gene perturbation approaches yielded pivotal insights 
in aging research. The insulin-like signaling (ILS) pathway and germline signals, two major 
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pathways, regulate lifespan across worms, flies, and mammals, with 
the transcription factor DAF-16/FOXO linking both. However, 
hundreds of other genes also contribute to longevity, complexifying 
the aging process (4–11).

López-Otín et al. (12, 13) condensed the intricate aging process 
and its underlying mechanisms into twelve hallmarks, offering a 
comprehensive framework to capture the essence of aging and 
comprehend its complexity. These interconnected hallmarks, 
including genomic instability, telomere attrition, epigenetic alterations, 
loss of proteostasis, disabled macroautophagy, deregulated nutrient-
sensing, mitochondrial dysfunction, cellular senescence, stem cell 
exhaustion, altered intercellular communication, chronic 
inflammation, and dysbiosis, contribute to the aging process, each 
representing a complex and multifaceted process influenced by 
various factors. Understanding these hallmarks is pivotal for 
developing interventions that delay aging and mitigate 
age-related diseases.

The complex nature of aging necessitates using in silico systems 
approaches that can offer a comprehensive framework to understand 
the fundamental principles governing gene regulatory interactions in 
aging organisms and predict aging genes. Various methods, such as 
Boolean networks, regression methods, correlation networks, 
functional networks, mutual information, ordinary and partial 
differential equation models, and neural networks, have been 
developed for depicting gene regulatory networks (GRNs), each 
tailored to specific input data and scientific questions.

Biological clocks, primarily utilizing epigenetic markers, 
accurately estimate biological age, providing more precise mortality 
risk estimation than chronological age. Contemporary techniques 
increasingly consider dynamic, nonlinear molecular interactions and 
leverage comprehensive published datasets. GRNs can benefit 
significantly from approaches involving higher orders of gene 
regulation, considering temporal changes in each molecular regulatory 
layer when integrating multi-OMICS datasets. Examples of these 
approaches, including studies by Schwanhäusser et al. (14), La Manno 
et al. (15), Hoffmann et al. (16), and Badia-i-Mompel et al. (17) have 
made substantial contributions to the study of gene regulatory 
networks, providing valuable insights into the molecular mechanisms 
underlying gene regulation.

2 Mathematical models describing 
aging

The modeling of aging and age-related processes spans a wide 
array of methodologies applicable across various scales, from 
organismal to molecular levels (2, 8, 18–20). At the organismal 
scale, methodologies hinge on the foundational principles of 
molecular biology to deduce macroscopic properties. Conversely, 
molecular scale approaches operate on a data-driven basis, utilizing 
paradigms like Boolean logic, regression methods, information 
theory, neural networks, ordinary differential equations (ODEs), 
and partial differential equations (PDEs). It is crucial to emphasize 
that selecting an appropriate approach relies on the specific 
requirements of the study and the availability of resources. 
Therefore, a comprehensive understanding of the underlying 
principles becomes imperative when choosing and implementing 
these methodologies.

2.1 Macroscopic scale models

Santiago et  al. (2) offer an extensive review elucidating how 
asymmetry in cellular division shapes replicative aging in yeast, 
fostering a population with heightened robustness to fitness 
challenges. Complementing this, Kogan et  al. (21) introduce a 
mathematical model grounded in the topological properties of the 
genomic network within an individual, considering factors like 
network size (number of genes) and connectivity (average number of 
target genes per protein). Aligned with the Gompertz law, which 
posits an exponential increase in mortality with age across multiple 
species, this model implies that interventions targeting network 
stability prove more efficacious in extending lifespan than those aimed 
at reducing molecular stresses. This insight might explain the presence 
of long-lived organisms boasting extended health spans compared to 
closely related species.

From another perspective, Galvis et al. (22) developed a model to 
explore the replicative exhaustion of fibroblasts intricately linked to 
cellular senescence. This model gauges cellular age/senescence based 
on the number of DNA replication cycles each cell undergoes. 
Throughout simulations, cells face growth arrest or apoptosis, 
becoming senescent after reaching 50 population doublings. 
Optimizing model parameters with experimental data, Galvis et al. 
capture the temporal activity of five senescence biomarkers 
(senescence-associated β-galactosidase, Ki-67 decrease, γH2AX, 
TUNEL, and population doublings). This underscores that population 
dynamics can be approximated using a relatively simple set of rules, 
shedding light on the mechanisms underpinning the cellular 
aging process.

2.2 Boolean models

Boolean networks serve as a structural framework for describing 
GRNs, where each gene is a node with active or inactive states, and 
edges represent causal relationships. A gene’s state hinges on its 
regulators, combined through Boolean functions incorporating OR, 
AND, or NOT operators. Figures 1A,B depict a Boolean network 
example and its associated equation, representing an architecture 
known as latch. The target gene T is regulated by a regulator R through 
an interaction modulated by gene M activity. A transcriptomic 
trajectory resulting from this GRN configuration is shown in 
Figure 1C.

Choo et al. (23) leveraged a Boolean network model to pinpoint 
the minimal set of genes in the MAPK pathway that can cease cancer 
cell proliferation. Schwab et al. (24, 25) evaluated the stability of aging 
signaling pathways using a Boolean network approach, assessing 
perturbations through mean normalized Hamming distances and 
reconstructing Boolean network ensembles from single-cell data, 
offering insights into the dynamics of aging in human hematopoietic 
stem cells. With the assumption that cells from the same patient are in 
equilibrium, i.e., that one cell can assume the transcriptional state 
exhibited by another in the same sample, they built pseudo-time 
trajectories for each patient. These trajectories were used to infer the 
regulators for each gene using Boolean functions. Since more than one 
function can lead to the same pseudo-time trajectory, they built a set 
of 1,000 networks per patient with distinct combinations of possible 
regulatory functions for each gene. They assessed the network’s 
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stability by changing a gene’s state for each network and quantifying 
how many genes display a distinct Boolean state in the next time point 
compared to the unperturbed dynamic. Overall, the networks 
generated from hematopoietic stem cell data from young patients 
displayed a smaller discrepancy between perturbed and unperturbed 
dynamics than those generated from aged individuals.

Fuzzy logic extends Boolean networks by introducing more than 
two categories, like ‘low,’ ‘medium,’ and ‘high’ (26, 27). Gene 
expression levels map to these states through a ‘membership function’ 
and regulatory interactions, executed by fuzzy logic operators (OR, 
AND, or NOT), output states with intermediary values for each 
category. The equation represented in Figure  1D demonstrates a 
Fuzzy logic extension for the Boolean operators shown in 
Figure 1A. By defining the membership for functions as portrayed in 
Figure 1E, we still observe how gene M influences target T dynamics, 
given the regulator R levels in Figure 1F. The obtained values are 
converted to one definite state using the inverse of the membership 
function to evaluate predictions. Aldridge et  al. (28) manually 
constructed a fuzzy network to model colon cancer response to 

membrane receptors, yielding less deviation from validation data than 
a discrete model with equivalent links. Poblete et al. (29) employed a 
neural network to optimize parameters for a model with fuzzy 
membership functions describing gene regulation. Fuzzy networks 
offer enhanced flexibility and realism in modeling GRNs compared 
to Boolean networks.

In summary, Boolean and fuzzy networks prove potent for 
modeling GRNs, identifying gene sets to impede aging and ARDs, and 
deciphering intricate regulatory interactions. However, their suitability 
is limited to reduced-sized networks, and addressing the exponential 
growth of states with increasing nodes is essential. Moreover, 
designing specific solutions for categorizing continuous molecule 
concentrations into discrete bins is crucial for each application.

2.3 Regression-based models

Regression analysis seeks optimal parameters to replicate a 
response using one or more independent variables (30). This method 

FIGURE 1

Boolean and fuzzy logic gene regulatory networks. (A) A Boolean gene regulatory network depicting a target gene T, activated by a regulator R. This 
interaction is controlled by the inhibitory modulator M. Standard symbols used to represent Boolean operators are shown. (B) Boolean logic equation 
representing the diagram depicted in (A). T levels in the equation’s right-hand side characterize a feedback loop, which, in this example, implements a 
memory effect in the network. (C) Time course T expression as a function of the inputs M and R. The inhibitory Modulator is initially inactivated, and R 
activation leads to T expression. Due to the feedback loop, T keeps high expression levels even after R is inactivated. Target T expression is reset to low 
values with the expression of the inhibitory modulator M. If M is expressed, activating R does not influence T levels. As soon as M is deactivated, T 
responds to R levels. (D) Equation describing T regulation using Fuzzy logic operators equivalent to those represented in panels (A,B). (E) Membership 
function mapping gene expression to three distinct, overlapping classes. (F) Time course T expression as a function of M and R levels under a fuzzy 
logic framework. The fuzzy logic operators are applied to each track independently, and T class membership values are normalized at each instant to 
ensure they sum to 1. M is initially set to 80% Low and 20% Medium in this example. As the regulator changes from 100% Low to 10% Medium +90% 
High, T unnormalized levels rise to 10% Medium +90% High. T still presents a 20% Low membership level due to M’s Low membership levels. As R 
levels transition at Time 20 from 10% Medium +90% High to 10% Low +90% Medium, T unnormalized levels for the Medium class rise, and 
unnormalized High levels are kept analogously to the Boolean logic case. When M is activated to 30% Medium +70% High, T unnormalized 
membership levels decrease to 70% Medium +30% High, with the membership class tending to Low. Slightly increasing R High membership at Time 40 
does not affect T levels. Inactivating M by increasing its Low membership to 100% leads to a decrease in T Low membership.
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aims to find a set of coefficients that minimize the difference between 
predicted and actual dependent variable values.

While regression analysis does not reveal underlying gene 
regulation mechanisms, it predicts gene behavior based on other gene 
expressions or phenotypic quantities like age or weight. For instance, 
Hackett et al. (31) employed nonlinear regression to construct a yeast 
GRN by analyzing transcriptome responses to over 200 transcription 
factor (TF) activations. Machine learning algorithms identified 
regulatory interactions, unveiling new pathways and understanding 
their impact on gene expression patterns. Similarly, Li et  al. (32) 
developed a hybrid model integrating data from young and old 
individuals’ blood cells, using regression methods to identify factors 
contributing to changes in gene expression during aging.

Regression methods offer broad possibilities for analyzing 
quantities derived from measured data. Zhang et al. (33) used linear 
regression to pinpoint age-related differentially expressed genes in 23 
mouse tissues, defining global aging genes (GAGs). They determined 
GAG expression increases with age for each identified cell type, 
shedding light on genes and pathways in aging-related diseases.

Jordan and Miska (34) analyzed C. elegans growth curves in a 
distinctive approach, constructing a two-dimensional nonlinear 
model with inferred parameters for each curve. This separated the 
dependency of each parameter on experimental variables (genotype 
and diet), highlighting at least two independent modulators regulating 
observed traits. This approach identified genetic factors in observed 
traits and revealed how environmental factors regulate them.

2.3.1 Biological clocks
The use of regression models in aging research to predict 

biological age, also called aging clocks, is a rapidly evolving field of 
study (35). Hannum et al. (36) pioneered using DNA methylation 
levels in blood cells to accurately predict chronological age, 
highlighting the difference between expected and actual age as an 
indicator of molecular damage. Advancing this, Horvath (37) 
introduced a multi-tissue aging clock, proving valuable in primate 
studies. More recently, Levine et  al. (38) proposed a technique to 
forecast mortality risk using DNA methylation levels in blood cells. 
Unlike traditional age-based training, this method incorporates 
phenotypic parameters like liver and kidney metabolite concentration 
and white blood cell count measures into a regression model. In a 
further development, Belsky et al. (39) introduced DunedinPACE (for 
Pace of Aging Calculated from the Epigenome), a next-generation 
DNA-methylation biomarker estimating the pace of aging.

Together, these approaches provide a more comprehensive 
evaluation of biological age and mortality risk, offering the potential 
for more effective interventions and treatments in ARDs.

2.3.2 Multi-OMICS regression models
Partial Least Squares Regression (PLS) extends the linear 

regression model to handle multiple response variables, making it apt 
for analyzing multi-OMICS datasets (40, 41). This method iteratively 
identifies components with the highest variance in each dataset, 
conducting a linear regression to predict molecule levels from the 
dataset considered a response variable. For instance, Rohart et al. (41) 
utilized PLS to integrate mRNA, microRNA, and proteomics datasets 
from breast cancer samples, revealing markers distinguishing between 
different cancer subtypes. In another application, Thévenot et al. (42) 
explored changes in the urine metabolome associated with aging, 

identifying 52 age-correlated metabolites, including increased 
carbohydrates and decreased acylcarnitines and nucleosides.

The Multi-Omics Factor Analysis (MOFA) framework integrates 
multi-OMICS datasets by pinpointing patterns in distinct molecular 
assays conducted on the same samples (43, 44). These patterns, 
represented as latent factors, are linearly mapped to each assay. The 
framework extends to sparse datasets from single-cell assays 
[MOFA+; (45)].

While regression-based methods are generally effective, they 
necessitate a sample size larger than the number of terms in the 
regression for a unique solution. In genomics studies, overcoming this 
challenge often involves assuming a sparse solution (37) or 
representing it in terms of latent variables, grouping genes with similar 
profiles (41).

2.4 Correlation networks

Correlation networks (CNs) play a pivotal role in OMICS 
studies, visually presenting pairwise correlations among molecular 
species. These networks, constructed from single-OMICS or multi-
OMICS datasets, can be combined with graph theory metrics to 
highlight influential nodes (18, 30, 46). In single-OMICS datasets, 
CNs reveal molecules sharing similar profiles, aiding in the 
selection of candidates for signaling pathways enrichment (30, 41, 
42, 47–50). Our studies, exploring cells undergoing cellular 
senescence (CS) through metabolic, transcriptomic, and DNA 
accessibility datasets, employed CNs to profile molecular 
relationships (51–53).

In a study of cardiac failure due to high blood pressure, Froese 
et  al. (48) utilized CNs to analyze gene expression modules in 
cardiomyocytes, cardiac endothelial cells, and cardiac fibroblasts, 
which were used to identify transcription factor binding sequences 
enriched in co-expression modules. This provided novel regulatory 
molecules for hypertension therapies. TF motif binding, crucial from 
a systemic perspective, determines the dimensionality of the 
epigenetic landscape representing the phenotype (34). In single-cell 
datasets, gene clustering aids in identifying cells with similar 
expression and associated gene markers. When applied to datasets 
collected from individuals with distinct ages, this procedure highlights 
physiological age-associated changes that lead to an increase in disease 
incidence (54–56).

Multi-OMICS CNs follow a similar construction, depicting 
molecules with similar accumulation profiles, even across different 
biochemical properties. Yu et al. (57) identified highly correlated gene-
protein pairs in cerebral endothelial cells, revealing their significance 
in an Alzheimer’s disease model. Klaus et  al. (58) explored liver 
responses to a high-fat diet at metabolic and transcriptomic layers, 
unveiling metabolite-gene relationships with implications for Type 
2 Diabetes.

In our studies on lung fibroblasts undergoing CS, we computed 
Spearman correlations between metabolomic and transcriptomic 
datasets under various stress sources, revealing central nodes like 
Glycerol Kinase (GK) (53). Malod-Dognin et  al. (49) integrated 
multiple cancer samples, highlighting genes impacting in vitro cancer 
growth and stratifying patient data for distinct survival predictions.

Non-negative matrix factorization (NMF) also identifies 
latent factors associated with differentially accumulated 
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molecules, considering that this association is mediated by 
non-negative coefficients (40, 44). This premise ensures that the 
latent factors can be mapped to the dataset’s features (i.e., genes, 
metabolites, or chromatin regions enriched with a histone mark), 
leading to more interpretable conclusions. The identified factors 
present similar coefficients for highly correlated molecules, 
simplifying downstream clustering techniques. Huang et al. (59) 
analyzed mice’s eye gene expression. This study identified a set of 
glaucoma-associated genes that could also discriminate ill mice 
samples from a second independent one. Zheng et al. (60) applied 
an NMF-based approach to a list of genetic mutations and were 
able to stratify cancer types associated with each mutation set.

While correlation networks are versatile in portraying molecular 
features associated with experimental conditions, their representations 
may not correspond directly to mechanistic interactions, often a 
product of common modulation.

2.5 Molecular interaction networks

Cellular metabolism involves molecules with distinct biochemical 
properties interacting through electrostatic binding sites and 
translocating between compartments via passive chemical gradients 
or active transport. Networks representing these interactions connect 
elements with shared biological functions, irrespective of their 
biochemical nature—encompassing genes, proteins, histone marks, 
and enzymes catalyzing metabolic conversions.

In the field of molecular interaction networks, Chuang et al. (18) 
explored their utility in identifying cancer biomarkers and cell fate 
decision drivers, integrating protein–protein interactions (PPIs) and 
transcription factor (TF) binding site identification. Our studies 
delved into the dynamic chromatin landscape of senescent cells, 
integrating TF chromatin binding from ATAC-seq with histone marks 
detected by ChIP-seq, predicting target gene expression (51, 52). 
Huang et al. (61) compiled a database summarizing TF binding from 
scATAC-seq, enriched by scRNA-seq-detected gene expression in the 
same cell. Ren and Kuan (62) benchmarked a multi-tissue biological 
age clock based on transcriptome data against DNA-methylation-
based approaches.

While molecular interaction networks offer flexibility in 
conceptualizing multi-OMICS regulation, they often lack quantitative 
details about molecular reactions and may contain false-positive 
interactions. Integrating experimental data and complementary 
modeling approaches, such as regression methods (16), becomes 
crucial to mitigate this.

2.6 Mutual information

Mutual information approaches are statistical tools used to 
measure the predictability of one variable based on another. They 
quantify the degree of association and reveal dependencies 
between molecules. In simpler terms, if two molecules share high 
mutual information, knowing the levels of one molecule allows us 
to determine a narrow range that contains the value for the other 
molecule. This concept is illustrated by the GRN instance shown 
in Figure 2A, where, as previously, a gene M modulates the target 

T activation by regulator R. T gene levels are defined as shown in 
Figure 2B, which, under distinct M and R values, give rise to the 
multiple dynamics shown in Figure 2C. As expected, a high M 
value leads to no interaction between R and T, leading to a low 
mutual information between these two genes. As M decreases, the 
coupling between R and T increases, resulting in higher mutual 
information values. This phenomenon is evident in Figure 2D, 
where the cases associated with higher mutual information 
correspond to more precise T-level estimates by knowing that R 
values are contained in a small interval. Pioneering studies by 
Sachs et al. (63), Chuang et al. (18), and Linde et al. (30) have used 
mutual information to uncover complex relationships among 
molecular entities.

The ARACNE (Algorithm for the Reconstruction of Accurate 
Cellular Networks) algorithm, a widely used method in GRN 
reconstruction, relies on mutual information. Developed by 
Lachmann et al. (64), ARACNE finds applications in diverse research 
domains, from cardiomyopathy studies (65) to investigations into 
female fertility (66). Its ability to discern linear and nonlinear 
relationships renders ARACNE a robust tool for deciphering complex 
molecular dependencies.

Expanding on ARACNE, the MINDy (Modeling Interactions 
using Nonlinear Differential Equations) algorithm, conceived by 
Wang et  al. (67), identifies higher-order interactions between 
molecules. Analyzing mutual information in samples with varying 
modulator levels, MINDy unveils modulators, proving invaluable for 
pinpointing nonlinear dependencies and ascertaining interaction 
directions in GRNs.

Okada et al. (68) have employed mutual information to craft a 
DNA methylation aging clock, gauging the correlation between DNA 
methylation patterns and age and offering a means to estimate an 
individual’s biological age.

While mutual information approaches excel in detecting 
molecular dependencies, the computational intensity escalates when 
considering numerous molecular entities due to the requisite discrete 
classification of variable values.

2.7 Ordinary differential equations

Ordinary Differential Equations (ODEs) serve as mathematical 
models for scrutinizing dynamic systems, particularly applicable in 
biology to capture gene expression changes in response to diverse 
stimuli. The versatility of ODEs allows the representation of nonlinear 
relationships among genes through various mathematical functions. 
Figure  3A portrays an example of GRN where the target gene T 
displays a self-regulatory loop that causes it to follow the expression 
values assumed by its regulator R. The ODE in Figure 3B represents 
this behavior, where the variation in T transcription is a parabolic 
function of T absolute gene expression. Figure  3C depicts this 
parabolic profile for distinct R values. This representation summarizes 
multiple GRN dynamical features, notably the potential presence of 
attractor states. Attractor states are characterized by a null velocity, 
i.e., the transcriptomic state is in equilibrium and will only change 
when the system is subjected to external stimuli (19). These states can 
be stable if the system converges back to the attractor state when 
perturbed or unstable when the system diverges from the attractor 
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state. An unstable attractor is also known as a “tipping point.” 
Figure 3D illustrates how distinct initial states converge to the stable 
attractor at T = R.

In our investigations, we  harnessed ODE systems to depict the 
transcriptomic landscape of cellular senescence, analyzing 802-time gene 
expression profiles from TF knock-down (KD) experiments (47). 

FIGURE 2

Mutual information strategies to identify modulatory interactions. (A) Gene regulatory network (GRN) showing how regulator gene R stimulates the 
activity of target gene T, which is controlled by the modulator gene M in a non-linear way. (B) Equation determining T levels as a function of R and M. T 
linearly increases as R is expressed, and the fraction of M determines the coefficient of this linear relationship compared to its maximum levels. (C) T 
gene expression changes as a function of R levels for various M activity levels. The Mutual Information Coefficient (MIC) between R and T for each M 
activity level is shown. (D) Comparison of T expression values for different R gene expression levels, sorted by M activity levels. The gray-filled boxplots 
represent the expression distribution of T for a specific range of R values shown in panel (C). A higher T expression distribution for a particular set of R 
values suggests a stronger interaction between the regulator and the target. The strength of the interaction, known as the Maximum Information 
Coefficient (MIC), is dependent on the modulator level and hence highlights the need for non-linear methods for Gene Regulatory Network (GRN) 
inference.

FIGURE 3

Differential equations modeling nonlinear molecular interactions. (A) Gene regulatory network (GRN) depicting a logistic growth where the regulator R 
determines the stable expression level of its target T. The self-regulatory T edge ensures that its expression will follow R levels. (B) Differential equation 
describing the change in T expression concerning its value and R transcription levels. (C) Graphic representation of T expression rate for distinct R 
values. When T is expressed at the same levels as R, its transcription rate is zero, and the GRN is in equilibrium. These states are termed attractors. 
(D) Temporal T expression for the same R values depicted in the previous panel. The dynamics are shown for distinct initial T expression values T0. T 
transcription levels tend to R, even if T initially displays higher expression than R.
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Through this approach, we also uncovered genes with potential hidden 
sources, which can be further explored in future iterations by integrating 
prior information, such as promoter-binding TFs or local 
epigenetic changes.

Konrath et al. (69) constructed an ODE system to elucidate the 
inflammatory response triggered by DNA damage via PARP1 and 
ATM. Conducting sensitivity analysis by altering coefficients 
governing gene regulation, they revealed the potential efficacy of 
PARP1 inhibition in mitigating inflammatory responses during 
irradiation treatment of cancer cells.

Li et al. (70) curated genes influencing aging-associated processes, 
formulating an ODE system grounded in sigmoid functions. 
Analyzing the system’s probability, they identified three distinct 
attractors, one marked by accelerated aging with mTOR activation and 
another representing a slow aging state with upregulated SIRT1, 
AMPK, and Ulk1.

In a comprehensive discussion, Shin and Cho (19) delved into the 
mathematical representation of systems and their potential landscapes 
to reverse cells undergoing malignant transformation. They proposed 
a two-step therapy involving rewiring the cellular internal network 
and destabilizing cancer-associated attractors in the first step. The 
second step focused on chronic microenvironment control to prevent 
cells from re-entering the attractor, which can be enhanced to leverage 
adaptive GRN motifs’ potential to reduce the need for prolonged 
microenvironment control in therapies.

2.7.1 Partial differential equations
ODEs are solved by integrating molecule evolution over one 

variable, typically time. At the same time, PDEs extend this integration 
to multiple variables, often spatial coordinates, allowing for 
incorporating spatial phenomena into simulations at the cellular and 
tissue levels (8, 71).

Dyson et  al. (72) formulated a PDE system to model tumor 
growth, considering proliferating and quiescent cell populations, 
mutations, and cell migration influenced by extracellular nutrient 
gradients. In 2022, Son et  al. expanded an ODE model of NF-kB 
dynamics, introducing a term for the spatial diffusion of TNF. Through 
experiments and simulations, they unveiled a gene expression 
response enabling cells to coordinate their reactions based on the 
dose, duration, and distance of tumor necrosis factor (TNF) signals.

Recent spatial transcriptomics studies have provided opportunities 
to explore tissue-level gene expression coordination and integrate 
spatiotemporal factors into model training. Kuppe et al. (73) profiled 
spatial gene expression in millimeter-sized cardiac tissue sections after 
infarction from multiple human patients. Interestingly, they could 
identify ANKRD1 and NPPB upregulation at the injured area, 
accompanied by an increase in TGFβ signaling-associated genes, 
detected by a pathway analysis performed in each spatial unit. Given 
that maximum spatial resolution can still be higher than the size of a 
cell, they combined this technique with scRNA-seq and were able to 
deconvolute cell types inside each spatial unit. This increased 
resolution led to the observation that ischemic samples have a higher 
proportion of macrophages expressing SPP1 and that these 
macrophages are associated with an increased myofibroblast presence 
in their surrounding area, supporting the hypothesis macrophages 
induce fibroblast differentiation into myofibroblasts. Yu et al. (57) 
review multiple studies profiling spatial gene expression in cancer, 
highlighting the role of distinct cell types in tumor microenvironment 

and treatment response. Notably, colorectal cancer is associated with 
the colocalization of fibroblasts and SPP1-positive macrophages, 
leading to increased TGFβ pathway activity. This mechanism leads to 
tissue fibrosis, eventually reducing immune infiltration and negatively 
impacting patient prognosis.

Despite a lack of studies performing GRN inference based on 
spatial transcriptomic data in age-related diseases, PDEs have been 
intensely studied in embryonic development and organ morphology. 
The Drosophila melanogaster embryo presents a concentration 
gradient for the bcd protein, activating downstream targets at distinct 
intensities and leading to increasingly sophisticated molecular 
patterns that define fly morphology (74). Interestingly, Mousavi and 
Lobo (75) have developed a tool that can identify GRN-originating 
spatial profiles from any arbitrary shape, given two genes regulate the 
network with gradients in two perpendicular dimensions. GRNs 
considering spatial information are usually modeled using reaction–
diffusion networks, which are similar to ODEs and contain a term 
associated with the spatial variation of regulator levels (75, 76). This 
concept was formalized by Turing’s (77) early work on how simple 
rules generate complex spatial patterns, which, as discussed by Reinitz 
(78) and Maini et al. (79), has also gained renewed interest.

ODEs and PDEs prove powerful in modeling biological processes, 
understanding complex systems, and evaluating interventions through 
sensitivity analysis. Hidden sources analysis aids in identifying critical 
genes requiring attention, while identifying attractors in ODE systems 
offers insights into underlying mechanisms. Nevertheless, accurately 
representing GRNs via ODE inference demands substantial data and 
domain knowledge, and fitting noisy experimental data may lead to 
unstable dynamical systems.

2.8 Artificial networks

Artificial neural networks, a subset of nonlinear machine learning 
techniques (17, 27, 30, 80), excel in describing a wide range of 
processes with superior accuracy compared to linear models, although 
they require more data for precise identification. Figure 4A depicts a 
neural network implementing a high-order polynomial function with 
one input. It contains one hidden layer with 15 neurons. Each of these 
neurons outputs a value based on the function shown in Figure 4B, 
known as the “activation function.” In this example, the activation 
function is a Rectified Linear Unit (ReLU), which acts as an identity 
map for positive values and returns zero for all negative input values. 
Before being applied to the activation function, the input is linearly 
transformed by the weights wi, which are the parameters to 
be  optimized during the network training. Figure  4C shows the 
impact of each neuron (blue curves) in the output and the cumulative 
effect of all previous neurons to compute the target polynomial 
function. The predicted and target functions are depicted in 
Figure  4D. Deep learning neural networks (DNN), consisting of 
multiple intermediate layers, have the property of modeling any 
mathematical function and revolutionizing image analysis and object 
recognition, showcasing unprecedented accuracy (81). In genomics 
and aging studies, DNNs have proven valuable for inferring GRNs, 
deconvoluting cell types, and constructing biological clocks.

Cancer GRN inference has been explored using DNNs, as seen in 
studies by Wysocka et al. (20) and Langeman et al. (80) on leukemia 
regulation. Autoencoder architecture, employed in Alzheimer’s 
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research (82), aids in determining cell proportions. Jordan & Miska 
(34) applied autoencoders to nonlinearly separate C. elegans growth 
parameters based on diet or genotype. Qiu et al. (83) used decision 
trees to estimate biological age with higher interpretability than 
DNNs. Holzscheck et al. (84) designed a biological clock using a DNN 
with parallel subnetworks mimicking biological signaling, allowing 
the identification of active neurons and their functions during age 
inference. Tao et al. (85) benchmarked multiple artificial intelligence 
methods to classify proliferation and senescent cells and identified six 
transcriptomic signatures associated with distinct CS identities.

Despite the effectiveness of artificial intelligence (AI) methods, 
challenges persist in situations requiring high safety levels, like 
healthcare or autonomous driving. To address this, paradigms like 
Conformal Prediction (86) have emerged, providing metrics to 
quantify the certainty of model predictions. Conformal prediction 
offers insights into the reliability of AI models for specific use cases, 

emphasizing the importance of understanding prediction variations 
associated with confidence levels.

3 Perspectives

3.1 Potentially disruptive datasets

The field of systems biology and aging is poised to benefit 
significantly from advancements in AI, akin to the transformative 
impact witnessed in image processing breakthroughs. The ImageNet 
dataset revolutionized image processing by providing over 10 million 
images with a standardized set of labels (81); the GPT-3 large 
language model was trained using an unprecedented number of 
parameters and has exhibited superior accuracy across various 
language tasks compared to previous versions without annotated 

FIGURE 4

Neural networks as universal approximators. (A) Description of a neural network trained to approximate a target function. The network has one input, 
one hidden layer with 15 neurons, and one output. The black edges in the network represent the weights that determine the activation of each neuron 
based on the input value. The blue edges represent the independent terms that lead to the basal activation of each neuron, also known as biases. Each 
neuron applies an operation, determined by an activation function, to its input. (B) The Rectified Linear Unit (ReLU) function is the activation function 
for this example. (C) Contribution of each neuron to the final model prediction. As more neurons are considered, the model prediction approaches the 
target function. (D) Neural network model output and target function comparison, with a Root Means Squared Error (RMSE) of 0.057.
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data (108). Therefore, achieving comparable breakthroughs in 
systems biology and aging necessitates the development of 
comprehensive expert-annotated datasets.

Fortuitously, global collaborative efforts have facilitated the 
integration of numerous high-throughput datasets into a unified 
framework (Table 1). Uyar et al. (55) enumerate studies characterizing 
age-related transcriptomic changes at the single-cell level in multiple 
organs. Furthermore, larger-scale initiatives are actively underway to 
delineate multi-tissue age-related pathophysiological changes. These 
initiatives involve databases consolidating raw data from projects 
investigating mechanisms related to the same diseases and 
international consortiums dedicated to comprehending and mapping 

the molecular features of both healthy individuals and pathological 
molecular trajectories. These initiatives significantly advance our 
understanding of the fundamental mechanisms underlying aging and 
disease by aggregating findings from diverse studies into a 
cohesive format.

Exploring different species holds promise for therapeutic 
development (Table 2). Tejada-Martinez et al. (109) uncovered 71 
duplicated tumor-suppressor genes in cetaceans, potentially 
explaining their extended lifespan. These genes offer a valuable avenue 
for investigating cancer growth reduction and delaying tumor relapse 
in humans. Wang et al. (56) probed scRNA-seq data across mice, 
zebrafish, and flies, revealing age-associated immune response 

TABLE 1 Large-scale initiatives mapping human healthy and pathological molecular states.

Name Reference Description

Pan-Cancer Atlas Sanchez-Vega, et al. (87); Ding 

et al. (88); Hoadley et al. (89)

Large-scale collaboration harmonizing the analysis of the Cancer Genome Atlas 

database divided into three categories: cell-of-origin patterns, oncogenic processes, and 

signaling pathways

Type 2 Diabetes Knowledge Portal (T2DKP) Costanzo et al. (90) A knowledge base integrating transcriptome, phenotype, and genomic variant 

information for genes associated with T2D

Cardiovascular Disease Knowledge Portal 

(CVDKP)

Costanzo et al. (91) A knowledge base integrating transcriptome, phenotype, and genomic variant 

information for genes associated with cardiovascular diseases

Open Genes Rafikova et al. (92) A set of 2,402 genes associated with aging

Human Ageing Genomic Resources (HAGR) Tacutu et al. (11) A collection of aging-associated databases, including genes associated with aging, 

genetic association longevity studies, and longevity-associated chemical compounds

scRNA-tools Zappia et al. (93) Database of tools used in scRNA-seq analysis

Lifetime Initiative Rajewsky et al., (94) International collaboration dedicated to characterizing spatiotemporal cellular 

trajectories of healthy and diseased tissues and organs

Human Cell Atlas Regev et al. (95) International collaboration dedicated to mapping every human cell type

Human Protein Atlas (HPA) Thul and Lindskog (96) Tissue-specific protein expression patterns determined by immunohistochemistry and 

immunocytochemistry imaging

HPA Single Cell Type Atlas Karlsson et al. (97) scRNA-seq and spatial antibody-based imaging integration

ENCODE Roadmap Epigenomics 

Consortium et al. (98)

Epigenetic data (histone marks, DNA methylation, and DNA accessibility) for multiple 

cell types

TABLE 2 Single-cell OMICS datasets describing multi-organ age-associated molecular changes.

Species References Description

Human The Tabula Sapiens Consortium et al. (99) Multi-organ scRNA-seq

Human, mouse Huang et al. (61) TF-gene target pairs inferred from scATAC-seq and scRNA-seq integration

Mouse, fly, zebrafish Wang et al. (56) Multi-species scRNA-seq integration over age

Mouse The Tabula Muris Consortium (54) Multi-organ scRNA-seq at distinct ages

Mouse Cusanovich et al. (100) Multi-organ scATAC-seq

Mouse Fei et al. (101) Multi-organ scRNA-seq at different ages, including embryonic stages

Zebrafish Jiang et al. (102) Multi-organ scRNA-seq at distinct ages, including embryonic stages; scRNA-seq characterization of 

fin regeneration

Zebrafish Wagner et al. (103) Multi-organ scRNA-seq from distinct embryonic stages

Worm Roux et al. (104) Multi-organ scRNA-seq at distinct ages

Worm Packer et al. (105) Multi-organ scRNA-seq from different embryonic stages

Hydra Siebert et al. (106) Multi-organ scRNA-seq from a stem cell-rich, potentially immortal organism

Planaria Plass et al. (107) Multi-organ scRNA-seq from a stem cell-rich, potentially immortal organism
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activation and diminished mitochondrial activity. Mah and Dunn 
(110) constructed a multi-species phylogenetic tree from scRNA-seq 
data, pinpointing common, evolutionarily conserved pathways and 
quantifying transcriptomic response similarity across species. 
Intriguingly, Jiang et al. (102) noted a significant correlation between 
the transcriptomes of zebrafish swim bladder epithelial cells and mice 
alveolar type 1 cells, in line with their specialized functions in gas 
exchange—Table 2 catalogs single-cell datasets from diverse species, 
offering potential targets for delaying age-related pathologies. 
Additional pertinent studies by Wang et al. (111) and Fei et al. (101) 
contribute to this comprehensive exploration.

3.2 Potentially disruptive methods

Aging research is constantly evolving, and new data analysis 
methods are emerging. In addition to producing high-quality, 
comprehensive datasets, deep neural networks (DNNs) have achieved 
unparalleled accuracy. While the field is still under active research, 
DNN architectures can better estimate data from different domains 
with specific distributions (112, 113). DNN architecture is critical as 
it can bridge the gap between formal models based on fixed principles 
and virtually unbounded approaches. The literature provides a 
detailed description of the properties associated with each architecture 
(114). We have highlighted specific DNN architectures that have the 
potential to enhance our understanding of gene regulatory networks 
(GRN) that regulate age-associated processes. Combining these 
architectures with the datasets in Table 2 can significantly improve our 
understanding of aging.

3.2.1 Dimensionality reduction: autoencoders 
and Kohonen networks

Autoencoders are a class of deep neural networks that utilize two 
sub-networks connected in series: an encoder and a decoder. The 
encoder maps the input data to an intermediate layer with fewer 
neurons. At the same time, the decoder reconstructs the input data 
from the information available in this layer with reduced degrees of 
freedom. As a result, the network generates a low-dimensional data 
representation. Due to the non-linear activation function of neurons, 
this representation can also map non-linear functions. Previous 
research has shown that this lower-dimensional representation can 
represent transcriptional profiles of distinct cell types in a biological 
sample, which can be used in other samples to estimate subpopulation 
proportions (82). This tool can also separate potential sources of 
transcriptional variability, which can be later mapped to genetic or 
environmental conditions (34).

Another technique that identifies a low-dimensional data 
representation is the Kohonen Network, known as “self-organizing 
maps” (115). Despite not following the conventional neural network 
representation, Kohonen Networks associate each input with a cell in 
a grid so that inputs with closer dynamics will be closer to the map. In 
addition to determining a low-dimensional data representation, it 
effectively functions as a clustering technique.

3.2.2 Residual neural networks
Residual networks, also known as ResNets, are a type of neural 

network that includes “shortcut connections” that start at neurons in 
one layer and end at neurons in layers several steps ahead (116). This 

unique feature allows intermediate layers to model only the difference 
between the output of the layer at the beginning of the shortcut and 
the expected training output. This leads to greater network robustness 
and faster training convergence, which allows networks to stack 
hundreds of layers. Recent studies have shown that ResNets are 
effective in various applications. For example, Cao et al. (117) used a 
DNN with a ResNet submodule to detect and localize myocardial 
infarction sites from a 12-lead electrocardiogram signal. Additionally, 
Habijan et al. (118) used ResNet as an autoencoder network to design 
intermediary layers for segmenting heart chambers from computer 
tomography (CT) and magnetic resonance imaging (MRI) data. This 
led to higher similarity between predictions and expert-
annotated data.

3.2.3 Transformers
Transformers have significantly impacted artificial intelligence 

due to their application in large language models. However, their 
implementation has raised ethical and cultural concerns (119). 
Initially introduced by Vaswani et al. (120) for language translation, 
transformers are now widely used in text generation to predict the 
next word in a sentence. The transformer architecture’s main 
innovation is the “attention mechanism,” which enables it to associate 
words that refer to the same concept. Three matrices, Key (K), Query 
(Q), and Value (V), are used for this mechanism, with each word in 
the input associated with a K matrix. This matrix calculates the KQ 
product for each word in the sequence, with Q depending on the 
meaning of each input word. As a result, words referring to the same 
idea will have higher KQ product values. The V matrix determines the 
most probable word to continue the sequence, resulting in the 
model output.

Interestingly, the KQV layers are located within a ResNet 
submodule, and the transformer network includes numerous attention 
modules. Li et al. (121) have extended this paradigm to image analysis 
and accurately classified AD patients by training the attention 
submodule to identify brain features that maximize patient 
disease status.

It is worth noting that large-language models can be trained using 
only ternary values (−1, 0, and 1) instead of 16-bit floating-point 
numbers, according to Ma et al. (122). This technique is more precise 
than converting weights to ternary values after training, resulting in 
smaller memory footprints and faster response times. This approach 
is expected to yield better results when applied to healthcare-
related solutions.

3.2.4 Graph neural networks
Graph Neural Networks (GNNs) consider the interactions 

between modeled entities and the topological information in those 
interactions. They can be used to predict the state of a node based on 
an input that specifies the state of other nodes and the state of 
unknown edges. They can also be used to generate new subgraphs in 
a given network. GNNs can be  combined with autoencoder 
architectures, where the input is first encoded into a low-dimensional 
graph that performs predictions and then decoded back into the 
original input representation. Additionally, GNNs can implement the 
attention mechanism from transformer architectures by learning a 
weight vector that selects which neighbors to consider during 
prediction. Truong-Quoc et al. (123) used the contextual information 
used by GNNs to infer 3D spatial DNA conformation despite a 
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scarcity of experimental DNA spatial configuration data. In the field 
of biological clocks, Inácio et al. (124) modeled cardiac shape as a 3D 
mesh and trained a GNN to infer the biological age from the mesh 
dynamic motion. Furthermore, Gao et al. (125) predicted brain age 
from MRI data, which was used to compute connectivity maps input 
into a DNN combining GNN with a transformer.

Remarkably, exploring interactions among multiple entities 
simultaneously has spurred the creation of novel neural network 
architectures (126). In the realm of Topological Neural Networks, the 
focus lies in capturing higher-order relational structures, exemplified 
by edges with multiple sources. These structures unveil intricate 
interactions within the training data. Considering that biological 
processes hinge on reactions involving multiple substrates and 
catalysts (67), topological neural networks are poised to provide more 
effective modeling capabilities for such scenarios.

3.2.5 Ensemble techniques and distributed 
artificial intelligence

Ensemble techniques allow the creation of comprehensive models 
by combining multiple application-specific prediction models. For 
instance, Shah et al. (127) could predict biological heart age from MRI 
by merging the outputs of hundreds of distinct segmentation models 
to identify cardiac features. Similarly, Huang et al. (128) used two 
parallel networks to extract brain imaging features from MRI and 
positron-emission tomography (PET), whose outputs were combined 
to predict patient AD status.

These ensemble techniques offer the opportunity to generate 
all-inclusive models by integrating multi-modality patient data. 
However, this integration should respect patient privacy and security 
and not infringe on intellectual property rights over a dataset. Wassan 
et al. (113), Acosta et al. (129), and Wang et al. (111) have highlighted 
these concerns. Federated Learning (FL) approaches have been 
developed to address these issues. FL formalizes a set of protocols 
independent collaborators can follow to train a prediction model 
while keeping their datasets private.

FL generally involves a centralized party coordinating model 
training by sharing the Deep Neural Network (DNN) weights with 
each collaborator. The collaborators update the weights based on the 
data locally available (56, 129, 130). Decentralized FL approaches, 
such as the one proposed by Kalra et  al. (131), are also possible. 
Collaborators communicate a proxy model trained with individual 
private models in this protocol. The training is designed in a way that 
the predictions of the proxy model are also considered in the private 
model training (132). The private model updates its weights 
considering the datasets used during proxy model training. 
Conversely, the proxy model is refined with new information from the 
local dataset before being sent to the next collaborator.

3.3 Modeling nonlinear phenomena

The surge in nonlinear methods for GRN reconstruction is driven 
by the abundance of available data (19, 30, 68, 133–135), offers a 
versatile framework. This nonlinear description enables the synthesis 
of diverse findings in the literature (32, 51, 57, 58). Notably, studies 
across tissues or the same tissue under various treatments occupy 
different regions in the gene expression state space, forming 
trajectories (133). These trajectories reflect the response to specific 

treatments and are approximated by linear planes with distinct 
inclinations tangent to the epigenetic landscape (Figures 5A,B). The 
overall epigenetic landscape can be  locally described through a 
combination of linear approaches, even if results from different 
experiments yield planes with different inclinations, also represented 
by correlation GRNs with a distinct set of edges (Figures 5A,C,D).

Within a single experiment, linear correlations determine the 
plane inclination at each state, leading to varied regression coefficients 
or pairwise correlations across different experiments in distinct 
conditions. Alternatively, the linear regression coefficient between two 
molecules can be viewed as dependent on the expression of a specific 
regulator (67). Modulating the regulator expression mirrors sensitivity 
analysis (69), visualized by rearranging the epigenetic landscape, akin 
to Li et al.’s (70) landscape analysis for distinct SIRT levels. Existing 
GRN descriptions can be perceived as a comprehensive piece-wise 
linear model, accommodating batch effects from measurement 
collection in diverse laboratories.

Considering the cellular ability to dedifferentiate and 
transdifferentiate, allowing access to the entire epigenetic landscape 
even in differentiated cells, Shin and Cho (19) emphasize the 
importance of gathering data on intermediate states to enhance the 
accuracy of GRN evolution models. Echoing this, our group’s prior 
work illustrates how dynamic datasets contribute to a more thorough 
comprehension of cell fate decisions (51, 52).

3.4 Higher-order dynamic representations

ODE approaches commonly express a species’ rate of change as a 
function of its current state, a concept that can be extended to higher-
order systems where acceleration is tied to the system’s state. 
Schwanhäusser et al. (14) emphasized the importance of considering 
gene expression levels proportional to the protein translation rate for 
accurate protein level inference from transcriptome data. In a study 
on monocyte differentiation during heart failure, Ni et  al. (136) 
discovered the Cd72 gene’s expression derivative peaked when its 
transcriptional regulator RelA was maximally expressed.

RNA velocity, distinguishing spliced and unspliced RNA 
molecules, is increasingly employed in single-cell transcriptome 
analysis (15, 137), using ratios to infer gene expression rates. 
However, the appropriate dynamic order for modeling biological 
systems remains to be determined due to the complexity of signaling 
pathways and regulatory layers (16, 17). Speculating on effective 
comparisons, it might be  advantageous to model histone mark 
modification and transcription factor binding as a second-order 
dynamic system (138). Alternatively, comparing enzyme levels 
instead of metabolite production requires accurate measurement of 
all implicated regulation layers, acknowledging the challenge posed 
by the inherent variability in protein levels despite consistent RNA 
molecule counts.

Theoretically, second-order systems offer robustness, allowing 
a broader range of dynamic processes. Networks with self-
regulatory loops described by first-order systems can only exhibit 
exponential decay or unbounded increase (Figure 4D). In contrast, 
equivalent networks involving proteins regulating their genes can 
display these two behaviors with the addition of oscillations (139). 
Figure 6A illustrates an extension of the example GRN in Figure 4A, 
where the expression of the target gene T considers both freshly 
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transcribed unspliced mRNA (TU) and mature spliced mRNA levels 
(TS). TS is increasingly synthesized with higher TU levels and is 
regulated by temporal degradation. The equation governing this 
dynamic is depicted in Figure  6B, which, after some algebraic 
manipulation, is equivalent to the second-order ODE shown in 
Figure 6C.

Similarly to Figure  3D, which demonstrates the system 
convergence to the attractor T = R, Figure  6D shows that the 
second-order ODE also leads to equivalent attractors in the long 
term. Nonetheless, this state is achieved only after oscillatory 
behavior. Interestingly, R values determine the system’s final state 
and the oscillation frequency.

FIGURE 5

Integrating multiple linear approaches to unravel a nonlinear landscape. (A) The epigenetic landscape as a function of the expression level of two 
master regulator genes X and Y. Experiments analyzing linear relationships in genes responding to a particular treatment unravel the underlying 
landscape by finding linear approximations, illustrated by planes tangent to the landscape at the indicated points. Each point is associated with an 
experimental model, presenting specific X and Y basal expression values. (B) At points B1 and B2, genes A and B, downstream to X and Y, show distinct 
correlations. (C) Correlation matrices depicting pairwise correlations for genes downstream of X and Y at points C1, D1; C2, D2; and C3, D3. The 
different correlation matrices associated with planes with distinct inclinations at each point approximate the landscape curvature. (D) Correlation 
networks corresponding to each correlation matrix in C. As pairwise gene correlations assume different values depending on the expression levels of X 
and Y, i.e., depending on the position in the landscape, the gene correlation network contains a distinct set of edges.

FIGURE 6

Higher-order differential equations. (A) Gene regulatory network (GRN) portraying a dynamic transcription model, where a target gene T produces 
unspliced mRNA fragments (TU), which are spliced into mature mRNA (TS). The regulator R determines the stable expression level of its target TS. 
(B) Differential equations describing TU production for mature mRNA TS and R transcription levels. Ts is produced proportionally to TU abundance and 
decays over time. (C) A second-order differential equation equivalent to the equations system shown in panel (B). (D) Temporal Ts expression for the 
same R values depicted in Figure 3D. The dynamics are shown for distinct initial Ts expression values Ts0. In regime, Ts transcription levels tend to R, 
which are reached after a transient oscillatory activity. Oscillation frequency is also dependent on R expression levels.
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Given that enough samples are available, higher-order modeling 
has the potential to implicitly consider layers of regulation that are not 
present in the training data. This process is analogous to the equation 
derivation in Figure 6C, which does not include TU. Nonetheless, TS 
expression numeric simulations still require an initial value for its 
derivative, equivalent to assuming TU initial values. This shortcoming 
can be overcome by performing multiple simulations with distinct 
initial values for unknown variables at the cost of additional 
computing resources or by estimating these values based on data from 
a similar cell type (e.g., using the atlases depicted in Table  2 as 
potential sources). Altogether, the versatility of higher-order dynamic 
models has great potential to increase the predictive power for 
GRN inference.

4 Conclusion

The study of aging has achieved notable advancements, unveiling 
shared processes and biomarkers across species. Despite this progress, 
a comprehensive understanding of the interconnectedness of 
age-related molecular processes still needs to be discovered. ARDs 
likely result from a combination of these processes, inducing 
pathophysiological shifts. Exploring strategies mapping the epigenetic 
landscape of age-related cellular abnormalities has become more 
refined with recent breakthroughs in single-cell data acquisition and 
integrating diverse biochemical regulation layers. These advancements 
present an unprecedented opportunity to unravel the molecular 
intricacies of aging, offering the potential for therapies employing 
dynamic systems concepts to redirect pathological trajectories toward 
a healthier course.

Identifying shared aging mechanisms across multiple animal 
species and tissue types has unveiled that interactions among genes, 
proteins, metabolites, and epigenetic marks form a complex, intricate 
network spanning processes from molecular to organismal levels. 
Hence, these processes are characterized by many parameters, 
requiring an equally extensive amount of data to distinguish GRNs 
that generalize results from multiple independent experiments.

Recent advances in experimental techniques and data analysis 
poise the aging field to disruptive breakthroughs in identifying 
age-associated trajectories and the delay in the onset of age-related 
pathologies. The solidification of the FAIR principles (findability, 
accessibility, interoperability, and reusability) in data sharing has 
paved the way to integrating comprehensive datasets that are 
impossible through multiple isolated studies. These include the 
identification of cellular heterogeneity and dynamics in aging 
processes through integrating multi-layered networks, including 
GRNs and PPI networks, single-cell sequencing experiments, and 
spatial molecular profiling assays. We  believe that the knowledge 

gained from systems pharmacology will contribute to the widespread 
use of computational models in healthcare. These models will help in 
identifying and prioritizing potential interventions to modify the 
pathways related to aging in a personalized way. This approach will 
take into account an individual’s genetic background, lifestyle factors, 
and environmental exposures and will be  crucial in developing 
effective anti-aging therapies.
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