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Expand-contract plasticity on the
real line

Dirk Langemann1 and Olesia Zavarzina2*

1Institute of Partial Di�erential Equations, Technische Universität Braunschweig, Braunschweig,

Germany, 2Department of Mathematics and Informatics, V.N. Karazin Kharkiv National University,

Kharkiv, Ukraine

The study deals with plastic and non-plastic sub-spaces A of the real-line R with

the usual Euclidean metric d. It investigates non-expansive bijections, proves

properties of suchmaps, and demonstrates their relevance by hands of examples.

Finally, it is shown that the plasticity property of a sub-space A contains at least

two complementary questions, a purely geometric and a topological one. Both

contribute essential aspects to the plasticity property and get more critical in

higher dimensions and more abstract metric spaces.
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1 Introduction

Here, we investigate properties of plastic metric spaces. Shortly speaking, ametric space

is plastic if every non-expansive bijection is an isometry, cf. Section 2.

We will observe that the plasticity property consists of a geometrical sub-problem and

a topological sub-problem. That is the reason why plasticity of a metric space, which can

be easily defined, evolves as a challenging mathematical problem. In particular, we observe

that the plasticity of a metric space is not inherited from sup-spaces, i. e., from including

spaces, and it does not inherit to sub-spaces, i. e., to included spaces.

In this study, we concentrate on metric spaces which are sub-spaces of the real axis,

and in this apparently simple situation, the typical difficulties come to the light.

The probably first study devoted to the plasticity problem is the study mentioned in

the reference [1]; however, the term "plasticity" appeared much later and the problem itself

remained unnoticed for several decades. A short literature survey and the information

about the current progress in solution of the problem are shown in Section 2.2.

The study is organized as follows. Section 2 introduces the basic concepts and illustrates

the existence of non-expansive bijections in the case that the metric space is a union of

closed intervals. This case demonstrates the geometrical aspects of the problem. Then,

Section 3 discusses the plasticity of metric spaces by means of metric spaces which are

unbounded sequences of points, investigates the relevance of accumulation points and

continuous subsets, and attacks themore topological parts of the plasticity concept. Finally,

Section 4 resumes the observations and gives a short outlook to further research.

2 Basic concepts

We denote a metric space by (A, d) where A is the set of points and d : A × A →

R+ = {x ∈ R : x ≥ 0} is the distance obeying the known axioms of positivity, symmetry,

non-degeneracy, and the triangle inequality.
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2.1 Non-expansive maps

A map ϕ : A → A from the metric space A into itself is called

non-expansive if

d(ϕ(x),ϕ(y)) ≤ d(x, y) for all x, y ∈ A (1)

is fulfilled. If the equality holds for all pairs x, y ∈ A, ϕ is an

isometry.

The condition in Equation (1) is equivalent to the Lipschitz-

continuity of the map ϕ on A with Lipschitz constant 1. Thus, a

non-expansive ϕ is also continuous on A.

We will investigate metric spaces A ⊆ Aex which are embedded

in a metric sup-space (Aex, dex) because the space Aex might be

known and well understood, and thus, its points or rather a

selection of them serve as elements of A. Now, it is obvious that

the restriction of the metric space (Aex, dex) to the set A leads to the

metric space (A, d) by the restriction of the distance d = dex|A×A

to the set A. It is less obvious whether a metric space (A, d) can be

extended to a sup-set Aex by choosing an appropriate dex. However,

it is always possible, to choose a function d̂ex : Aex × Aex → R+,

which fulfills the properties of symmetry, non-degeneracy, and

positivity with d̂ex|A×A = d, which of course is not a metric in

general. Then, we can define the metric

d̃ex(x, y) = inf
n,{z0 ,...,zn}

[
d̂ex(x, z0)+

n−1∑

i=0

d̂ex(zi, zi+1)+ d̂ex(zn, y)

]

as the infimum over all possible paths of arbitrary length between x

and y. However, such a metric d̃ex may not really be an extension.

As in the real life, if one builds a new paths, which are shorter, the

old ones may no longer be used. In our notation, this means that it

may happen d̃ex(x, y) < d(x, y) for some x, y ∈ A.

Nevertheless, one may define a real extension dex of the metric

d, which is more artificial and a bit similar to the French railways

metric in the following way. Let us fix a point x0 of the set A and

define an arbitrary metric dAex on the set (Aex \ A) ∪ {x0}, which

might be the discrete metric or any other metric. Although less

intuitive, the needed extension is

dex =





d(x, y), for x, y ∈ A;

dAex (x, y), for x, y ∈ (Aex \ A) ∪ {x0};

d(x, x0)+ dAex (x0, y) for x ∈ A, y ∈ (Aex \ A).

existing and easily available. Therefore, we will not distinguish

between dex and d in the following but use the distance d in the

extended metric space and sub-space.

Oppositely, it is not evident whether the existence of a non-

expansive map ϕex : Aex → Aex provides a non-expansive map

ϕ : A → A because the simple restriction ϕ = ϕex|A, although

still Lipschitz continuous, is not necessarily a map into A. It might

happen that the image imϕ = ϕ(A) ⊆ Aex is not a subset of A.

The opposite question whether a non-expansive ϕ : A → A can

be extended to a non-expansive map on the extended space Aex

is the question about the extension of Lipschitz maps, preserving

the Lipschitz constant. In particular, it is always possible for real-

valued functions according to McShane’s extension theorem [2].

For functions from a subset ofRn toRn, the extension to the whole

Euclidean space is possible due to Kirszbraun’s theorem [3].Wewill

observe that non-expansive maps pose a lot of interesting questions

and some of them can be answered.

2.2 Plastic metric spaces

Let us define a plastic metric space.

Definition 2.1. A metric space A is called expand-contract plastic

(EC-plastic)—or just plastic—if every bijective non-expansive map

ϕ : A → A is an isometry.

Definition 2.1 defines a plastic metric space A via the non-

existence of any non-expansive bijection of the metric space A to

itself, which is not an isometry. Some simple examples are the non-

plastic metric space A = R with the non-isometric non-expansive

bijective map ϕ : x 7→ x/2 and the plastic metric spaceA = [0, 1] ⊂

R with exactly the two non-expansive bijections ϕ1 = id. and

ϕ2 : x 7→ 1− x, which are both isometries.

The only general result concerning plasticity of metric space

states that every totally bounded metric space is plastic, see

Naimpally et al. [4] for details. In fact, in the study mentioned in

the reference [4], a more general result was obtained, i. e., so-called

strong plasticity of totally bounded metric spaces was shown.

Definition 2.2. A metric space A is called strongly plastic if for

every mapping ϕ : A → A the existence of points x, y ∈ A with

d(ϕ(x),ϕ(y)) > d(x, y) implies the existence of two points x̃, ỹ ∈ A

for which d(ϕ(x̃),ϕ(ỹ)) < d(x̃, ỹ) holds true.

This property and its uniform version were researched in the

study mentioned in the reference [5]. It says that any expansion of

a distance between two points implies the existence of two other

points which are contracted by the map ϕ. Observe it is extremely

important not to interchange expansion and contraction.

In the study mentioned in the reference [6], the following

intriguing question was posed.

Problem 2.3. Is it true, that the unit ball of an arbitrary Banach

space is plastic?

Observe that in finite dimensions, this question is answered

positively since in finite dimensions, the unit ball is compact and

thus totally bounded. Moreover, the question is open only in the

infinite dimensional case and the following more general problem.

Problem 2.4. For which pairs (X,Y) of Banach spaces, every

bijective non-expansive map ϕ : BX(0) → BY (0) between the unit

balls is an isometry?

There are a number of relatively recent particular results,

devoted to these problems, see Angosto et al. [7], Haller et al. [8],

Kadets andd Zavarzina [9], Leo [10], and Zavarzina [11]. There

exists also a circle of problems connected with plasticity property

of the unit balls. In the study mentioned in the references [12] and

[13], the so called linear expand-contract plasticity of ellipsoids in

separable Hilbert spaces was studied, which means that only the

linear non-expansive bijections were considered in the definition

of plasticity.
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Many natural questions concerning plasticity seem to have no

answer or even have not yet been considered. In 2020, Behrends

[14] draw attention to the fact that nobody studied the subsets of

the real line with respect to the plasticity problem. He tried to attack

this problem and received some results in this direction, however,

decided not to publish them. Moreover, the following problem is

still open.

Problem 2.5. What characterizes plastic sub-spaces of the real line

R with the usual metric d?

In spite of the seeming simplicity of the question, it is not so

easy to deal with. Let us first list the previously known results. As

we mentioned before, the set R itself with the usual metric is not

plastic. If one considers any bounded subset, it is already plastic

due to its total boundedness.

On the other hand, it is easy to show that the set of integers Z

with the same usual metric is plastic in spite of its unboundedness

and the set R \ Z. The proof of the plasticity of both mentioned

spaces may be found in the study mentioned in the reference [4]. In

the proof of plasticity of the set R \ Z, one of the possible cases was

missed; nevertheless, the statement is still correct.

Already, these examples show that there is no simple answer

to the question whether a metric space is plastic or not. Rather we

could give the interpretation that there are some critical points,

e. g., the integers in these examples, which every non-expansive

bijection ϕ definitely has to pass, what relates to the geometry of

the metric space A, and that there are some parts of the metric

space which cannot be glued to each other such as singular points or

open intervals, what relates to the topological aspects of plasticity.

We observe that sub-spaces of the real axis are already sufficiently

multifaceted to study the plasticity problem of metric spaces.

The question whether more general metric spaces are plastic,

provoke analogous difficulties, and again contain geometrical and

topological aspects.

Here, we will generalize the known results and say something

more about plastic sub-spaces of the real line. The previously

mentioned results explain why we consider only unbounded sets

in what follows.

All over the text, we use the notion d for the usual Euclidean

metric d(x, y) = |x − y| for x, y ∈ R. Round brackets denote open

intervals (x, y) = {z ∈ R : x < z < y} and square brackets denote

closed intervals [x, y] = {z ∈ R : x ≤ z ≤ y}.

2.3 A subset of the real axis

Wehave observed that the real axisR has sufficiently interesting

metric sub-spaces for the investigation of plasticity. The Lipschitz

condition in Equation (1) lets us easily decide whether a map

ϕ : R → R is non-expansive or not—just by the graph of the map

ϕ, see Figure 1. Due to our considerations in Section 2.1, which is

applied here with A as union of intervals and Aex = R, the map

ϕ can be extended—not necessarily in a unique manner—as non-

expansive function ϕex on the entire axisR. Thus, ϕex is continuous

on R.

Figure 1 shows examples of bijective maps from the union of

intervals A = . . . ∪ [a2, a3] ∪ [a4, a5] ∪ . . . ⊂ R onto itself. In

this example, the closed interval and the interspaces have increasing

lengths, in detail aℓ+1 − aℓ ≥ aℓ−1 − aℓ−2 for all ℓ ∈ Z. Due to its

continuity, every bijection ϕ passes monotonically a rectangle in

A × A. In this example, with increasing lengths of the respective

intervals, we easily detect particular extensions ϕex : R → R with

ϕex|A = ϕ and a slope bounded by 1 because the endpoints of

the interspace could be used in Equation (1). Hence, the functions

id. and ϕi, i = 1, 2 below the diagonal are non-expansive, and the

function χ above the diagonal is expansive.

3 Main results

Let us start with some interesting observations on simple

situations of A, e. g., some sets of singular points.

Proposition 3.1. Let A = {ai}
+∞
i=−∞ ⊂ R be an increasing sequence

that obeys

d(ai−1, ai) ≤ d(ai, ai+1) for all i ∈ Z (2)

and

d(aj−1, aj) < d(aj, aj+1) for at least one i ∈ Z. (3)

Then (A, d) is not plastic.

Proof. The shift ϕ : ai 7→ ai−1 is an example of a non-expansive

bijection which is not an isometry.

Remark 3.2. The relation sign in Equations (2), (3) might be

commonly inverted so that the distances between two subsequent

points of A decrease instead of increase, and the statement remains

unchanged.

Furthermore, let us consider sets which are bounded from one

side. Let us recall the definition of an accumulation point, which we

will use in what follows.

Definition 3.3. An accumulation point (or limit point) of a set A

in a metric space X is a point x, such that every neighborhood of x

with respect to the metric on X contains a point of A which differs

from the point x.

An accumulation point of a set A does not have to be an element of

A. We will proceed with the following lemma.

Lemma 3.4. Let A ⊂ R be a set without accumulation points

which is bounded from one side. Let a be aminimal—ormaximal—

element of A and ϕ : A → A be a bijective non-expansive map.

Then ϕ(a) = a.

Proof. Without loss of generality, we may consider the case when a

is a minimal element. Assume ϕ(a) 6= a. Then there is b ∈ A such

that ϕ(b) = a.

Claim: Let be c ∈ A. Then c ≤ b implies ϕn(c) ≤ b for every

n ∈ N.

Proof of the Claim: We will use the induction in n. Indeed, if

ϕn(c) ≤ b and ϕn+1(c) > b we have

d(ϕn(c), b) ≥ d(ϕn+1(c), a) > d(b, a).
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FIGURE 1

Non-expansive maps ϕ1, ϕ2, and id. and an expansive map χ for a union A ⊂ R of closed intervals of increasing length. The Cartesian product A× A is

given in gray, and the bijections are black.

This contradiction completes the proof of the Claim.

Since

d(a, b) ≥ d(ϕ(a),ϕ(b)) = d(ϕ(a), a),

we have ϕ(a) ≤ b. Thus, the Claim provides ϕn(a) ≤ b for every

n ∈ N. Now, the segment [a, b] is a trap for those points, which

were mapped there. Our aim is to find such a “trapped” point out

of the interior of the segment [a, b] and show that this leads to a

contradiction. There are only two possible cases.

Case 1: ϕ(a) = b. In this case, points a and b were swapped

by ϕ. Then, such a “trapped” point is the closest from the right-

hand side point to b. There is c > b such that d(b, c) < d(b, d)

for any d > b. Such point c exists since A is unbounded from

above and there is no accumulation points. The point c cannot be

mapped outside the segment [a, b] since it gives the contradiction

with non-expansiveness of ϕ.

Case 2: ϕ(a) < b. With such a condition, a “trapped” point is

ϕ(a) itself.

In both cases, we have a point t which does not belong to the

interior of the segment [a, b] such that ϕ(t) belongs to this interior.

Consider an orbit of this point t, i. e., the set {ϕn(t)}∞n=1. Due to the

bijectivity of ϕ, this orbit does not have repeating elements. Thus,

we have obtained a bounded infinite subset in A which contradicts

the fact that A does not have accumulation points.

Remark 3.5. The condition about the absence of accumulation

points in Lemma 3.4 cannot be omitted.

This remark is confirmed by the following example.

Example 3.6. Let A = Z+ ∪ Q, where Q = { 14 + 1
n , n ≥ 4}. The

bijective non-expansive map ϕ is

ϕ(a) =





a− 1, for a ∈ N,
1
2 , for a = 0,
1
4 + 1

n+1 , for a = 1
4 + 1

n ∈ Q.

We observe that ϕ is bijective and it does not save the minimal

element of A. We check that it is non-expansive.

1. For all a, b ∈ N, the isometry d(ϕ(a),ϕ(b)) = d(a, b) is valid.

2. For a ∈ N, b = 0, it holds d(ϕ(a),ϕ(b)) = |a− 3
2 | < a = d(a, b).

3. For a ∈ N, b = 1
4 + 1

n ∈ Q, we have d(ϕ(a),ϕ(b)) =

|a− 5
4 −

1
n+1 | < |a− 1

4 − 1
n | = d(a, b).

4. For a = 0, b = 1
4 +

1
n ∈ Q, it holds d(ϕ(a),ϕ(b)) = | 14 −

1
n+1 | <

| 14 + 1
n | = d(a, b).
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5. In the case a = 1
4 + 1

n ∈ Q, b = 1
4 + 1

m ∈ Q, without loss of

generality we may assume n < m. Then

d(ϕ(a),ϕ(b)) =
1

n+ 1
−

1

m+ 1
<

1

n
−

1

m
= d(a, b).

The described set is shown on the left of Figure 2.

Lemma 3.4 immediately implies the following corollary.

Corollary 3.7. Let A ⊂ R be an unbounded set without

accumulation points. Let A have a minimal or maximal element

and let ϕ : A → A be a bijective non-expansive map. Then, ϕ is

an isometry, moreover, the identity.

Proof. Without loss of generality, we may consider the case when

a is a minimal element. Let us show that ϕ(x) = x for every

x ∈ A. Indeed, for the minimal element a, Lemma 3.4 ensures

that ϕ(a) = a. Now suppose for some fixed y ∈ A, the condition

ϕ(x) = x holds for every x < y, x ∈ A. Consider

A1 = A \
{ ⋃

x∈A,x<y

{x}
}
.

Then, ϕ|A1 : A1 → A1 is a bijective non-expansive map, and y

is a minimal element. Then ϕ(y) = y due to Lemma 3.4.

Proposition 4.1 in Naimpally et al. [4] states that for convex (in the

sense of the same study) metric spaces, hereditarily EC-plasticity

implies boundedness. Moreover, for convex subsets in Euclidean

R
n, hereditarily EC-plasticity and boundedness are equivalent.

However, the authors note that convexity is a too strong condition.

In Naimpally et al. [4], Theorem 4.3 states that an unbounded

metric space with at least one accumulation point contains a non-

plastic subspace. Corollary 3.7 demonstrates that the presence of an

accumulation point is essential in the mentioned theorem, since it

allows to build examples of unbounded hereditarily plastic spaces.

Let us go back to Example 3.6 and remark another interesting

property of non-expansive bijections on R. Suppose we have a set

A ⊂ R and a function ϕ : A → A. We will say that ϕ preserves the

relation “between” on the set A if for any x, y, z ∈ A with x < y < z

we have ϕ(x) < ϕ(y) < ϕ(z). Example 3.6 shows that non-

expansive bijections do not have to preserve the relation “between.”

Surprisingly, there is an example demonstrating the same property

with a set without any accumulation points.

Example 3.8. Let A = N ∪ Q, where Q = {2k, k ∈ Z−}. The

bijective non-expansive map ϕ is defined by

ϕ(a) =

{
a+ 6, if a ≤ −4,

a+ 3, otherwise.

The map ϕ does not preserve the relation “between” since

−4 < −2 < 0 but ϕ(−2) < ϕ(−4) < ϕ(0). Let us check that ϕ

is non-expansive.

1. If both a, b ≥ −2 or both a, b ≤ −4, the non-expansiveness of ϕ

is obvious.

2. If a ≥ −2 and b ≤ −4, d(ϕ(a),ϕ(b)) = |a− b− 3| ≤ |a− b| =

d(a, b). Only for a = −2 and b = −4, the inequality a − b < 3

is valid, but even in this case, the previous inequality is true.

The described set is shown on the right of Figure 2.

Furthermore, we are going to present a sufficient condition for

a set in R to be plastic. Let us introduce the set

DA = {p ∈ R : p = d(a, b) for some a, b ∈ A with [a, b]∩A = {a, b}}.

Obviously, several pairs of points may be situated in the same

distance. That is why for every p ∈ DA, we call its multiplicity the

number of pairs of points in A which are on the distance p. This

multiplicity may be finite or infinite.

Theorem 3.9. Let A ⊂ R has no accumulation points and let DA

has a maximal element of finite multiplicity or a minimal element

of finite multiplicity. Then, (A, d) is a plastic metric space.

Proof. Without loss of generality, we may assume that DA has a

minimal element a ∈ R of finite multiplicity k ∈ N. Let us denote

Xa = {xn ∈ A, n = 1, . . . , 2k, d(xi, xi+1) = a, i = 1, 3, . . . , 2k− 1}.

Let us take xi ≤ xj for all i, j with 1 ≤ i < j ≤ 2k. Consider

an arbitrary non-expansive bijection ϕ : A → A. Due to the non-

expansiveness of ϕ, we may conclude that ϕ maps Xa bijectively

onto itself. Thus, ϕ|Xa is an isometry on Xa. In particular, we find

d(x1, x2k) = d(ϕ(x1),ϕ(x2k)). Since this distance is the biggest one

on Xa, either ϕ(x1) = x1 and ϕ(x2k) = x2k or ϕ(x1) = x2k and

ϕ(x2k) = x1. We will refer them as cases 1 and 2, respectively. In

the first case, obviously, for every x ∈ A with x1 < x < x2k, we get

ϕ(x) = x, so, in this case, ϕ|[x1 ,x2k]∩A is the identity. In the second

case, if the structure ofA allows it, ϕ|[x1 ,x2k]∩A is the inversion, called

total symmetry. Furthermore, following the similar procedure as in

Lemma 3.4, we have that in the first case, ϕ is the identity, and in

the second case ϕ is the total symmetry.

Remark 3.10. The conditions of Theorem 3.9 are sufficient but not

necessary for the plasticity of a set without accumulation points.

To make sure that the previous Remark 3.10 is true, one may

consider the space (Z, d). For DZ, the minimal and the maximal

elements are equal to 1 and have infinite multiplicity, but the space

is plastic. However, we constructed the next example, which is less

trivial, to show that plastic spaces which do not satisfy the condition

of the previous theorem may have richer structure.

Example 3.11. Let A = {ai}
i=∞
i=−∞ ⊂ R, where {ai}

i=∞
i=−∞ is an

increasing sequence such that

d(ai, ai+1) =





|k| + 1, for i = 2k, k ∈ Z,
1

k+1 , for i = 2k− 1, k ∈ N,
1

|k|+2 , for i = 2k− 1, k ∈ Z−.

The corresponding DA has no minimal or maximal element.

However, (A, d) is plastic. In fact, let ϕ : A → A be a non-expansive

bijection. Then,

d(ϕ(a0),ϕ(a1)) ≤ d(a0, a1) = 1.

Suppose d(ϕ(a0),ϕ(a1)) =
1
n , where n ≥ 2. Consider the open

ball with the radius n− 1 centered in ϕ(a0). Due to the structure of

A, this ball contains only the point ϕ(a1), except for the center. On
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FIGURE 2

(Left) Illustration of Example 3.6. (Right) Illustration of Example 3.8. The gray dots on the axes indicate A. The black dots mark the respective

bijection. Clearly, no connection of two points has a slope larger than 1.

the other hand, the open ball with the radius n − 1 centered in a0,

and for n ≥ 3, it contains more than two points, and for n = 2, it

contains two points but does not contain a1. In both cases, we have

a contradiction to the non-expansiveness of the map ϕ. That is why

the only possible option is as follows:

d(ϕ(a0),ϕ(a1)) = d(a0, a1) = 1.

Furthermore, just in the same way as in Theorem 3.9, we have

that ϕ is either the identity or the inversion.

Now let us speak about the subsets which contain a continuous

part. One may prove the following statement in the same way as

the Proposition 3.1.

Proposition 3.12. Let be

A =

+∞⋃

i=−∞

(ai, bi) ⊂ R,

where bi < ai+1 be such a sequence of intervals that

d(ai, bi) ≤ d(ai+1, bi+1) (4)

and

d(bi−1, ai) ≤ d(bi, ai+1) (5)

for all i ∈ Z. Furthermore, there exists j ∈ Z such that

d(aj, bj) < d(aj+1, bj+1) or d(bi−1, ai) < d(bi, ai+1). (6)

Then, (A, d) is not plastic.

Remark 3.13. In the same way as in Proposition 3.1, the relation

signs in Equations (4-6) might be commonly inverted.

Here is one more observation.

Proposition 3.14. Let A ⊂ R contain an interval (a,+∞) or

(−∞, a). Then, (A, d) is not plastic.

Proof. Without loss of generality, we discuss the case with (a,+∞).

Let us define the map ϕ with

ϕ(x) =

{
ϕ(x) = x, if x /∈ (a,+∞),

ϕ(x) = x+a
2 , otherwise.

This map is non-expansive, bijective, and, at the same time, not

an isometry.

In Naimpally et al. [4], Theorem 3.9 shows the plasticity of the

space R \ Z. Unfortunately, the proof misses the case that the

non-expansive bijection is a symmetry. However, the statement

itself is true. One may use the same reasoning to prove the next

proposition.

Proposition 3.15. Let

A =

+∞⋃

i=−∞

(ai, bi) ⊂ R,

where

d(ai, bi) = d(ai+1, bi+1) and d(bi, ai+1) = d(bi−1, ai).

Then, (A, d) is plastic.

Remark 3.16. Propositions 3.12 and 3.15 hold true with the closed

intervals.

Remark 3.17. On the other hand, if we consider in the statement of

Proposition 3.15 half-intervals,

A =

+∞⋃

i=−∞

[ai, bi) ⊂ R or A =

+∞⋃

i=−∞

(ai, bi] ⊂ R

(A, d) is already a non-plastic space.
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FIGURE 3

Oppositely to Figure 1, half-open intervals allow that ϕ does not pass entire rectangles in A× A. Rather, it might jump where the intervals can be

glued to each other. Remark that this example contains a first half-open interval and all the following intervals are half-open, cf. bijectivity. The

topological properties of the intervals in A enter the plasticity problem.

Remark 3.18. If we consider in the same statement the set of the

form,

A =

n⋃

i=−∞

[ai, bi] ∪
+∞⋃

i=n+1

(ai, bi] ⊂ R, where n ∈ N,

(A, d) is also a non-plastic space.

Figure 3 illustrates the previous remark.

The reader easily provides more examples which consist of

open or closed intervals together with half-intervals, all with the

same lengths. Again, we remark that the end-points of the intervals

are critical points for the plasticity property.

4 Conclusion

The analysis of plastic sub-spacesA of the real-lineR has shown

that first, the Lipschitz continuity of the map ϕ : A → A with

Lipschitz constant 1 leads to useful and instructive illustrations of

the non-expansivity of the map ϕ, to which it is identical.

The plasticity property of a metric space turned out

to contain two complementary aspects, a purely geometrical

one and a topological one. Already on the real-line R, the

different nature of both aspects become visible. Whereas the

geometrical aspect is an extension of the non-expansivity of

ϕ on a simply connected interval, the topological aspect leads

to the question whether two or more sub-intervals can be

glued at critical points by piecewise translations. Therefore, the

investigation of sub-spaces of the real-line R gives an appropriate

framework for the investigation of the plasticity of metric

spaces.

We expect that the interplay between the two types of nature of

the problem gets more severe in higher dimensions. Already unions

of rectangles and cuboids as sub-spaces of the d-dimensional

Euclidean space R
d give a tremendous multiplicity of open, half-

open, and closed edges and sides—complete or partial.

The named interplay between geometry and topology of the

metric spaces gets more andmore complicated and less intuitive the

more abstract and themore elaborated themetric spaces are.We do

not expect any clarification, for example, metric spaces of functions

before sub-spaces of the Euclidean spaces are understood.

Future research will concentrate on the question, what else can
be said about plastic and non-plastic sub-spaces of the space (R, d).
Furthermore, we will explore the extension of a metric space A to

larger sets inAex which containA. In particular, themetric hull, i. e.,
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the set

hullAex (A) =
{
x ∈ Aex : ∃y, z ∈ A : d(y, z) = d(y, x)+ d(x, z)

}

⊆ Aex,

gives interesting perspectives in the context of the plasticity

problem for the specification Aex = R. We conjecture that the

metric hull is the smallest proper extension of the metric space,

which is simply connected to Aex and where the plasticity is

dominated by the geometry. Therefore, the topology might be sub-

ordinated. In the medium term, we hope for an insight into the

question how geometry and topology interact in the plasticity of

a metric space.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

OZ: Writing – review & editing, Writing – original draft,

Project administration, Formal analysis, Conceptualization. DL:

Validation, Writing – review & editing, Writing – original draft,

Visualization, Methodology.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The research

was partially supported by the Volkswagen Foundation grant

within the frameworks of the international project “FromModeling

and Analysis to Approximation.” OZ was also partially supported

by Akhiezer Foundation grant, 2023.

Acknowledgments

The authors are grateful to Vladimir Kadets for valuable

remarks and pointing us the results about the extension of Lipschitz

maps. The authors are also thankful to Ehrhard Behrends for

drawing our attention to the problem considered in this study.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

1. Freudenthal H, Hurewicz W. Dehnungen, verkürzungen, isometrien. Fund Math.
(1936) 26:120–2. doi: 10.4064/fm-26-1-120-122

2. McShane EJ. Extension of range of functions. Bull Amer Math Soc. (1934)
40:837–42. doi: 10.1090/S0002-9904-1934-05978-0

3. Kirszbraun MD. Über die zusammenziehende und lipschitzsche
transformationen. Fund Math. (1934) 22:77–108. doi: 10.4064/fm-22-1-77-108

4. Naimpally SA, Piotrowski Z, Wingler EJ. Plasticity in metric spaces. J Math Anal
Appl. (2006) 313:38–48. doi: 10.1016/j.jmaa.2005.04.070

5. Kadets V, Zavarzina O. Plastic pairs of metric spaces. J Math Anal Appl. (2023)
127435. doi: 10.1016/j.jmaa.2023.127435

6. Cascales B, Kadets V, Orihuela J, Wingler EJ. Plasticity of the unit ball of a strictly
convex Banach space. Rev Real Acad Cienc Exactas Fís Nat A Mat. (2016) 110:723–7.
doi: 10.1007/s13398-015-0261-3

7. Angosto C, Kadets V, Zavarzina O. Non-expansive bijections, uniformities and
polyhedral faces. J Math Anal Appl. (2019) 471:38–52. doi: 10.1016/j.jmaa.2018.10.058

8. Haller R, Leo N, Zavarzina O. Two new examples of Banach spaces
with a plastic unit ball. Acta Comment Univ Tartu Math. (2022) 26:89–101.
doi: 10.12697/ACUTM.2022.26.07

9. Kadets V, Zavarzina O. Nonexpansive bijections to the unit ball of the ℓ_1-
sum of strictly convex Banach spaces. Bull Aust Math Soc. (2018) 97:285–92.
doi: 10.1017/S0004972717001150

10. Leo N. Plasticity of the unit ball of c and c_0. J Math Anal Appl. (2022)
507:125718. doi: 10.1016/j.jmaa.2021.125718

11. Zavarzina O. Nonexpansive bijections between unit balls of Banach spaces. Ann
Funct Anal. (2018) 9:271–81. doi: 10.1215/20088752-2017-0050

12. Karpenko I, Zavarzina O. Linear expand-contract plasticity of ellipsoids
revisited.Mat Stud. (2022) 57:192–201. doi: 10.30970/ms.57.2.192-201

13. Zavarzina O. Linear expand-contract plasticity of ellipsoids in separable Hilbert
spaces.Mat Stud. (2019) 51:86–91. doi: 10.15330/ms.51.1.86-91

14. Behrends E. Free University of Berlin, Private Communication. (2020).

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2024.1387012
https://doi.org/10.4064/fm-26-1-120-122
https://doi.org/10.1090/S0002-9904-1934-05978-0
https://doi.org/10.4064/fm-22-1-77-108
https://doi.org/10.1016/j.jmaa.2005.04.070
https://doi.org/10.1016/j.jmaa.2023.127435
https://doi.org/10.1007/s13398-015-0261-3
https://doi.org/10.1016/j.jmaa.2018.10.058
https://doi.org/10.12697/ACUTM.2022.26.07
https://doi.org/10.1017/S0004972717001150
https://doi.org/10.1016/j.jmaa.2021.125718
https://doi.org/10.1215/20088752-2017-0050
https://doi.org/10.30970/ms.57.2.192-201
https://doi.org/10.15330/ms.51.1.86-91
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Expand-contract plasticity on the real line
	1 Introduction
	2 Basic concepts
	2.1 Non-expansive maps
	2.2 Plastic metric spaces
	2.3 A subset of the real axis

	3 Main results
	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


