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A new Steiner symmetrization
defined by a subclass of analytic
function in a complex domain

Ibtehal Alazman1 and Rabha W. Ibrahim2*

1Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic
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In this e�ort, we present a new definition of the Steiner symmetrization by using

special analytic functions in a complex domain (the open unit disk) with respect

to the origin. This definitionwill be used to optimize the class of univalent analytic

functions. Our method is based on the concept of di�erential subordination

and the Carathéodory theory. Examples are illustrated in the sequel involving

the modified Libera–Livingston–Bernardi integral operator over the open unit

disk. The result gives that this integral satisfies the definition of bounded turning

function (univalent analytic function).

KEYWORDS

analytic function, univalent function, Steiner symmetrization, subordination and
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1 Introduction

In convex geometry, the process of “Steiner symmetrization” is used to change an

existing convex body into a symmetric one when compared with a particular axis or plane.

Steiner symmetrization takes a convex body and replaces every point with the midpoint

of the line segment that goes from that point to its reflection across the selected axis or

plane. Because the resultant symmetric body and the original body share some geometric

features, analysis of the half plane becomes simpler. This transformation may streamline

computations and provide insightful findings in specific situations, such as geometric

inequalities and optimization issues affecting convex bodies. The definition of Steiner

symmetrization in a complex domain admits many formulas. Smith et al. [1] suggested

some Poincare domains � to define Steiner symmetrization, which are as follows:

�∗ = {ζ = χ + iy : |y| <
�χ

2
< ∞,� 6= Ø}

Peretz [2] considered the formula in the open unit disk � := {ζ ∈ C : |ζ | < 1} as

follows:

�∗ = {ζ ∈ � :ℜ(ζ ) > 0}.

The above definitions can sometimes yield loss in information when symmetrizing a

shape or function. This situation might not be desired, especially if the original shape or

function’s features or properties are crucial for analysis or interpretation. Depending on

the original form or function being symmetrical, Steiner symmetrization may or may not

be successful. The application of this type of approach may be limited by some geometries

or functions that are not well suited for symmetrization using this method. Moreover, the

computational cost of Steiner symmetrization can be high, particularly for intricate forms
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or functions. For some applications, especially those that call for

real-time or very real-time analysis, this computing expense can

render it unfeasible. Therefore, we aim to enhance the above

definitions using special functions.

In this study, we consider the function (see Figure 1) as follows:

L(ζ ) = log

(

1+ ζ

1− ζ

)

, |ζ | < 1, L(0) = 0.

This function maps � conformally onto the horizontal strip

5 = {ζ : |ℑζ | < π/2}. Moreover, this function maps the

hyperbolic geodesic (−1, 1) onto the real axis, and it maps the

curves equidistant from (−1, 1) onto the horizontal lines 5. To

define the Steiner symmetrization, we need the following function:

S(ζ ) = 1+ log

(

1+ ζ

1− ζ

)

= 1+ 2ζ +
(2ζ 3)

3
+

(2ζ 5)

5
+ O(ζ 6),

where S(0) = 1 (see Figure 2). Then, the Steiner symmetrization

becomes

�∗
ϕ =

{

ϕ ∈ P : |ϕ(ζ )| ≤ 1+ log

(

1+ r

1− r

)

, 0 < r < 1

}

,

where ϕ is analytic function in � ∈ P , where P is the class of

analytic function with the power series

ϕ(ζ ) = 1+ a1ζ + a2ζ
2 + ....

such that ϕ(0) = 1. A good example of this function (or the extreme

function of this class) is the Janowski function [3], which will be

investigated in the next section.

Our goal is to maximize the class of analytic functions that

are univalent. The Carathéodory theory and the idea of differential

subordination serve as the foundation for our approach. In the

sequel, illustrations are given. The study is organized as follows:

Section 2 deals with preliminaries and Section 3 involves the

main results.

2 Methods

For two analytic functions, f1(ζ ) and f2(ζ ) in � are called

subordinated denoting by f1(ζ ) ≺ f2(ζ ) if they satisfy f1(0) =

f2(0) and the inclusion property f1(�) ⊂ f2(�) (see [4]). As an

application, Ma-Minda formula for some special classes

(

ζ f ′(ζ )

f (ζ )

)

≺ ̺(ζ ), ̺(ζ ) = 1+ ̺1ζ + ̺2ζ
2 + ... ∈ P

for starlike functions, and

(

1+
ζ f ′′(ζ )

f ′(ζ )

)

≺ ρ(ζ ), ρ(ζ ) = 1+ ρ1ζ + ρ2ζ
2 + ... ∈ P

for convex functions, where ρ has a positive real part in�, ρ(0) = 1

and f (ζ ) ∈ N (�), the normalized class of analytic functions in �

with f (0) = 0 and f ′(0) = 1. Thus, f admits the power series

f (ζ ) = ζ +

∞
∑

n=2

anζ
n, ζ ∈ �.

In fact, the function f is starlike whenever
(

ζ f ′(ζ )
f (ζ )

)

∈ P , and it

is convex when
(

1+
ζ f ′′(ζ )
f ′(ζ )

)

∈ P .

The function log

(

1− ζ

1+ ζ

)

is starlike whenever−1 < ℜ(ζ ) < 0

or 0 < ℜ(ζ ) < 1. Moreover, it is convex whenever,−1 < ℜ(ζ ) < 1

and

−
√

1−ℜ(ζ )2 < ℑ(ζ ) <
√

1−ℜ(ζ )2, ζ ∈ �.
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FIGURE 3

ComplexPlot3D of
1+ ζ

1− ζ
.

This function is considered for symmetrization in the study

mentioned in Betsakos et al. [5]. While for the function 1 +
(

log

(

1+ ζ

1− ζ

))

is starlike and convex when −1 < ℜ(ζ ) < 0

or 0 < ℜ(ζ ) < 1. Note that

(

1+ ζ

1− ζ

)

is an extreme Janowski

function.

In our investigation, we concern about the Carathéodory

function (a function that maps � onto the right half plane), ϕ(ζ ),

which is involved in the inequalities (see Figure 3):

1+ σk

(

ζ ϕ′(ζ )

[ϕ(ζ )]k

)

≺
1+ ζ

1− ζ
, k = 0, 1, 2,

where ϕ(0) = 1 and ℜ(ϕ) > 0.

Our aim is to determine the upper bound of the parameter

σ , where the function ̺ ∈ � is analytic such that ̺(0) = 1

and ℜ(̺(ζ )) > 0. Note that the condition of �∗
ϕ , where ϕ(0) =

1,ℜ(ϕ) > 0 is equivalent to achieve the inequality:

ϕ(ζ ) ≺ 1+ log

(

1+ ζ

1− ζ

)

, ζ ∈ �,

where the function 1+ζ
1−ζ

is a Carathéodory function. Moreover, the

function 1 + log
1+ ζ

1− ζ
has a root ζ = 1+e

1−e and two branch points

at ζ = ±1, with the power series at ζ = −1

1+ log

(

1+ ζ

1− ζ

)

= (log(ζ + 1)+ 1−

log(2))+
(ζ + 1)

2
+

1

8
(ζ + 1)2

+
1

24
(ζ + 1)3 +

1

64
(ζ + 1)4 + O((ζ + 1)5)

and at ζ = 1 when ℑ( 1
(1−ζ )

) > 0

1+ log

(

1+ ζ

1− ζ

)

= (log(−2/(ζ − 1))+
(ζ − 1)

2
−

1

8
(ζ − 1)2 +

1

24
(ζ − 1)3 −

1

64
(ζ − 1)4

+
1

160
(ζ − 1)5 −

1

384
(ζ − 1)6+

O((ζ − 1)7))∗ + 1.

The notion of the Carathéodory function, often referred to

as the Carathéodory kernel function, is principally used in the

theory of univalent functions, which are complex functions that are

holomorphic (analytic) and injective (one-to-one).

3 Results

In this part, we illustrate the main results.

Theorem 3.1. Assume that the function ϕ ∈ � is analytic such that

ϕ(0) = 1 and ℜ(ϕ(ζ )) > 0. If

1+ σk

(

ζ ϕ′(ζ )

[ϕ(ζ )]k

)

≺
1+ ζ

1− ζ
, k = 0, 1, 2 (1)

then

ϕ(ζ ) ≺ 1+ log

(

1+ ζ

1− ζ

)

, ζ ∈ �, (2)

where

σ0 =
log(4)

log(3)
= 1.26186, σ1 =

log(4)

log(1+ log(3))
= 1.8701,

σ2 = 5.35044041019216.

Proof: Case 1.

Let k = 0. Then, by Equation 1, we get:

1+ σ0
(

ζ ϕ′(ζ )
)

≺
1+ ζ

1− ζ
, ζ ∈ �.

Define a function 8σ0 :� → C as follows:

8σ0 (ζ ) = 1−
(2 log(σ0 − σ0ζ ))

σ0
+

(2 log(σ0))

σ0
.

Clearly, 8σ0 (ζ ) is analytic in � such that 8σ0 (0) = 1, and it is

a solution of the first order differential equation

1+ σ0
(

ζ 8σ0 (ζ )
′
)

=
1+ ζ

1− ζ
, ζ ∈ �

Burt
1+ ζ

1− ζ
is starlike in �, and then according to

Miller-Mocanu Lemma in Miller and Mocanu [4] -P132, the

subordination

1+ σ0
(

ζ ϕ′(ζ )
)

≺ 1+ σ0
(

ζ 8σ0 (ζ )
′
)
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yields

ϕ(ζ ) ≺ 8σ0 (ζ ), ζ ∈ �.

Now, we aim to show that

8σ0 (ζ ) ≺ 1+ log

(

1+ ζ

1− ζ

)

, ζ ∈ �.

Obviously, 8σ0 (ζ ) achieves the inequality

1−
2 log(3/2)

σ0
= 8σ0 (

−1

2
) ≤ 8σ0 (

1

2
) = 1+

2 log(2)

σ0
, σ0 > 0.

Since 1+ log

(

1− ζ

1+ ζ

)

satisfies the following inequality

−0.09861... = 1− log(3) =

(

1+ log

(

1+ ζ

1− ζ

))

∣

∣

∣

ζ=−1/2
≤ (3)

(

1+ log

(

1+ ζ

1− ζ

))

∣

∣

∣

ζ=1/2
=

1+ log(3) = 2.0986...

this function has two branch points ζ = ±1, and then, we get

1− log(3) < 1−
2 log(3/2)

σ0
= 8σ0 (

−1

2
) ≤ 8σ0 (

1

2
) =

1+
2 log(2)

σ0
≤ 1+ log(3),

where σ0 =
log(4)

log(3)
= 1.26186 and 1−

2 log(3/2)
σ0

= 0.3573.

As a consequence, we obtain the inequality subordination

ϕ(ζ ) ≺ 8σ0 (ζ ) ≺ 1+ log

(

1+ ζ

1− ζ

)

, |ζ | ≤ 1/2.

Thus, inequality (Equation 2) is valid.

Case 2

Let k = 1. From Equation 1, we have:

1+ σ1

(

ζ ϕ′(ζ )

ϕ(ζ )

)

≺
1+ ζ

1− ζ
, ζ ∈ �.

Define a function 8σ1 :� → C as follows:

8σ1 (ζ ) =
(σ1 − σ1ζ )

−2
σ1

σ
− 2

σ1
1

.

Obviously, 8σ1 (ζ ) is analytic in � with 8σ1 (0) = 1. Moreover,

it is indicated a solution of the differential equation

1+ σ1

(

ζ 8σ1 (ζ )
′

8σ1 (ζ )

)

=
1+ ζ

1− ζ
, ζ ∈ �.

Then Miller-Mocanu Lemma implies that the subordination

1+ σ1

(

ζ ϕ′(ζ )

ϕ(ζ )

)

≺ 1+ σ1

(

ζ 8σ1 (ζ )
′

8σ1 (ζ )

)

gives

ϕ(ζ ) ≺ 8σ1 (ζ ), ζ ∈ �.

A computation yields

(
2

3
)

2
σ1 = 8σ1 (

−1

2
) ≤ 8σ1 (

1

2
) = 2

2
σ1 , σ1 > 0.

By using Equation 3, we obtain the inequality:

1− log(3) < (
2

3
)

2
σ1 = 8σ1 (

−1

2
) ≤ 8σ1 (

1

2
) = 2

2
σ1 ≤ 1+ log(3),

where σ1 =
log(4)

log(1+ log(3))
= 1.8701.

As a consequence, we obtain the inequality subordination:

ϕ(ζ ) ≺ 8σ1 (ζ ) ≺ 1+ log

(

1+ ζ

1− ζ

)

, |ζ | ≤ 1/2.

Thus, inequality (Equation 2) is valid.

Case 3

Let k = 2. From Equation 1, we have:

1+ σ2

(

ζ ϕ′(ζ )

ϕ2(ζ )

)

≺
1+ ζ

1− ζ
, ζ ∈ �.

Define a function 8σ2 :� → C as follows:

8σ2 (ζ ) = 1−
σ2

σ2 − 2 log(σ2 − σ2ζ ))
+

σ2

σ2 − 2 log(σ2)
.

Obviously, 8σ2 (ζ ) is analytic in � with 8σ2 (0) = 1. Moreover,

it is indicated as a solution of the differential equation:

1+ σ2

(

ζ 8σ2 (ζ )
′

82
σ2
(ζ )

)

=
1+ ζ

1− ζ
, ζ ∈ �.

Then Miller-Mocanu Lemma implies that the subordination

1+ σ2

(

ζ ϕ′(ζ )

ϕ2(ζ )

)

≺ 1+ σ2

(

ζ 8σ2 (ζ )
′

82
σ2
(ζ )

)

gives

ϕ(ζ ) ≺ 8σ2 (ζ ), ζ ∈ �.

A computation yields

8σ2 (
−1

2
) =

σ2

σ2 − 2 log(σ2)
+

σ2

2 log( 3σ22 )− σ2
+ 1

and

8σ2 (
1

2
) =

σ2

σ2 − 2 log(σ2)
+

σ2

2 log( σ2
2 )− σ2

+ 1,

which means that

8σ2 (
−1

2
) ≤ 8σ2 (

1

2
), σ2 > 0.

By using Equation 3, the inequality

1− log(3) < 8σ1 (
−1

2
) ≤ 8σ1 (

1

2
) ≤ 1+ log(3),
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has a maximum solution when

σ2 = 5.35044041019216...

As a consequence, we obtain the inequality subordination:

ϕ(ζ ) ≺ 8σ2 (ζ ) ≺ 1+ log

(

1+ ζ

1− ζ

)

, |ζ | ≤ 1/2.

Thus, inequality (Equation 2) is valid.

Example 3.2. One of the important applications in this direction

is the modified Libera–Livingston–Bernardi integral operator over

�, which has the following structure:

F(f (ζ )) =
c+ 1

ζ c

∫ ζ

0
τ c−1f (τ ) dτ .

For ζ
1−ζ

= ζ + ..., the integral satisfies

F(f (ζ )) = (c+ 1)ζ−cBζ [c+ 1, 0]

= ζ +
((c+ 1)ζ 2)

(c+ 2)
+

((c+ 1)ζ 3)

(c+ 3)
+

((c+ 1)ζ 4)

(c+ 4)
+

((c+ 1)ζ 5)

(c+ 5)
+ O(ζ 6)

where Bζ [, ] indicates the Beta function. Moreover, for ζ

(1−ζ )2
=

ζ + ..., the integral satisfies

F(f (ζ )) = (c+ 1)ζ−c

(

−
ζ c+1

ζ − 1
− cBζ [c+ 1, 0]

)

= ζ +
(2(c+ 1)ζ 2)

(c+ 2)
+

(3(c+ 1)ζ 3)

(c+ 3)
+

(4(c+ 1)ζ 4)

(c+ 4)
+

(5(c+ 1)ζ 5)

(c+ 5)
+ O(ζ 6).

Hence, the integral is preserved the normalization f (0) =

f ′(0)− 1 = 0. Let

ϕ(ζ ) = F(f (ζ ))′ = 1+ ..., F(f (ζ )) =
c+ 1

ζ c

∫ ζ

0
τ c−1f (τ ) dτ ,

with ℜ
(

ϕ(ζ )
)

> 0. Then, a computation yields

1+ σk
ζϕ(ζ )′

[ϕ(ζ )]k
= 1+ σk

(

ζ
[

F(f (ζ ))′
]′

[

F(f (ζ ))′
]k

)

.

We have the following result:

Proposition 3.3. Consider f (ζ ) is a normalized analytic function

in � such that f (0) = f ′(0) − 1 = 0 and for ϕ(ζ ) =

F(f (ζ ))′, F(f (ζ )) = c+1
ζ c

∫ ζ

0 τ c−1f (τ ) dτ , with ℜ(ϕ(ζ )) > 0. If

1+ σk

(

ζ
[

F(f (ζ ))′
]′

[

F(f (ζ ))′
]k

)

≺
1+ ζ

1− ζ
, k = 0, 1, 2

then

F(f (ζ ))′ ≺ 1+ log

(

1+ ζ

1− ζ

)

, ζ ∈ �,

where

σ0 =
log(4)

log(3)
= 1.26186, σ1 =

log(4)

log(1+ log(3))
= 1.8701,

σ2 = 5.35044041019216.

Proposition 3.3 indicates that F(f (ζ )) is bounded

turning function. A bounded turning function is a type of

mathematical function made up of straight line segments

connected linked at predetermined locations, each segment

having a bounded slope (or derivative). It is sometimes

referred to as a piecewise linear function or zigzag function.

Numerous applications, including as robotics, computer

graphics, and signal processing, frequently make advantage

of these features. Moreover, bounded turning describes the

restriction that the rate of change (slope or derivative) of

the function is restricted within a given range. This indicates

that the graph of the function shows moderate shifts in

orientation within predetermined bounds rather than abrupt

or unbounded alterations.

4 Conclusion and discussion

The above investigation concerned about a new definition of

the Steiner symmetrization using a special function (1+ log( 1+ζ
1−ζ

)).

The main result was about using the suggested definition to

optimize a class of analytic functions. This optimization showed

the geometric symmetrization of the class. In our research, we

utilized the differential subordination based on Miller–Mocanu

Lemma. The effort is satellited in the open unit disk, where the

symmetrization can be recognized. Moreover, our result yielded

the type of analytic functions that the set �∗
ϕ can be contained.

This type was the Carathéodory function. Because it offers a

quantitative assessment of how these functions behave closely

to a certain point, the Carathèodory function is significant in

the theory of univalent functions, like the function 1+ζ
1−ζ

, ζ ∈

�. It is useful in gaining an understanding of conformal

mappings and geometric function theory among other fields of

complex analysis.

Moreover, among polygons, Steiner symmetrization is a potent

approach for maximizing the Laplace operator’s initial eigenvalue

with Dirichlet boundary conditions. It can use the characteristics

of symmetric domains to minimize the eigenvalue by reshaping

the polygon into a more symmetrical form. Nevertheless, careful

numerical implementation and consideration of the particular

qualities of the initial polygonal domain are necessary for the actual

application of the technique. Depending on the domain’s geometry,

such as its volume and eigenvalue index, Polya’s theorem gives a

lower bound on the Laplace operator’s eigenvalues. This facilitates

the comprehension of the relationship between the eigenvalues

and the domain’s size and form. According to Hirsch’s theorem,

a domain’s initial eigenvalue does not rise when it is symmetric.

This is helpful in optimization issues when the goal is to change

the domain into a more symmetric shape in order to reduce the

first eigenvalue.
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